
https://doi.org/10.1007/s11075-020-01003-7

ORIGINAL PAPER

A coarsening algorithm on adaptive red-green-blue
refinedmeshes

Stefan A. Funken1 ·Anja Schmidt1

Received: 20 January 2020 / Accepted: 17 August 2020 /
© The Author(s) 2020

Abstract
Adaptive meshing is a fundamental component of adaptive finite element methods.
This includes refining and coarsening meshes locally. In this work, we are concerned
with the red-green-blue refinement strategy in two dimensions and its counterpart-
coarsening. In general, coarsening algorithms are mostly based on an explicitly given
refinement history. In this work, we present a coarsening algorithm on adaptive red-
green-blue meshes in two dimensions without explicitly knowing the refinement
history. To this end, we examine the local structure of these meshes, find an easy-
to-verify criterion to adaptively coarsen red-green-blue meshes, and prove that this
criterion generates meshes with the desired properties. We present a MATLAB imple-
mentation built on the red-green-blue refinement routine of the ameshref-package
(Funken and Schmidt 2018, 2019).

Keywords Coarsening · Meshes · Grids · Adaptivity · Refinement · Adaptive finite
element method · RGB · Red-green-blue

Mathematics Subject Classification (2010) 65M50

1 Introduction

Adaptive meshing is a popular tool to efficiently solve partial differential equations
where solutions exhibit local singularities [18]. In time-dependent problems, singu-
larities, interfaces, and forces may move or change in time. This requires coarsening
meshes locally. Otherwise, the algorithm’s efficiency would decrease with time since

� Anja Schmidt
anja.schmidt@uni-ulm.de

Stefan A. Funken
stefan.funken@uni-ulm.de

1 Institute for Numerical Mathematics, Helmholtzstraße 20, 89081, Ulm, Germany

Numerical Algorithms (2021) 87:1147–1176

Published online: 1 2020October

http://crossmark.crossref.org/dialog/?doi=10.1007/s11075-020-01003-7&domain=pdf
mailto: anja.schmidt@uni-ulm.de
mailto: stefan.funken@uni-ulm.de


degrees of freedom needed for an earlier time step are not released as the singularity
or interface progresses. To this end, it is common to deploy coarsening algorithms to
maintain the adaptive efficiency [2, 23]. Furthermore, coarsening routines are used in
multigrid techniques where a sequence of coarse and fine meshes is needed [17, 19].

Local geometric refinement is a major part of adaptive meshing. The goal is to
reduce the element size by adding further nodes to a given mesh. Several refinement
strategies are known which have desired properties and are therefore well suited for
adaptive meshing. An overview and a list of public code are provided by Schneiders
in [24]. Local coarsening is the counterpart of local refinement and is thus also an
important part of adaptive meshing. There are different approaches to coarsening.
Local coarsening refers to deleting nodes from a given mesh to increase the element
size. Possible approaches are based on edge collapsing [1, 19], centroidal Voronoi
tessellations [26], or the refinement history [2, 7, 16, 23]. The latter approach aims to
invert the refinement based on the refinement history. Desired properties such as the
inscribed ball condition [8] are automatically fulfilled during coarsening. The first
two approaches, in contrast, do not use the refinement history. Desired properties are
thus not automatically preserved within the coarsening process.

Early works on coarsening based on the refinement history refer to the hierarchi-
cal structure of the refinement and use this information to coarsen elements to their
corresponding parent element [16, 23]. Chen and Zhang proposed a new concept
to identify admissible-to-coarsen nodes without explicitly knowing the hierarchical
structure for the newest vertex bisection (NVB) [7]. Bartels and Schreier general-
ized this result to any dimension for triangulations created by bisections [2]. To the
best of our knowledge, this has not been done for other refinement strategies of
triangular meshes. To this end, we bridge the gap and present a new criterion to adap-
tively coarsen meshes generated by the red-green-blue (RGB) refinement strategy in
two dimensions introduced in [4] and implemented in the ameshref-package [11,
12]. The only information we use to describe a mesh is the element-connectivity
and the coordinates of the vertices. No information about neighbors or parent-child
connections is stored. A key observation within this paper is that this minimal data
structure can also be kept for coarsening, i.e., no additional information is needed to
coarsen the meshes. However, as hierarchical data is non-present, the determination
of nodes that can be eliminated-while preserving desired properties-is more difficult.
We present an algorithm that determines those “admissible” nodes.

This paper is organized as follows. In Section 2, we introduce some notations
and definitions and shortly present the red-green-blue refinement. We highlight the
requirements for the data structure of an RGB refinement implementation such that
the proposed RGB coarsening algorithm can be realized based on this implemen-
tation. We further present the RGB implementation in the ameshref-package as
we build our coarsening routine on this code. In Section 3, we focus on coarsen-
ing requirements and compare the RGB refinement to the newest vertex bisection.
For newest vertex bisection, a coarsening strategy is already known. Thus, we show
the limitations of this approach for RGB and, in Section 4, adapt it in a way that
some ideas can be carried over and the limitations motivate the RGB coarsening

1148 Numerical Algorithms (2021) 87:1147–1176



algorithm presented and examined. In Section 5, we focus on the efficient implemen-
tation in MATLAB by use of vectorization and conclude with numerical experiments
presented in Section 6.

2 Preliminaries

Let � be a polygonal domain in R
2. An element T ⊂ R

2 is a triangle including
edges. We call T a triangulation of � if:

– T is a finite set of elements T with positive area |T | > 0 ,
– The union of all elements in T covers the closure �,
– For Ti, Tj ∈ T with Ti �= Tj for i �= j holds T̊i ∩ T̊j = ∅, where T̊ denotes the

interior of T .

We denote the set of all vertices of a triangulation T with N , and the set of all edges
with E . With this, N (T ) := {v ∈ N | v ∈ T } is the set of nodes of an element T ∈ T .
Analogously, E(T ) := {e ∈ E | e ⊂ ∂T } is the set of edges of an element T ∈ T . We
index T and N with a zero when we reference to the initial triangulation T0 and the
nodes N0 in the initial triangulation. We call T a conforming triangulation of � if
additionally:

– For all Ti, Tj with Ti �= Tj for i �= j holds that Ti ∩ Tj is the empty set, a
common node or a common edge.

The aforementioned definition prevents a triangulation from having hanging nodes.
A node v ∈ N is called hanging node if for some element K ∈ T it satisfies v ∈
∂K \ N (K). We define an extended conforming triangulation (T , refT ) where T is
a conforming triangulation and refT is a mapping refT : T → E(T ) that assigns a
reference edge to each triangle T ∈ T such that for T ∈ T holds: refT (T ) ∈ E(T ).
For a triangle T ∈ T with reference edge refT , a refinement (r(T ), refr(T )) is a finite
set of triangles such that:

– For all T̃ ∈ r(T ) holds T̃ ⊂ T ,
–

⋃

T̃ ∈r(T )

T̃ = T ,

– For all T̃ , T̂ ∈ r(T ) with T̃ �= T̂ holds that T̃ ∪ T̂ is the empty set, a common
node or a common edge, and

– For all T̃ ∈ r(T ) a new reference edge refr(T ) : r(T ) → E(r(T )) is assigned
such that for T̃ ∈ r(T ) holds refr(T )(T̃ ) ∈ E(T̃ ).

We call (T̃ , refT̃ ) a refinement of a triangulation T if:

– Each (T , refT ) ∈ (T , refT ) is refined to (r(T ), refr(T )), and
– The resulting triangulation (T̃ , refT̃ ) is an extended conforming triangulation.

The last point in particular ensures that the resulting triangulation does not have
any hanging nodes. Eliminating hanging nodes by refining further elements is called
CLOSURE. For further details, we refer to Sections 2.2 and [12].

Numerical Algorithms (2021) 87:1147–1176 1149



In this work, we are concerned with the red-green-blue refinement in two
dimensions.

Definition 1 (red-green-blue refinement (RGB), cf. [4]) We call a refinement
(r(T ), refr(T )) of a triangle T with reference edge ref(T ) a

– red refinement if triangle T is divided into four subtriangles by joining the
midpoints of its edges;

– green refinement if triangle T is divided into two subtriangles by joining the
midpoint of the reference edge r(T ) to the vertex opposite to this edge;

– blue refinement if triangle T is divided into three subtriangles by joining the
midpoint of the reference edge r(T ) to the vertex opposite to this edge and to the
midpoint of one of the other edges;

and for each subtriangle a new reference edge is assigned according to Fig. 1.

Reference edges are chosen such that during the refinement process all formed tri-
angles starting from an initial triangle T0 fall into at most four similarity classes [22,
25]. This ensures that degeneracies are avoided and Ciarlet’s inscribed ball condi-
tion [8] is satisfied for a family of triangulations Th formed by the refinements. This
property is often referred to as shape regularity of a triangulation. The assignment
of reference edges is clearly prescribed through the refinement process. There still
remains the question of how to select the reference edges in the initial triangulation
T0. Obviously, the choice has some impact on the locality of the adaptive mesh. An
intuitive choice is, e.g., the longest edge. Further possibilities are discussed in [4, 27].
In depictions, we refrain from labeling the reference edges whenever it is irrelevant
for the context.

2.1 Requirements for the data structure of an RGB refinement implementation

In this work, the implementation of the proposed coarsening algorithm is built on the
RGB refinement implementation in the ameshref-package [11, 12]. This is why
we focus on this concrete data structure. However, the proposed coarsening algo-
rithm can also be based on other RGB refinement implementations without explicit
refinement history. For this to work, the following must be ensured:

R1. Reference edges must be incorporated in the data structure.

Fig. 1 From left to right: Initial triangle (none) and its possible refinements red, green, bluer , and blue�.
Reference edges are highlighted by hatched lines. The letters r, g, and b denote the type of refinement and
the numbers indicate the storage sequence of the newly created elements

1150 Numerical Algorithms (2021) 87:1147–1176



Fig. 2 Newest vertices per element (white squares) displayed for each refinement pattern. The nodes that
were last added in an element are the newest vertices. The set of newest nodes does not include any nodes
from the initial triangulation

R2. The data structure needs to be designed such that newest vertices, cf. Fig. 2,
can easily be determined.

R3. Elements have to be numbered in a way that a blue refinement leads to the
same numbering as an application of two green refinements.

R4. The middle element of red refinement patterns, cf. Fig. 3, must be identifiable.
R5. Child elements are to be stored consecutively at the former position of the

parent element, cf. Figs. 1 and 4.

Let us examine each of these listed points in more detail. R1. Reference edges
play a crucial role in RGB refinement and are thus also important for coarsening. We
know how the reference edges are chosen during the refinement process. Thus, this is
one key information in joining elements back together and determining the reference
edge of the parent element, cf. the pattern none in Fig. 1. However, this information
on its own is not sufficient. R2. In each refinement step, new nodes are added. To
this end, the newest nodes are the nodes that are first removed in a coarsening step. It
is therefore important information as it provides the node candidates for removal, cf.
Fig. 2. These node candidates do not give any information about the patterns that lie
around these nodes. However, they are important when it comes to joining elements
back together. Our algorithm distinguishes between a red and a green pattern. R3. As
a blue pattern is created by a green refinement of a green-refined element, we can
deal with a blue pattern via a two-step removal of green patterns. For this to work, it
is required that the numbering of a blue pattern leads to the same numbering as the
application of two green refinements. Thus, it only remains to distinguish red and
green patterns from each other. Where a green refinement is the result of a bisection
of the element, a red refinement creates four subtriangles by joining its midpoints
together. R4. This means that there is one triangle with new nodes only, that we call

Fig. 3 Red middle element is painted in color. Middle elements whose neighbors have a different refine-
ment level are not considered in the set of red middle elements. To determine a red middle element, for
each element all three neighbors that share an edge with this element are determined and the location of
the reference edge is compared. If it matches the refinement pattern on the left, it is a red middle element.
If the surrounding leads to other combinations as shown, e. g., in the other three patterns, it is not a red
middle element

Numerical Algorithms (2021) 87:1147–1176 1151



Fig. 4 Numbering of elements before (left) and after refinement (right). Subtriangles of an element are
stored at the previous position of this element and successive positions, rather than appending the new
elements at the end of the array. The position of other elements is then shifted by the number of newly
created elements

a red middle element, cf. Fig. 3. Such a middle element does not exist for green or
blue patterns and therefore distinguishes red patterns uniquely from green or blue
patterns. R5. To determine the color of the pattern, we make use of the property that
subelements of one and the same element are stored consecutively, cf. Fig. 1. This
ensures that elements that need to be joined together when coarsening are implicitly
given in the data structure. So far, we have come to a point where we determined node
candidates for removal and know their surrounding patterns. With this information,
elements can be coarsened once. To join elements together in a subsequent coarsening
step, it is necessary that the local information of former joined elements can still be
reconstructed. We can ensure this by storing the subtriangles of a refined element
at the previous position of the parent element and successive positions, rather than
appending the new elements at the end of an array. The position of other triangles is
then shifted by the number of newly created elements, cf. Fig. 4. If we reverse this
operation when coarsening, we make sure that elements with the same parent element
are stored consecutively after a coarsening step. Therefore, our coarsening routine is
able to coarsen back to the initial triangulation and no explicit history tree is needed
to invert the refinement.

In the following subsection, we introduce our MATLAB implementation of the
RGB refinement. The fact that the requirements R1., R3., and R5. are met is made
clear by the following explanation of the data structure used as well as the RGB
refinement and the corresponding storage of new coordinates and elements. How to
meet the requirements R2. and R4. is discussed in Section 5.

2.2 Our MATLAB implementation of RGB refinement

In this section, we give some insights into the implementation of the RGB refine-
ment in the ameshref-package [11–13]. We focus on the parts that are essential
for our coarsening routine. For a more thorough explanation, we refer to [12, 13].
We represent a triangulation T = {T1, . . . , TM} with nodes N = {v1, . . . , vN }
as follows: The x- and y-coordinates of the nodes N are stored within an N × 2
array coordinates. Furthermore, we represent the element-connectivity within
an M × 3 array elements where one row stores the indices of the element’s three
vertices vi, vj , vk ∈ N with i, j, k ∈ {1, . . . , N}. Optionally, boundary edges can
be stored in an additional array with indices of the edge’s two vertices. As depicted
in Fig. 1, reference edges play a crucial role. Instead of storing this information in
an additional data structure, we capture the reference edge implicitly as the edge

1152 Numerical Algorithms (2021) 87:1147–1176



Table 1 Mapping of eight possible markings to the five patterns allowed in RGB refinement. For each
hash, a binary number is given

between the first two vertices of an element indexed by the first two entries in the
array elements (R1.). Elements are numbered counterclockwise.

In adaptive procedures, a set of marked elements M is given. We flag elements
T ∈ M by marking each edge of the element for bisection. Obviously, neighboring
elements T �∈ M are affected indirectly by this marking. A CLOSURE step is per-
formed to avoid creating hanging nodes. As mentioned, the assignment of reference
edges ensures the shape regularity of the triangulation. To this end, the reference edge
needs to be bisected before any other edge of this element is refined. For this rea-
son, we mark edges according to the hash map shown in Table 1 and loop through
this CLOSURE step until no further markers are added. Then, we refine the elements
according to Fig. 1 (R3.) and save the new elements at the corresponding position in
the array as depicted exemplarily in Fig. 4 (R5.). This is essential for coarsening of
more than just one layer as the recursive information is implicitly given in the array
elements. Without this, any hierarchical information is lost; and thus, coarsening
of more than one layer is impossible. As a direct consequence of this way of storing
the refined elements, adjacent blue and green patterns can no longer be distinguished
from each other, cf. Fig. 5. It thus makes sense to consider inverting green and red
refinement only.

Figure 6 serves to illustrate the data structure used in the ameshref-package as
well as the RGB refinement and the corresponding storage of the new coordinates
and elements.

Fig. 5 Three examples to show that adjacent blue(b) and green(g) patterns cannot be distinguished on the
basis of numbering: [Actual connection of elements] ↔ [Another conceivable connection based on this
numbering]

Numerical Algorithms (2021) 87:1147–1176 1153



a

b

c

Fig. 6 a Initial triangulation with reference edges displayed as hatched lines. The array coordinates
lists the x- and y-coordinates of the nodes; the corresponding indices are labeled in the meshes. The array
elements specifies the element-connectivities by indexing the corresponding coordinates. The edge
between the first two nodes in an element corresponds to the reference edge. b Refined mesh obtained by
marking both elements in the initial triangulation and performing an RGB refinement. New coordinates
are appended to coordinates whereas new elements are stored in elements at the previous position
of the unrefined element and successive positions. The rest is shifted by the amount of new included
elements. Here, element numbers 1 to 4 are the red refinement of element 1 in (A), and element numbers
5 to 8 correspond to a red refinement of element number 2 in (A). New reference edges are highlighted
and stored analogously. c Adaptive triangulation obtained by RGB refining the mesh in (B) for the marked
element number 8. This causes a CLOSURE step to eliminate arising hanging nodes as shown in Table 1.
New coordinates are appended to coordinates, reference edges are highlighted and stored as the edge
between the first two nodes of an element, newly generated elements are stored at the previous position
of the parent element and the rest is shifted, e.g., the green refinement of element 1 in (B) corresponds to
element numbers 1 and 2, the green refinement of element 2 in (B) corresponds to element number 3 and
4, etc.

1154 Numerical Algorithms (2021) 87:1147–1176



3 Coarsening requirements: red-green-blue refinement vs. newest
vertex bisection

The goal of geometric refinement is to reduce the element size by adding further
nodes to a given triangulation. In other words, one wants to increase the number of
degrees of freedom. Coarsening, conversely, decreases the number of degrees of free-
dom in a triangulation, i.e., eliminates nodes of a triangulation. However, there are
still some questions remaining. Let T̃ be a refinement of a triangulation T satisfying
shape regularity. How to eliminate nodes:

– To receive a triangular mesh (i.e., quadrilateral elements are not part of the
triangulation)?

– To receive a shape regular mesh (i.e., the inscribed ball condition is satisfied)?
– To receive a conforming triangulation (i.e., a triangulation without hanging nodes)?
– To undo/invert a refinement without knowing the refinement history explicitly?

In literature, there are different approaches on coarsening-dealing with these details
in different manners. The most common approach is to use edge collapsing known
from Delaunay algorithms. This does not require to know the refinement history at
all and the mesh quality is assured in the process of edge collapsing. We refer to [1,
19]. Coarsening can also be done by clustering into regions via the centroidal Voronoi
tesselation, cf. [26]. The new mesh is then constructed via its dual-a Delaunay trian-
gulation. As a further coarsening algorithm, we would like to mention the concept of
using the refinement history. More precisely, the history is used to invert the refine-
ment procedure. Most works based on this approach use a hierarchical structure, i.e.,
store the refinement history explicitly; see, e.g., [16, 23]. To the best of our knowl-
edge, in 2D, there is only one work on non-hierarchical coarsening for the refinement
procedure newest vertex bisection by Chen and Zhang [7]. The newest vertex bisec-
tion (NVB) differs from RGB refinement in one pattern. Instead of a red refinement,
a bisec(3)-operation is used, i.e., instead of joining midpoints of the element’s edges,
the element is divided into four subtriangles by joining the midpoint of the reference
edge to the vertex opposite to this edge and the midpoints of the remaining edges, cf.
Fig. 7. Chen and Zhang found an easy-to-verify criterion to determine whether nodes

Fig. 7 Newest vertex bisection differs from RGB refinement through the use of a bisec(3)-operation
instead of the red pattern. A bisec(3)-operation is essentially a green refinement of an element and each of
the child elements is again green-refined

Numerical Algorithms (2021) 87:1147–1176 1155



are allowed to be eliminated or not. This works well because NVB is implemented by
a sequence of bisections and those can easily be undone. In other words, NVB con-
sists of successive green refinements. The same is not true for the abovementioned
red-green-blue refinement. We still see that the green pattern emerges from a bisec-
tion and the blue pattern arises from two subsequent bisections, cf. Fig. 1. However,
the red pattern does not originate from a bisection of elements and thus the criterion
proposed by Chen and Zhang fails to work for the RGB refinement. In this work,
we discuss this issue and propose an easy-to-verify criterion to determine nodes for
elimination in an RGB refined triangulation.

To this end, let us first investigate Chen and Zhang’s approach to determine admis-
sible nodes for the newest vertex bisection (in their paper called good-for-coarsening
node), cf. [7]. Defining the patch:

Rv := {T ∈ T | v ∈ T } ,

the valence #Rv counts the elements that are contiguous to a node v ∈ N . Let

Nnew := {v ∈ N \N0 | v is newest vertex of some T ∈ T }
be the set of newest nodes in a triangulation T . Chen and Zhang claim that the set of
admissible nodes is characterized by the set:

Nadm := {v ∈ Nnew : #Rv = 4 or #Rv = 2} .

In Fig. 8, this idea is illustrated. The set Nadm is shown to be non-empty. This is an
important requirement if one wants to assure that this criterion is useful in practical
implementations. In short, a set of admissible nodes Nadm is determined with this
criterion. Adaptive coarsening can then be pursued by elimination of the set of nodes
Nadm ∩Nmark where Nmark is the set of nodes that are marked through a given mark-
ing strategy. This method is powerful as it determines a set of nodes Nadm ∩ Nmark
for which it is ensured that eliminating these nodes by joining elements together to
its parent element does not introduce any hanging nodes.

Let us now apply this easy-to-verify criterion for the red-green-blue refinement.
One can easily see that green and blue refinements carry over, i.e., green refinements
are removed for a valence of two or four and blue refinements are removed in a
two-step process-deleting one green refinement and then the subsequent one. This
is favorable because, as already mentioned, adjacent green and blue patterns cannot
be distinguished in our data structure. However, as blue patterns are not considered

Fig. 8 Left: Initial mesh. Middle: Newest vertex v with #Rv = 4. This vertex can be removed. Right:
Newest vertices v1, v2 with #Rv1 = 5 and #Rv2 = 2. Only v2 can be removed

1156 Numerical Algorithms (2021) 87:1147–1176



separately, but only as a sequence of green patterns, this does not pose any imple-
mentation problems. Applying this criterion to red patterns, it fails to detect the nodes
that can be deleted, cf. Fig. 9.

For this reason, a new criterion needs to be developed to cover red and green
patterns at once. We closely follow the ideas from Chen and Zhang for NVB but
incorporate the red middle element in our computations. We again consider the set of
newest vertices:

Nnew := {v ∈ N \ N0 | v is newest vertex of some T ∈ T } ,

cf. Fig. 2. Let further:

M := {T ∈ T | T is a red middle element}
be the set of red middle elements in our triangulation T . Red middle elements are
determined by comparing the position of reference edges of neighboring elements
sharing an edge with this middle element, cf. Fig. 3. The complement:

MC := T \ M
is then used to define an adapted patch:

R̃v :=
{
T ∈ T | v ∈ N (T ), T ∈ MC

}

and with
Ncandidates :=

{
v ∈ Nnew : #R̃v = 4 or #R̃v = 2

}

a set of candidates for elimination is found. In both cases of Fig. 9, the adapted
valence #R̃v1 = 4 and thus v1 is considered a candidate for elimination. The valences
for other vertices stay the same with this adapted definition of a patch. Let us remark
that checking only one node for a red pattern is inadequate. During a red refinement,
three new nodes are created at once. To this end, it does not suffice to look at only
one node, in contrast to NVB. Moreover, checking all three nodes of a red pattern
is not enough either because the neighboring pattern may be a red pattern and thus
additional two nodes need to be taken into account. In the process of eliminating
nodes, a whole chain of red patterns has to be followed to determine which nodes
can actually be eliminated without creating a hanging node. To determine the set of
admissible nodes Nadm (here we consider Nadm to be the set of nodes that does not
create hanging nodes when eliminated) we have to follow this chain of red patterns

Fig. 9 Left: Initial mesh. Middle: Newest vertices v1, v2, v3 with #Rv1 = 5 and #Rv2 = #Rv3 = 3.
Right: Newest vertices vi , i = 1, . . . , 5 with #Rv1 = 6 and #Rvi

= 3 for i = 2, . . . , 5. Although all
nodes in both pictures could be removed, the NVB criteria cannot cover these cases, because this criterion
demands #Rv to be 2 or 4

Numerical Algorithms (2021) 87:1147–1176 1157



and if for all nodes v laying along this chain holds v ∈ Ncandidates, it follows that
v ∈ Nadm. An easy example shows that the so determined set Nadm may possibly be
empty. Consider the triangulation (T , refT ) shown in Fig. 10. Here, Nadm = ∅ since
the vertex v with weight #R̃v = 5 blocks all vertices along the chain from deletion.
These vertices are connected through red middle elements along the loop.

Due to this property, this method is not suitable for practical purposes as we may
end up in a case where the mesh is not coarsened at all. In addition, we have not even
considered adaptivity here. In contrast to Chen and Zhang’s method, we cannot use
the set of nodes Nadm ∩ Nmark for adaptive deletion. In our case, we need to include
Nmark within the determination of admissible nodes Nadm since we considered a
whole chain of red patterns to avoid the creation of hanging nodes. If a node in this
chain is not marked for deletion, it causes the same blockage as a node with valence
unequal to 2 or 4. In order to design a practically useful algorithm, we drop the
requirement to avoid hanging nodes and rather work with a CLOSURE step.

Remark 1 We see that even though NVB and RGB refinement only differ by one
pattern and both refinement methods are easily implemented, finding a coarsening
strategy for RGB is more involved without explicit knowledge of the refinement his-
tory. This is due to the red pattern and the resulting loss of a binary structure of
the refinement history. In numerical experiments for refinement, no differences were
found that would place one method above the other. However, the loss of a binary
structure has more consequences, for example in the analysis of adaptive finite ele-
ment methods. The analysis of convergence rates rely on a mesh overlay property;
see [3, 6, 27] for the first contributions and [5] for an axiomatic contribution with a
historical overview. This mesh overlay property is automatically fulfilled for binary
tree refinement structures but does not hold for the RGB refinement as shown in [20].

4 The RGB coarsening algorithm

In this section, we present our RGB coarsening algorithm. We use the ideas presented
in Section 3 but loosen the conditions to the set Nadm. In the previous section, we
considered Nadm to be the set of nodes that does not create hanging nodes when elim-
inated. To this end, it was necessary to look at the chain of red patterns. Now, Nadm
declares the set of candidates for removal that are marked, cf. Ncandidates in Section 3
with additional marking parameter, i.e., the approach is local. The main goal is to

Fig. 10 Left: Exemplary triangulation (T , refT ). The vertex v with #R̃v = 5 (in white) blocks all vertices
along the loop (dotted) from deletion. These vertices are connected through red middle elements. Right:
Initial triangulation (T0, refT0 ) of the left mesh

1158 Numerical Algorithms (2021) 87:1147–1176



determine this set efficiently with a non-hierarchical data structure. As soon as the
pattern is determined, deleting the pattern is an easy task. This may introduce some
hanging nodes. A subsequent CLOSURE step eliminates hanging nodes to obtain a
conforming triangulation. This is a practical approach and guarantees that coarsening
is done locally. Algorithm 1 describes our coarsening algorithm with an additional
CLOSURE step. Figure 11 illustrates this procedure.

Let us elaborate whether a hanging node can be created through Algorithm 1.
A hanging node can be created by coarsening a pattern present at that node. Green
patterns are fully removed. Red patterns may be coarsened into a green or blue
pattern or they are fully removed. If the node is eliminated from the boundary,
no hanging node is introduced. If this node is in the interior of the domain, it is
shared by two neighboring patterns. A hanging node is introduced if the connec-
tion to this node is eliminated on one side but not on the other. This might be the
case if one pattern falls into the presented cases shown in Fig. 12 and the other
does not. We further argue that this cannot happen. First, all newest nodes Nnew :=
{v ∈ N \N0 | v is newest vertex of some T ∈ T } are collected. It might happen that
a node v is the newest node of one pattern but not of the other. The definition still
includes this node, as it is the newest node of some T ∈ T . Figure 13 shows possi-
ble cases where this occurs. We see that for those cases holds that #R̃v �∈ {2, 4} and
v is thus not considered for elimination. As a consequence, neither the one nor the
other pattern is coarsened at that node and thus no hanging node is introduced. Fur-
thermore, this can happen for a case shown in Fig. 14. But those cases cannot arise as
only conforming triangulations are considered as input. There still remains the case,

Numerical Algorithms (2021) 87:1147–1176 1159



a b

c d

e

Fig. 11 Illustration of Algorithm 1: (T̂ , refT̂ ) = COARSEN
(
T , refT ,N

(
T

))
. a Exemplary triangula-

tion T obtained by RGB refinement with reference edges refT shown as hatched lines. All nodes are
marked for elimination, i. e. , Nmark = N (T ). b Illustration of newest nodes (white dots) and red middle
elements (backed with color). The valence #R̃v is shown for the newest vertices v ∈ Nnew. c Determi-
nation of Nadm and Nblock according to lines 6-7 of Algorithm 1. Reference edges are shown where it
is relevant. d CLOSURE step in lines 8-13 of Algorithm 1. If a node of a red middle element is blocked,
the node opposite to the reference edge of this middle element needs to be blocked, too. Otherwise the
patterns do not follow the path of reference edges anymore. The reference edges of the corresponding red
middle elements are marked. e Output mesh (T̂ , refT̂ )

where this node is the newest node for both patterns. In the refinement process, we
have red, green, and blue patterns. In the coarsening step, we only coarsen red and
green patterns. To this end, we examine what happens if blue patterns are present

1160 Numerical Algorithms (2021) 87:1147–1176



Fig. 12 Create new elements and reference edges (T̂ ,T̂ ) according to the depiction for nodes in Nadm
(white squares) and Nhang (white dots). The patterns used are the same as allowed in the RGB refinement
process. Properties such as the shape regularity are thus preserved

at a new node; see Fig. 15. In this case, #Rv �∈ {2, 4} thus the connection to this
node is not eliminated. The set Nadm calculated first will only get smaller during the
algorithm and therefore no new cases causing hanging nodes will occur. If a node is
blocked, it is not eliminated by either pattern. If it is admissible, it is eliminated by
both patterns. Overall, the algorithm generates a conforming triangulation. The shape
regularity is preserved, as lines 8–11 ensure that the reference edge is always marked
and thus an element T is coarsened into triangles that are in four similarity classes
only. The inscribed ball condition is thus satisfied. This shows:

Theorem 1 (Output COARSEN) Let (T , refT ) be a conforming triangulation
obtained by RGB refinement of an initial conforming triangulation (T0, refT0

) and
Nmark ⊂ N . Then COARSEN(T , refT ,Nmark) from Algorithm 1 generates a
conforming and shape regular triangulation.

Remark 2 The CLOSURE step in Algorithm 1 might introduce new connectivities
in the coarsened mesh. The shape regularity of the mesh is still preserved because
the new connectivities are the same as the ones allowed in the refinement process.
However, in adaptive methods, the required interpolation process is more involved
by creating new connectivities, especially when evaluating non-nodal values. The
authors in [21] show an interpolation approach for the red-green refinement. A
similar ansatz can be used in our case.

Our coarsening operation is not completely inverse to RGB refinement. A blue
refinement of an element results in three child elements. One application of the coars-
ening algorithm does not coarsen the blue refinement to its parent element but to two

Numerical Algorithms (2021) 87:1147–1176 1161



Fig. 13 Possible cases for which a node v (white dot) is the newest node of one pattern but not of the
other. Here, the node v is the newest node for the upper pattern but not for the lower one. We see that for
all cases #Rv �∈ {2, 4} and thus those nodes are not considered for elimination

child elements of the parent element. Additional patterns created during the CLO-
SURE step also do not follow an inverse operation of the RGB refinement. However,
we can relate these patterns to a corresponding mesh obtained by NVB refinement.
More specifically, as soon as one or two nodes of a red pattern are eliminated, our
CLOSURE step does not go back to the parent element but to blue or green children
of this parent element. We thus handle the mesh as if the mesh was NVB refined with
this set of newly added nodes. The corresponding mesh can be defined as a bijective
function and is discussed in detail in [14].

Even though the coarsening operation is not inverse, the following result applies:
Algorithm 1 can fully recover the initial triangulation provided that the initial
triangulation (T0, refT0) is of weak BDD type.

Definition 2 (weak BDD-property, cf.[4, 15]) An element T ∈ T is called iso-
lated if the reference edge refT (T ) is shared with another element T̃ ∈ T and
refT (T̃ ) �= refT (T ). A mesh (T , refT ) has the weak BDD-property if two distinct
isolated elements T1, T2 ∈ T do not share an edge.

Remark 3 In adaptive meshing, it is common to impose conditions on the distribution
of reference edges. In fact, the NVB coarsening algorithm of Chen and Zhang relies
on a stricter condition on the initial triangulation, namely that there are no isolated
elements at all, cf. [7]. This is the same condition as Binev, Dahmen, and DeVore

Fig. 14 Impossible situation for which the node (white dot) is the newest node for the upper pattern but
not for the lower one. This situation cannot occur because only conforming triangulations are allowed as
input parameters, i.e., hanging nodes cannot exist

1162 Numerical Algorithms (2021) 87:1147–1176



Fig. 15 Blue patterns present at a node v (white dot). In these cases, it holds that #Rv �∈ {2, 4}, i.e., the
node v is not considered for elimination

(BDD) imposed on the initial triangulation to prove optimal convergence rates for
adaptive finite element methods with NVB [3]. Carstensen weakened this condition
to the above Definition 2 to prove the H 1-stability of the L2-projection for RGB
refined meshes [4]. Later, Karkulik, Pavlicek, and Praetorius improved these results
in the sense that the condition of assignment of reference edges in the initial trian-
gulation was removed [15]. For coarsening, we still need the weakened condition to
guarantee the existence of nodes for elimination. Without any assumptions on the ini-
tial mesh, a loop of isolated elements may be formed that cannot be eliminated with
our coarsening criteria, cf. [7]. This is not restrictive. In fact, Carstensen provides an
algorithm that generates an extended conforming triangulation of weak BDD type for
an arbitrary conforming triangulation in linear complexity [4]. The results of Chen
and Zhang for NVB remain also true under the weak BDD-assumption.

With the weak BDD-property, we can show:

Theorem 2 (Coarsening) Let (T , refT ) be an arbitrary RGB refinement of an ini-
tial conforming triangulation (T0, refT0

) where (T0, refT0
) is of weak BDD type. Let

(T (i))i=0,1,... be a sequence of triangulations generated by Algorithm 1, i.e.,

T (0) := T and
(
T (i+1), refT (i+1)

)
:= COARSEN

(
T (i), refT (i) ,N

(
T (i)

))
.

Then, after a finite number of steps M ∈ N0, we obtain:

T (M) = T0.

Remark 4 In practice, we would like to ensure that M ≤ cN for a small c ≥ 1, where
N is the number of adaptive RGB refinement steps performed to obtain (T , refT ). In
Section 6.2, some numerical experiments to estimate the ratio M

N
are performed.

Proof For the proof, we consider a mesh refined by NVB as the coarsening patterns
are chosen as if we would trace back the refinement history of a NVB refined mesh
with the same nodes. RGB can then be related to NVB via a corresponding mesh
function, cf. [15], i.e., the results are also valid for RGB. For a NVB refined mesh,

Numerical Algorithms (2021) 87:1147–1176 1163



Fig. 16 Compatible patches as shown in [7]. The nodes v (white squares) have the property v ∈ Nnew and
#Rv ∈ {2, 4} and can thus be eliminated in a coarsening step. Reference edges are shown as hatched lines

there holds that R̃v = Rv for each node v and thus relates to the work of Chen
and Zhang [7]. As shown in their work, only compatible patches are eliminated; see
Fig. 16.

Let (T0, refT0) be of weak BDD type. We first show that any uniform bisec(3)-
refinement of a weak BDD triangulation results into a weak BDD triangulation. For
this purpose, we first recognize that elements with a reference edge as inner edge are
not isolated due to the allowed refinement patterns. Thus, we only have to consider
elements that share their reference edge with a triangle of another parent element. As
illustrated in Fig. 17, the weak BDD property is inherited at these edges.

Therefore, we can restrict ourselves to a piece of the whole refinement and see if
we can eliminate nodes to achieve the uniform refinement of a lower level. Figure 18
shows what happens for a piece of the whole refinement. For the highlighted nodes,
#Rv ∈ {2, 4} applies; otherwise, two isolated elements would have shared an edge
in the initial triangulation, i.e., the mesh would not be of weak BDD type. There-
fore, these nodes can be eliminated. In a further coarsening step, we again have a
compatible patch that can be coarsened. In a last step, with the same arguments as
above, #Rv ∈ {2, 4} and can thus be eliminated. As long as T (i) �= T0, this process
can be repeated until there are no more newest nodes. In this way, the initial mesh is
recovered after a finite number of steps.

Fig. 17 The weak BDD-property is inherited if the mesh is uniformly bisec(3)- or red-refined. Isolated
elements are marked; reference edges are shown as hatched lines. Left: Initial mesh of weak BDD type.
Right: Uniform bisec(3)-refinement of the left mesh. The resulting mesh is still of weak BDD type. Isolated
elements exist only at the reference edges previously shared with another parent element with a different
reference edge. An RGB refined mesh has the same property

1164 Numerical Algorithms (2021) 87:1147–1176



Fig. 18 Piece of a uniformly bisec(3)-refined triangulation of weak BDD type. Here, two isolated elements
were connected by one element. From top left to bottom right: Uniformly refined mesh with nodes (white
squares) that can be coarsened. Subsequently, coarsened meshes where the nodes marked in the previous
mesh have been eliminated and further nodes (white squares) are determined for the next elimination.
After three coarsening steps, a uniform refinement of a lower level is reached

Remark 5 At most M = #N (T )−#N0 are needed to recover the initial triangulation.
Numerical experiments show that this bound is very pessimistic.

5 MATLAB implementation of the coarsening algorithm

In the previous section, we have presented our RGB coarsening algorithm. In
this section, we focus on the concrete implementation in MATLAB based on the
refinement routine TrefineRGB.m; see [11]. We have already discussed the data
structure used in the refinement procedure in Section 2.2. This will also play a major
role in the implementation of the coarsening routine. Let us recap quickly the main
structures: Elements T ∈ T are defined by their vertices vi, i = 1, 2, 3 and num-
bered counterclockwise. The edge in between the first two vertices v1, v2 is the
reference edge refT (T ) = v1v2 of T . Refined elements are stored at the former
position of the parent element and subsequent positions, cf. Fig. 4. Elements that
belong together are therefore listed one after the other. RGB coarsening can then be
implemented as follows (see Listing 1):

– Lines 1–4: The function TcoarsenRGB expects the number of coordinates N0
of the initial triangulation T0, mesh information such as coordinates and
elements and optionally boundary data in varargin as input. The last argu-
ment in varargin is reserved for marked elements (line 4). It is sufficient to
pass the number of coordinates N0 of the initial triangulation, since the coordi-
nates added during the refinement process are appended to the end of the array
coordinates. This means that the first N0 entries in coordinates are the
nodes N0.

– Lines 5–7: A triangulation is represented by the array elements and
coordinates. The auxiliary functions provideGeometricData and

Numerical Algorithms (2021) 87:1147–1176 1165



Listing 1 Lines 1–35 of TcoarsenRGB.m

createEdge2Elements adv provide more geometric information on the
mesh. The array element2edges specifies the edges of each element, cf. [12],
and the array edge2elements specifies the elements containing this edge and
the position of this edge within an element for all edges. E. g. , for

element2edges =
[

3 1 2
3 4 5

]

holds edge2elements =

⎡

⎢
⎢
⎢
⎢
⎣

1 2 0 0
1 3 0 0
1 1 2 1
2 2 0 0
2 3 0 0

⎤

⎥
⎥
⎥
⎥
⎦

.

edge2elements(�,1:2) specifies the position (column, row) of the �-th
edge in element2edges. If the �−th edge is a boundary edge, it holds
edge2elements(�,3:4)= [0, 0]. Otherwise, it specifies the position (col-
umn, row) of the �-th edge’s second entry in element2edges.

– Lines 9–10: (R4.) We determine all red middle elements as depicted in Fig. 3
by comparing the edges of four consecutive entries in element2edges. If the
second edge of element 1 is equal to the second edge of element 4, the third edge
of element 2 is equal to the third edge of element 4 and the first edge of element
3 is equal to the first edge of element 4, then sum(abs(. . .))=0 and therefore
the index of the red middle element is given by find(sum(abs(. . .))=0)+3,
cf. Fig. 19. Note, that this characterizes a red pattern uniquely and thus this
criterion to find red middle elements is appropriate.

1166 Numerical Algorithms (2021) 87:1147–1176



Fig. 19 Numbering of red
pattern: Element numbers are in
bold, edge numbers per element
are shown in a smaller font size

– Lines 11–13: (R3.) In this part, the newest node of each element is detected.
The newest node of an element is stored on position 3 in elements. We only
consider nodes for coarsening that are not part of the initial triangulation T0 (line
12). Note that we make a systematic error for red patterns, as an additional node
is detected as newest node even though it is not a new one, cf. Fig. 20. We have to
consider this systematic error in the course of our implementation. If an element
is marked for coarsening, we mark all nodes of this element for coarsening (line
13).

– Lines 15–21: Let red node be the set of newest nodes of a red pattern. The
term valence computed in line 17 is the number of elements #R̃v of the patch
R̃v defined in Algorithm 1. Nodes of green patterns are then all new nodes that
are not red. Note that the array green node includes the systematic errors.

– Lines 22–29: The admissible set Nadm =
{
v ∈ N | #R̃v ∈ {2, 4} andv ∈ Nnew

and v ∈ Nmark

}
and Nblock = N \ Nadm are computed. As the reference edge

plays a crucial role, we need to do a CLOSURE step to ensure that the shape
regularity still holds when coarsening. We again consider the patterns shown in
Fig. 1. We make sure that at least the reference edge of the parent element is
marked. Differently said, at least the third vertex of the red middle element needs
to be blocked if any other vertex in this element is blocked (lines 27–28). We
loop through this process until no further changes are made.

– Lines 30–37: Hanging nodes are then given by Nhang = Nblock ∩ Nnew (line
30). With this, we determine the coarsening pattern regarding to these hanging
nodes. For green patterns, this is either coarsen or not coarsen. For red patterns,
we have more cases to consider; see Fig. 12. To this end, we form the weighted
sum of hanging nodes. A red pattern can then be coarsened to the patterns: none
(000), green (001), bluer (101), blue� (011), and red (111). In the weighted sum
computed in line 33, these patterns correspond to the values 0, 4, 5, 6, and 7. The

Fig. 20 Systematic error made
by taking elements(:,3) as
newest nodes

Numerical Algorithms (2021) 87:1147–1176 1167



value 7 is not considered separately as in this case the elements are kept as they
are and are not coarsened.

We omit the presentation of the rest of the code (further 70 lines), as it is a
straightforward implementation of element updates. We distinguish between former
red patterns, former green patterns neighboring a red pattern, and former green pat-
terns not neighboring red patterns. Note, that for the latter, the corresponding array
includes the systematic error made earlier. To this end, we only consider subsequent
elements for coarsening, the case shown in Fig. 21 is out of question. The valence is
#R̃v = 2 but the elements containing v are not numbered consecutively and thus are
not considered. In a next step, the old triangulation is deleted. If provided, boundary
data is updated. Again, nodes are eliminated only if they are not blocked and they
do not stem from the systematic error shown in Fig. 20. Lastly, surplus nodes are
deleted and the new coordinates and elements are updated. The interested reader may
download the full code from [10].

5.1 Aminimal example

Listing 2 shows an exemplary code of how to embed the coarsening routine into a
framework. We start with defining an initial mesh T0 (lines 1–4). A refined mesh T̃
is created via TrefineRGB (lines 7–15). For a given triangulation T and a given
discrete point set P , the function point2element determines the elements of T
that include p for some p ∈ P . Thus, for the defined discrete point set in lines 16–
22, elements in T̃ are marked according to point2element. We coarsen the mesh
via the function call TcoarsenRGB (lines 26–27) until no further change is made
(line 28). Lines 33–35 plot the locally coarsened mesh.

5.2 Examples and demo files

The coarsening routine for RGB meshes is part of the toolbox ameshcoars - Effi-
cient Implementation of Adaptive Mesh Coarsening in 2D [10]. Numerical examples
and demo files based on the interplay of refinement and coarsening are provided in
subdirectories of the ameshcoars–toolbox:

– example1/: refinement along a moving circle,
– example2/: adaptive finite element implementation following [9] for a quasi-

stationary partial differential equation,

Fig. 21 Due to the systematic
error, situations arise where the
valence #R̃v = 2 and the
elements containing v are not
numbered consecutively (3 and
7). Analogously, the same
situation can arise for #R̃v = 4

1168 Numerical Algorithms (2021) 87:1147–1176



Listing 2 A minimal example

– example3/: triangulation of a GIF,
– example4/: local coarsening of a uniformly refined triangulation.

6 Numerical experiments

In this section, we test our coarsening routine with MATLAB 2018a. We present
some results based on example1/ and example4/ of the ameshcoars-toolbox
[10]. In particular, we look at the interplay of refinement and coarsening and how
well moving singularities can be captured by this procedure. Furthermore, we take
a look at the efficiency of our coarsening algorithm. We know that our coarsening
implementation is not inverse to the refinement but that it can fully recover the initial
triangulation. To this end, we want to examine what element- and coordinate-ratios
we get between each refinement/coarsening step to get a feeling of how efficient
our coarsening routine is. Furthermore, we examine our implementation for scalabil-
ity and give a remark on how the implementation depends on the local refinement.
Lastly, we show that coarsening can be done locally.

6.1 Interplay of refinement and coarsening

Let us start with a basic example. Adaptive coarsening is widely used to release
degrees of freedom that are not needed anymore as, e.g., a singularity advances. We

Numerical Algorithms (2021) 87:1147–1176 1169



imitate the behavior by a moving circle, which is supposed to represent the singular-
ity. Starting off with an initial triangulation (T0, refT0), we refine along the circle at
time t0. To capture the singularity in t1 > t0, we could start off again from (T0, refT0)

and only use the refinement procedure. However, as the circle progresses steadily,
only a few nodes need to be released and only a few nodes need to be added. To
this end, we use our coarsening routine to set the corresponding coordinates free
and the refinement routine to add further coordinates to capture the shape of the cir-
cle. The comparison of number of degrees of freedom between refinement only and
refinement combined with coarsening is illustrated in Fig. 22.

We first explain the procedure in this example. We define a circle with center and
radius. If this circle intersects an element, we mark this element for refinement. This
is done by the function markcircle and together with the refinement routine this
ensures that we capture the shape of the circle. We do this until a maximal number
Nmax of coordinates is reached, or the element size becomes too small. We then mark
all elements for coarsening, coarsen and repeat this until we fall below a given min-
imal number Nmin of nodes. Subsequently, in the next time step t1, we again refine
along the circle (now moved to another position!), but do not start from the initial
mesh but from the coarsened mesh from time step t0. This is done consecutively, and
we get a sequence of triangulations capturing the moving circle; see left column of
Fig. 23 and cf. example1/ in [10].

Note that the triangulations we get are highly sensitive to the choice of the param-
eter Nmin. We observe a pollution effect if Nmin is chosen too big; see right column
of Fig. 23. However, in general, a pollution effect does not falsify the computation.
It only means that the shape of the circle is not captured in the best possible way
and nodes exist where they are not necessarily needed. In principal, it is not just the
parameter Nmin that is responsible for a pollution effect. It also depends on how fast
the front for refinement advances, how many time steps are considered, how Nmax
is chosen, etc. However, in most applications, the pollution effect is controlled as
error estimators are often used to regulate the error and thus also adapt the mesh, cf.
example2/ and example3/ in [13].

Fig. 22 Left: Interplay between refinement and coarsening to capture moving circle in time step t1 > t0.
Right: Refinement only to capture moving circle in time step t1

1170 Numerical Algorithms (2021) 87:1147–1176



Fig. 23 Moving circle: triangulations at different time frames t1, t2, t3 with Nmax = 104. Left: Nmin =
102. Right: Nmin = 103. On the right, we observe a pollution effect; the circle draws a tail

6.2 Efficiency of the coarsening routine

We want to determine how efficient our coarsening routine is in the sense of element-
and coordinate-ratios in between two coarsening steps in comparison with two refine-
ment steps. Let therefore Ti be the triangulation after i refinement steps and Ni

denotes the set of nodes of the triangulation Ti . We determine the element-ratio

ρi
elem = #Ti+1

#Ti

and the coordinate-ratio

ρi
coord = #Ni+1

#Ni

in each refinement step. Let N be the number refinement steps. We expect 1 ≤
ρi

elem ≤ 4 for all i = 1, . . . , N due to the refinement patterns. We compute the actual
ratios for an adaptive refinement along a circle. They are presented in Table 2. We
see that the geometric means are ρelem = 2.40 and ρcoord = 2.15.

Analogously, we determine the ratios for coarsening steps. To this end, let T̂j be
the triangulation received after j coarsening steps, j ∈ {1, . . . , M}, and N̂j is the

Numerical Algorithms (2021) 87:1147–1176 1171



Table 2 Element- and
coordinate-ratios in between two
refinement steps

i #Ti #Ni ρi
elem ρi

coord

0 4 6 – –

1 13 12 3.25 2.00

2 39 28 2.00 2.33

3 123 74 3.15 2.64

4 297 164 2.41 2.22

5 693 365 2.33 2.23

6 1482 762 2.14 2.09

7 3085 1568 2.08 2.06

8 6239 3147 2.02 2.01

9 12,597 6328 2.02 2.01

10 25,221 12642 2.00 2.00

corresponding set of nodes. Note that TN = T̂0, i.e., we start our coarsening routine
from the finest mesh and mark all elements for coarsening. As our coarsening routine
is not inverse, we need more coarsening steps than refinement steps to recover the
initial triangulation. In other words, M ≥ N . A blue refinement is coarsened in a two-
step procedure. Thus, we expect a refinement–coarsening step ratio of about 1 : 2 and
consequently M ≈ 2 · N . For a better quantification, we compute the element-ratio

ρ̂
j

elem = #T̂j

#T̂j+1

and the coordinate-ratio

ρ̂
j

coord = #N̂j

#N̂j+1

in each coarsening step j . The results are shown in Table 3. The geometric means
are given by ρ̂elem = 1.55 and ρ̂coord = 1.47. In this example, we get M = 2 · N

and in other experiments we also observed M ≈ 2 · N . In terms of efficiency, this
means that our coarsening strategy is not as efficient as its refinement counterpart.
We need to expect twice as many coarsening steps to undo the refinement as is needed
for refining. To get a better feeling about time efficiency, we measured the time for
the refinement and coarsening part for this example. The computational time for the
refinement part is 0.0665 s while the coarsening part takes 0.2171 s. Since twice
as many coarsening steps are required than refinement steps, we conclude that one
coarsening step is slightly more time-consuming than one refinement step. However,
coarsening from 104 degrees of freedom to 6 can be done in about a fifth of a second,
which is still very efficient.

6.3 Scalability of the coarsening routine

This leads us to the question of scalability. To this end, we measure 20 times the
computational time of the coarsening routine by use of MATLAB’s builtin tic/toc

1172 Numerical Algorithms (2021) 87:1147–1176



Table 3 Element- and
coordinate-ratios in between two
coarsening steps

j #T̂j #N̂j ρ̂
j
elem ρ̂

j
coord

0 25,221 12642 – –

1 16,610 8335 1.52 1.52

2 13,454 6756 1.23 1.23

3 8851 4453 1.52 1.52

4 6956 3505 1.27 1.27

5 4484 2268 1.55 1.55

6 3485 1768 1.29 1.28

7 2199 1123 1.58 1.57

8 1684 865 1.31 1.30

9 1052 547 1.60 1.58

10 800 421 1.32 1.30

11 486 261 1.65 1.61

12 360 198 1.35 1.32

13 203 115 1.77 1.72

14 143 85 1.42 1.35

15 70 45 2.04 1.89

16 48 34 1.46 1.32

17 19 16 2.53 2.13

18 12 11 1.58 1.45

19 6 7 2.00 1.57

20 4 6 1.50 1.17

and plot the mean of the measured times above the number of nodes for newest vertex
bisection and red-green-blue refinement. The numerical experiments on NVB are
based on the implementation in [9]. This is displayed in Fig. 24. The plot shows an
almost linear behavior between the number of elements and the computational time
in seconds. We see that RGB has some offset which is explained by a more involved
determination of red middle elements and the fact that a CLOSURE step is carried
out within a while-loop. A priori, it is unclear how often the while-loop iterates. This
uncertainty in the CLOSURE step was already examined for the refinement routine
in [12]. Due to the structure of the mesh, for an adaptive RGB refined mesh of an
initial weak BDD triangulation, at most two iterations are needed. The CLOSURE
step is thus predictable and can not cause a huge increase in computational time.

6.4 Local coarsening

So far, we have used coarsening by marking all elements for coarsening. This
time, we want to show that our algorithm can be used in an adaptive setting, cf.

Numerical Algorithms (2021) 87:1147–1176 1173



Fig. 24 Scalability of our RGB coarsening algorithm in comparison with the NVB coarsening algorithm
implemented in [9]. A nearly linear behavior between the number of nodes and the computational time
can be observed

example2/ or example3/ or more generally, for local coarsening. To this end,
we define a discrete point set and mark elements for coarsening that include this
point; see Section 5.1. We start with a fine triangulation and proceed with this mark-
ing strategy and our coarsening algorithm. Figure 25 shows possible local coarsened
meshes.

In summary, our proposed coarsening algorithm can be used in an interplay of
refinement and coarsening, can coarsen locally and recover the initial triangulation-
although not quite as efficiently. However, the latter point does usually not
play a major role, as only a few coarsening steps are integrated in an adaptive
routine.

Fig. 25 Local coarsening

1174 Numerical Algorithms (2021) 87:1147–1176



Acknowledgments The authors would like to thank Mazen Ali, Stefan Ehard, and Marcus Heitel for
comments that greatly improved this work.

Funding Open Access funding provided by Projekt DEAL.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
licence, and indicate if changes were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommonshorg/licenses/by/4.
0/.

References

1. Bank, R.E., Xu, J.: An algorithm for coarsening unstructured meshes. Numer. Math. 73(1), 1–36
(1996)

2. Bartels, S., Schreier, P.: Local coarsening of triangulations created by bisections. Univ. Freiburg, SFB
611 (2010)

3. Binev, P., Dahmen, W., DeVore, R.: Adaptive finite element methods with convergence rates. Numer.
Math. 97(2), 219–268 (2004)

4. Carstensen, C.: An adaptive mesh-refining algorithm allowing for an H 1-stable L2-projection onto
Courant finite element spaces. Constr. Approx. 20(4), 549–564 (2004)

5. Carstensen, C., Feischl, M., Page, M., Praetorius, D.: Axioms of adaptivity. Comput. Math. Appl.
67(6), 1195–1253 (2014)

6. Cascon, J.M., Kreuzer, C., Nochetto, R.H., Siebert, K.G.: Quasi-optimal convergence rate for an
adaptive finite element method. SIAM J. Numer. Anal. 46(5), 2524–2550 (2008)

7. Chen, L., Zhang, C.: A coarsening algorithm on adaptive grids by newest vertex bisection and its
applications. J. Comput. Math. pp 767–789 (2010)

8. Ciarlet, P.G.: The finite element method for elliptic problems. SIAM (2002)
9. Funken, S.A., Praetorius, D., Wissgott, P.: Efficient implementation of adaptive p1-FEM in Matlab.

Comput. Methods Appl. Math. 11(4), 460–490 (2011)
10. Funken, S.A., Schmidt, A.: ameshcoars – Efficient Implementation of Adaptive Mesh Coarsening in

2D. Software download at https://github.com/aschmidtuulm/ameshcoars (2020)
11. Funken, S.A., Schmidt, A.: ameshref – Efficient Implementation of Adaptive Mesh Refinement in

2D. Software download at https://github.com/aschmidtuulm/ameshref (2018)
12. Funken, S.A., Schmidt, A.: Adaptive mesh refinement in 2D–An efficient implementation in matlab.

Comput. Methods Appl. Math. (2018)
13. Funken, S.A., Schmidt, A.: Ameshref: a Matlab-Toolbox for adaptive mesh refinement in two dimen-

sions. In: Numerical Geometry, Grid Generation and Scientific Computing, pp. 269–279. Springer
(2019)

14. Karkulik, M., Pavlicek, D., Praetorius, D.: On 2d newest vertex bisection: Optimality of mesh-closure
and H1-stability of L2-projection. ASC report 10/2012 Vienna University of Technology (2012)

15. Karkulik, M., Pavlicek, D., Praetorius, D.: On 2D newest vertex bisection: optimality of mesh-closure
and H 1-stability of L 2-projection. Constr. Approx. 38(2), 213–234 (2013)

16. Kossaczkỳ, I.: A recursive approach to local mesh refinement in two and three dimensions. J. Comput.
Appl. Math. 55(3), 275–288 (1994)

17. Mavriplis, D., Jameson, A.: Multigrid solution of the Euler equations on unstructured and adaptive
meshes. Multigrid methods: Theory, Applications, and Supercomputing, SF McCormick, ed 110, 413–
429 (1988)

18. Nochetto, R.H., Siebert, K.G., Veeser, A.: Theory of adaptive finite element methods: an introduction.
In: Multiscale, Nonlinear and Adaptive Approximation, pp. 409–542. Springer (2009)

Numerical Algorithms (2021) 87:1147–1176 1175

http://creativecommonshorg/licenses/by/4.0/
http://creativecommonshorg/licenses/by/4.0/
https://github.com/aschmidtuulm/ameshcoars
https://github.com/aschmidtuulm/ameshref


19. Ollivier-Gooch, C.: Coarsening unstructured meshes by edge contraction. Int. J. Numer. Methods Eng.
57, 391–414 (2003). https://doi.org/10.1002/nme.682

20. Pavlicek, D.: Optimalität adaptiver FEM, Bachelor Thesis (in German). Institute for Analysis and
Scientific Computing Vienna University of Technology (2010)

21. Praetorius, D., Weinmüller, E., Wissgott, P.: A space-time adaptive algorithm for linear parabolic
problems. ASC report 07/2008 Vienna University of Technology (2008)

22. Schmidt, A.: Adaptive Mesh Refinement in 2D – an Efficient Implementation in Matlab for Triangular
and Quadrilateral Meshes. Master’s thesis, Universität Ulm (2018)

23. Schmidt, A., Siebert, K.G.: Design of Adaptive Finite Element Software - The Finite Element Toolbox
ALBERTA, Lect. Notes Comput. Sci. Eng., vol. 42, Springer. https://doi.org/10.1007/b138692 (2005)

24. Schneiders, R.: Mesh generation and grid generation on the web. http://www.robertschneiders.de/
meshgeneration/meshgeneration.html. Accessed: 2020-01-09

25. Sewell, E.: Automatic Generation of Triangulations for Piecewise Polynomial Approximation. Purdue
University. https://books.google.de/books?id=zaJfnQEACAAJ (1972)

26. Shu, Z.Y., Wang, G.Z., Dong, C.S.: Adaptive triangular mesh coarsening with centroidal voronoi
tessellations. J. Zhejiang Univ. Sci. A 10(4), 535–545 (2009). https://doi.org/10.1631/jzus.A0820229

27. Stevenson, R.: The completion of locally refined simplicial partitions created by bisection. Math.
Comput. 77(261), 227–241 (2008)

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

1176 Numerical Algorithms (2021) 87:1147–1176

https://doi.org/10.1002/nme.682
https://doi.org/10.1007/b138692
http://www.robertschneiders.de/meshgeneration/meshgeneration.html
http://www.robertschneiders.de/meshgeneration/meshgeneration.html
https://books.google.de/books?id=zaJfnQEACAAJ
https://doi.org/10.1631/jzus.A0820229

	A coarsening algorithm on adaptive red-green-blue refined meshes
	Abstract
	Introduction
	Preliminaries
	Requirements for the data structure of an RGB refinement implementation
	Our MATLAB implementation of RGB refinement

	Coarsening requirements: red-green-blue refinement vs. newest vertex bisection
	The RGB coarsening algorithm
	MATLAB implementation of the coarsening algorithm
	A minimal example
	Examples and demo files

	Numerical experiments
	Interplay of refinement and coarsening
	Efficiency of the coarsening routine
	Scalability of the coarsening routine
	Local coarsening

	References




