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Abstract
An algorithm is proposed for finding numerical solutions of a kinetic equation
that describes an infinite system of point particles placed in R

d(d ≥ 1). The
particles perform random jumps with pair-wise repulsion in the course of which
they can also merge. The kinetic equation is an essentially nonlinear and nonlocal
integro-differential equation, which can hardly be solved analytically. The numerical
algorithm which we use to solve it is based on a space-time discretization, bound-
ary conditions, composite Simpson and trapezoidal rules, Runge-Kutta methods, and
adjustable system-size schemes. We show that, for special choices of the model
parameters, the solutions manifest unusual time behavior. A numerical error analysis
of the obtained results is also carried out.
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1 Introduction

The stochastic motion of infinite populations dwelling in a continuous habitat may
include their motion accompanied by merging. A pioneering work in this direction
was published by Arratia in 1979, in which an infinite system of coalescing Brownian
particles in R was proposed and studied [1]. It was then extended to self-repelling
motion of merging particles [2]. Over the next two decades, different mathematical
aspects of the Arratia model were intensively studied (see [3–6] and the references
therein).

In the Arratia flow, an infinite number of Brownian particles move independently
in R up to their collision, then they coalesce and continue moving as single particles.
Recently, an alternative model of this kind was proposed [7, 8]. Here, analogously as
in the Kawasaki model [9, 10], particles make random jumps with repulsion acting on
the target point. Additionally, two particles merge into one particle placed elsewhere
with probability per time dependent on all the three locations and independent of
the remaining particles. Thereafter, this new particle participates in the motion. The
intensities and magnitude of jumps and coalescence are determined by the spatially
nonlocal kernels.

Similar models are used to describe predation in marine ecological systems (see,
e.g. Refs. [11, 12]). In particular, they are used to study phytoplankton dynamics [13–
15]. Phytoplankton cells dispersed in water constitute the basis for the vast majority
of oceanic and freshwater food chains. Another example can be modeling melanoma
cells migrating and coalescing to form tumors [16, 17].

Quite recently [18], first numerical results on the jump-coalescence kinetic equa-
tion were reported, where the role of repulsion in the appearance of a spatial
heterogeneity was elucidated. There it was shown also how the kinetic equation
can rigorously be obtained from the corresponding microscopic evolution equa-
tions obtained and studied in [8]. However, in [18], the numerical consideration was
restricted to a few particular examples of the model parameters. Moreover, very little
was said about the algorithm used to obtain the numerical solutions.

In the present paper, we derive an algorithm enabling to solve the repulsion-jump-
coalescence kinetic equation. It combines different techniques and methods allowing
for studying infinite systems on the basis of their finite samples. The algorithm is
applied to population dynamics simulations of one-dimensional systems with various
initial spatially inhomogeneous densities and forms of the jump, coalescence, and
repulsion kernels. A comprehensive analysis of the obtained numerical results is also
provided.

2 A kinetic equation of a populationmodel

In a broader sense, a kinetic equation is an integro-differential equation describing
the evolution in time of the density (or similar aggregated quantities) of a large pop-
ulation. This scale of description is often called mesoscopic as a bridge between
microscopic and macroscopic ones. Unlike the microscopic description, at the
mesoscale, the individual particles and their interactions are not considered directly.
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However, it still allows to efficiently describe the local structure of the population.
The idea of such description, probably best known from the famous Boltzmann equa-
tion, is employed in different areas, such as vehicular traffic, human crowds (see,
e.g., [19]), or ecological systems (see, e.g., [20]). Usually, kinetic equations are intro-
duced by phenomenological/heuristic arguments. Recently, considerable attention
is directed to multiscale modeling based upon a consistent description at different
scales. The kinetic equation studied in this work is derived by a certain procedure
from the corresponding chain of evolution equations obtained at a microscopic level
(see [8, 18] for more detail).

We consider an infinite population dwelling in R
d , d ≥ 1, that undergoes the fol-

lowing random events: free coalescence and repulsive jumps. Time evolution of the
population will be described in terms of the particle density n(x, t). Performing the
passage from the microscopic individual-based dynamics to the mesoscopic descrip-
tion by means of a Vlasov-type scaling, one derives the following kinetic equation
for the density in the Poisson approximation with the jump-coalescence model [7, 8,
18]:

∂n(x, t)

∂t
= −

∫
a(x, y) exp

(
−

∫
ϕ(y − u)n(u, t)du

)
n(x, t)dy

+
∫

a(x, y) exp

(
−

∫
ϕ(x − u)n(u, t)du

)
n(y, t)dy

−
∫ ∫

[b(x, y, z) + b(y, x, z)] n(x, t)n(y, t)dydz

+
∫ ∫

b(y, z, x)n(y, t)n(z, t)dydz, (1)

where a, ϕ, b ≥ 0. The first term in the rhs of (1) represents jumping from x to y

with intensity a(x, y) modulated by an exponential factor. This results in a decrease
of n(x, t). The exponential factor corresponds to the repulsion of the particle jump-
ing to y caused by the rest of the system, where ϕ(y − u) denotes the corresponding
repulsion potential. The intensity contribution and repulsion strength depend on the
configuration of all particles, so that the spatial integration over y and u is carried
out. The second term relates to the reverse process when particles located anywhere
in the coordinate space can appear at x due to their random jumps to the latter point.
This increases the density n(x, t). The third term describes free coalescence where
two particles (located at x and y) merge into a single particle located at z with inten-
sities b(x, y, z) and b(y, x, z), resulting in a decrease of n(x, t). Finally, merged
particles can be randomly created in x owing to the coalescence of arbitrary two other
particles located in y and z with intensity b(y, z, x), leading to an increase of the
local density.

The double integrations over y and z in the rhs of (1) are performed in R
d .

They take into account the influence of all possible pair-wise coalescences on
the change of n(x, t) in x at time t . These integrations are invariant with respect
to the mutual replacement y ↔ z in b(x, y, z), b(y, x, z), and b(y, z, x). The
jump and coalescence kernels are nonnegative functions symmetric w.r.t. first two
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arguments, a(x, y) = a(y, x) ≥ 0 and b(x, y, z) = b(y, x, z) ≥ 0. The kernels sat-
isfy the integrability conditions

∫
a(x, y)dx = ∫

a(x, y)dy = μa ,
∫

ϕ(x) = μϕ ,
and

∫
b(x1, x2, x3)dxidxj = μb, where i, j = 1, 2, 3 with i �= j . The quantities μa ,

μb, and μϕ can be treated as parameters of the model. Moreover, according to the
translation invariance of the system, the following shifting identities should be satis-
fied, a(x, y) = a(x +u, y +u) and b(x, y, z) = b(x +u, y +u, z+u). The obvious
choice for the jump kernel is a(x, y) = a(|x − y|).

The coalescence intensity will be taken in the form:

b(x, y, z) = b(x − y)δ((x + y)/2 − z), (2)

where b(x − y) = b(|x − y|) and δ is the Dirac function. That is, the resulting point
is located in the middle z = (x + y)/2. This is quite natural for identical particles.
Instead of the δ-function, one can choose smoother functions, e.g., Gaussian-like
ones.

The δ-function is used here to simplify the calculations as follows. By integrating
over z one transforms kinetic equation (1) to:

∂n(x, t)

∂t
= −

∫
a(x − y) exp

(
−

∫
ϕ(y − u)n(u, t)du

)
n(x, t)dy

+
∫

a(x − y) exp

(
−

∫
ϕ(x − u)n(u, t)du

)
n(y, t)dy

−
∫ (

2b(x − y)n(x, t) − 2db(2(x − y))n(2x − y, t)
)

n(y, t)dy,

(3)

where the symmetric properties of the kernels have been taken into account. Impos-
ing an initial condition n(x, 0), (3) leads to a complicated partial integro-differential
equation with respect to the unknown function n(x, t) at t > 0. Unfortunately, we
cannot apply the convolution theorem to avoid the spatial integration in the last coa-
lescence term of (3) due to the existence of three functions under the integrand which
all depend on y. That is why we develop a numerical approach for this equation.
The convolution method in the absence of coalescence is presented in Appendix.
Analytical solutions in the spatially homogeneous case are also given there.

3 Numerical algorithm

Spatial discretization In order to solve numerically the kinetic equation, it is neces-
sary, first of all, to perform its discretization in coordinate space. Let xi be the grid
points uniformly distributed over R

d with mesh h along all dimensions. For sim-
plification of our further presentation, we will restrict ourselves in this study to a
particular case of d = 1 (the generalization to any higher dimensionality d > 1 is
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straightforward and can be given elsewhere). Then, the discrete duplicate of (3) is:

dni

dt
= h

∑
j

(
ai−j exp

[
−h

∑
k

ϕi−knk

]
nj − ai−j exp

[
−h

∑
k

ϕj−knk

]
ni

)

−2h
∑
j

bi−j ninj + 2h
∑
j

b2i−2j njn2i−j , (4)

where ni ≡ ni(t) = n(xi, t) with ai−j = a(xi − xj ) = a((i − j)h), bi−j =
b(xi − xj ) = b((i − j)h), ϕi−k = ϕ(xi − xk) = ϕ((i − k)h), and the infinite sums
over j and k represent the spatial integrals. It is obvious that in the limit h → 0,
the discretized kinetic equation (4) coincides with its original continuous version (3).
Replacing i − j by j , taking into account that the summation is carried out over the
infinite number of terms, and introducing the auxiliary quantities:

λi = exp

[
−h

∑
k

ϕi−knk

]
, (5)

one obtains that (4) can be cast more compactly in the following equivalent form:

dni

dt
= h

∑
j

(
aj (λini−j − λi−j ni) − 2bjnini−j + 2b2j ni−j ni+j

)
(6)

where aj = a(jh), bj = b(jh), and b2j = b(2jh).
In computer simulations, we cannot operate with infinite-size samples leading to

the infinite summation over j in (4), (5), and (6). Because of this, we consider a finite
number N of grid points xi uniformly distributed over the area [−L/2, L/2] with
spacing h = L/N , where i = 1, 2, . . . , N . This area will represent an interval, a
square, or a cube in cases d = 1, 2, or 3, respectively. The finite length L should be
sufficiently big with respect to all characteristic coordinate scales of the system. The
number N of grid points must be large enough to minimize the discretization noise.
Then, h will be sufficiently small to provide a high accuracy of the spatial integration.
The finite-size effects can be reduced by applying the corresponding boundary con-
ditions (BC) when mapping infinite range x ∈]−∞, ∞[ by finite area [−L/2, L/2].
In view of the aforesaid, (6) presents a coupled system of N autonomous ordinary
differential equations, where i = 1, 2, . . . , N and summation over j is performed
according to BC.

Boundary conditions Three types of BC can be employed, namely, Dirichlet (DBC),
periodic (PBC), and asymptotic (ABC) boundary conditions. The choice depends
on initial function n(x, 0) and properties of solution n(x, t). For example, if n(x, 0)

takes nonzero values only within a narrow interval [−l/2, l/2] with l 	 L, we can
apply the DBC by letting nj = 0 for all |xj | > L/2. This means that during the
finite simulation time 0 ≤ t ≤ T , the nonzero values of n(x, t) do not approach
the boundaries xB = ±(L/2 − max σ), where max σ is the maximal radius of the
kernels (see Section 4). In numerical calculations, this can be expressed by the con-
dition n(xB, t) < ε maxx n(x, t), where 0 < ε 	 1 is the relative tolerable level
(a negligibly small quantity slightly exceeding machine zero). When the propagation
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front becomes too close to the boundaries, i.e., n(xB, t) > ε maxx n(x, t), we should
enlarge L (e.g., gradually doubling it) until the required first condition is satisfied,
use DBC again, and continue the simulation for t > T . A special case, which is
discussed in Section 4, where members of infinite configuration are initially absent
in one half-space, requires a modified BC that combines DBC and ABC with an
addition of adjustable system-size approach.

If n(x, 0) and, thus, n(x, t) are periodic functions, it is necessary to apply PBC
with fixed finite size L. According to PBC, the summation in (6) for each current
i = 1, 2, . . . , N is performed not only over all j = 1, 2, . . . , N but also over all
infinite number of images j ′ of j . The images are obtained by repeating the basic
interval [−L/2, L/2] by the infinite number of times to the left and to the right of
it, so that xj ′ = xj ± KL, where K = 1, 2, . . . , ∞ and nj ′ = nj . This reproduces
the periodicity n(x ± KL, 0) = n(x, 0), where x ∈ [−L/2, L/2]. The solution
n(x±KL, t) = n(x, t) will also be periodic for any time t > 0 with the same (finite)
period L. In such a way, the infinite system can be handled by a finite-size sample.
Because the kernel values aj and bj decrease to zero with increasing interparticle
distance |xj |, the summation over j in (6) can be actually restricted to a finite number
of terms for which |xj | ≤ Ra,b < L/2. The truncation radii Ra,b are chosen to satisfy
the conditions a(|x|) ≈ 0 and b(|x|) ≈ 0 for |x| > Ra and |x| > Rb, respectively.

In the spatially homogeneous case when n(x, t) = n(t), we should apply ABC,
i.e., nj ′ = n(t) for all xj ′ < −L/2 and nj ′ = n(t) for all xj ′ > L/2. For this
case, PBC and ABC lead to the same results. The ABC can also be used for spatially
inhomogeneous solutions n(x, t) which are flat for x < −L/2 and x > L/2 at a
given t where they take nonzero constant values. Then, nj ′ = n(−L/2, t) for all
xj ′ < −L/2 while nj ′ = n(L/2, t) for all xj ′ > L/2. If in the course of time
the flatness is violated at a current L, the basic length should be enlarged using the
automatically adjustable system-size approach mentioned above.

Taking into account the properties a−j = aj , b−j = bj and the fact that the influ-
ence of a(x) and b(x) can be neglected at large distances x > Ra,b, i.e., assuming
that a(x) = 0 for |x| > Ra and b(x) = 0 for |x| > Rb, (6) transforms to:

dni

dt
= h

ja∑
j=1

ξ
(a)
j aj

(
λi(ni−j + ni+j ) − ni(λi−j + λi+j )

)

−2hξ
(b)
0 b0n

2
i − 2hni

jb∑
j=1

ξ
(b)
j bj (ni−j + ni+j )

+2hξ
(2b)
0 b0n

2
i + 4h

jb/2∑
j=1

ξ
(2b)
j b2j ni−j ni+j (7)

where i = 1, 2, . . . , N and the summations over j are performed already with finite
positive nonzero integers up to ja = Ra/h or jb = Rb/h. Quite similarly, using the

900 Numerical Algorithms (2021) 87:895–919



properties ϕ−j = ϕj and ϕ(x) = 0 for |x| > Rϕ , one finds from (5) that:

λi =exp

⎡
⎣−h

BC∑
j

ξ
(ϕ)
j ϕjni−j

⎤
⎦=exp

⎡
⎣−hξ

(ϕ)
0 ϕ0ni − h

jϕ∑
j=1

ξ
(ϕ)
j ϕj (ni−j + ni+j )

⎤
⎦ ,

(8)
where i = 1, 2, . . . , N and jϕ = Rϕ/h with truncation radius Rϕ < L/2. It is
evident that in the limits L, N, R → ∞ provided h → 0, the discretized equation
(7) with (8) coincide with its original, continuous counterpart (3).

Weights ξ
(a,b,2b,ϕ)
j at kernel values aj , bj , b2j , and ϕj were introduced in (7) and

(8) to improve precision of the numerical integration over coordinate space. They
are determined according to the chosen method [21]. These weights satisfy the nor-
malization condition ξ0 + 2

∑j∗
j=1 ξj = 2j∗, where j∗ = ja,b,ϕ or j∗ = jb/2.

In particular, we can use the composite Simpson or trapezoidal rules. For example,
in the composite trapezoidal scheme of the second order, we have that ξ0 = ξ1 =
ξ2 = . . . = ξj∗−1 = 1, while ξj∗ = 1/2. The composite Simpson method of the
fourth order yields ξj∗ = 1/3, ξj∗−1 = 4/3, ξj∗−2 = 2/3, ξj∗−3 = 4/3, ξj∗−4 =
2/3, . . . , ξ0 = 4/3 if j∗ is odd and ξ0 = 2/3 if j∗ is even. The latter is more accurate
than the former and involve numerical uncertainties of order of O(h4) versus O(h2).

We mention that ni are explicitly defined at i = 1, 2, . . . , N , so that the corre-
sponding BC should be applied in (7) and (8) to ni−j and/or ni+j whenever i−j < 1
and/or i + j > N , because j = 1, 2, . . . , j∗ < N/2. The uniform knot distribu-
tion over [−L/2, L/2] can be chosen in the form xi = −L/2 + (i − 1/2)h, where
i = 1, 2, . . . , N with even N . This provides the symmetricity of knot positions
with respect to x = 0. Then, according to PBC, the calculations of ni±j should be
performed as:

ni−j =
{

ni−j+N, i − j < 1
ni−j , 1 ≤ i − j ≤ N

, ni+j =
{

ni+j−N i + j > N

ni+j 1 ≤ i − j ≤ N
. (9)

Note that i = 1, 2, . . . , N and j = 1, 2, . . . , j∗ < N/2. The applications of DBC
and ABC result in:

ni−j =
{

0, i − j < 1
ni−j , 1 ≤ i − j ≤ N

, ni+j =
{

0 i + j > N

ni+j 1 ≤ i − j ≤ N
. (10)

and

ni−j =
{

n1, i − j < 1
ni−j , 1 ≤ i − j ≤ N

, ni+j =
{

nN i + j > N

ni+j 1 ≤ i − j ≤ N
. (11)

respectively. In the cases d = 2 and d = 3, the boundary transformations can be
implemented similarly to those given by (9)–(11).

Time integration In the most general form, our coupled system of N autonomous
ordinary differential equations can be given as:

dni

dt
= ṅi = si(n1, n2, . . . nN), (12)
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where i = 1, 2, . . . , N and si(n1, n2, . . . , nN) represents the rhs of (7) with taking
into account (8). Introducing the set Γ (t) = {ni(t)} of N dynamical variables and
their time derivatives Φ(t) = {si(t)}, (12) can be compactly cast as Γ̇ = Φ(Γ ).
A common practice to solve differential equations of such a type is to use classical
Runge-Kutta schemes [21]. The scheme of the fourth order (RK4) reads:

Γ (t + Δt) = Γ (t) + Δt

6
(Φ1 + 2Φ2 + 2Φ3 + Φ4) + O(Δt5), (13)

where Δt is the time step and Φ1 = Φ(Γ (t)), Φ2 = Φ(Γ (t) + Φ1Δt/2), Φ3 =
Φ(Γ (t)+Φ2Δt/2), Φ4 = Φ(Γ (t)+Φ3Δt) are the derivatives in intermediate stages.
The Runge-Kutta scheme of the second order (RK2) can also be applied. There are
two versions of RK2. The first one (will be referred to as simply RK2) is known as
the Heun method and can be related to the trapezoidal or Verlet-like integration. It has
the form Γ (t + Δt) = Γ (t) + [Φ(Γ (t)) + Φ(Γ (t) + Φ(Γ (t))Δt)]Δt/2 + O(Δt3).
The second version (RK2’) relates to a middle point scheme, Γ (t + Δt) = Γ (t) +
Φ(Γ (t) + Φ(Γ (t))Δt/2)Δt + O(Δt3). The RK2 and RK20 approaches are two-
stage schemes. The RK4 integration consists of four stages, so that at the same Δt it
will require twice larger number of operations to cover the same time interval T of
the observation with respect to RK2. However, RK4 is more accurate than RK2 with
O(Δt5) versus O(Δt3) local truncation errors.

In such a way, the numerical solution ni(t) can be found for any t = pΔt , where
p = 1, 2, . . . , P over the interval t ∈ [0, T ] with T = PΔt by sequentially repeating
P times the transformations given by (13). The O(Δt5)-uncertainties can be reduced
to an arbitrary small level by decreasing the length Δt of the time step. We mention
that the finite-size effects are minimized by choosing a sufficiently large size L of
the system and applying the corresponding boundary conditions. The uncertainties
caused by the discretization are reduced by decreasing mesh h = L/N . The latter
can be achieved at sufficiently large values of N � 1. In general, the total number of
operations per one time step, which are necessary to obtain solutions ni(t) for the set
of N differential equations (12), is proportional to N2. For d > 1, the computational
efforts will increase drastically with increasing d, namely as N2d . For convolution
solutions, this number is lowered to order of Nd ln Nd (see Appendix). In the case
of simple rectangle kernels, the total number of operations can be decreased to be
proportional to Nd .

4 Performed simulations and analysis of the results

The results presented in this section show how the discussed model describes a
variety of interesting phenomena when its parameters are changed. Probably the
most spectacular one is the appearance of the persisting heterogeneity (see Fig. 6).
One of its possible applications is the description of the stochastic dynamics of a
pelagic marine population [11] or phytoplankton [13–15]. Important feature of the
discussed model is that the population constituents are indistinguishable apart from
the described treat x ∈ R

d , which can be e.g. their spatial location or in the case of
d = 1 also their mass. It is important to choose appropriate kernels to fit the desired
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application. In general, they do not need to be symmetric, as we assumed within this
work. We present some simple cases that shed light on how the dynamics depend on
the parameter functions, as well as on the initial conditions.

Numerical details The numerical simulations were carried out for one-dimensional
systems (d = 1) of free or repulsive jumping particles which can coalesce. The
kinetic equation (3) was solved by using the algorithm described in the preceding
section. The discretization in R was done with a mesh of h = 0.0125 – 0.2 depen-
dent on the choice of initial conditions and kernel parameters. The initial basic length
was L = 20 within either the fixed (for PBC) or adjustable-size (for DBC and ABC)
regime. Spatial integration was performed by employing the composite Simpson rule.
Time integration was done with the help of the RK4 scheme at a step of Δt = 0.1.
The relative tolerable level was chosen to be equal to ε ∼ 10−12. Further increas-
ing space and time resolutions did not noticeably affect the solutions (see the last
subsection).

The jump a(x), coalescence b(x), and repulsion ϕ(x) kernels were modelled by
Gaussian:

Gμ,σ (x) = μ

(2πσ 2)
1
2

exp

(
− x2

2σ 2

)
(14)

or rectangle

Cμ,σ (x) =
{ μ

2σ
, |x| ≤ σ

0, |x| > σ
(15)

functions, where μ = μa , μb, or μϕ and σ = σa , σb, or σϕ are the intensities and
ranges of the corresponding interactions, respectively. The kernels are normalized,∫ {a, b, ϕ}(x)dx = μa, μb, μϕ . A symmetrical pair of shifted Gaussian or rectangle
functions was involved as well:

Fμ,σ,s(x) = 1

2

(
Fμ,σ (x − s) + Fμ,σ (x + s)

)
, (16)

where F ≡ G or C and s is the shifting interval. The truncation radius for Gaussian
kernels was R = Qσ with Q = 6 for which Gμ,σ (Qσ)/Gμ,σ (0) ∼ 10−8, so that
their contribution at |x| > R can be neglected. In the case of discontinuous rectangle
kernels, we have Q = 1 by definition. For the sums of two shifted kernels (16), the
truncation distance increases to R = Qσ + s.

In view of the above, we have six kernel parameters, μa , μb, and μϕ , as well as σa ,
σb, and σϕ for the repulsion-jump-coalescence model. This leads to a large number of
all possible combinations. Because of this, we will deal with the most characteristic
examples when choosing values for these parameters for single Gaussian and rectan-
gle kernels or their ±s-shifted double counterparts. In order to consistently analyze
their influence on the dynamics of populations, the following four situations will be
considered: (i) pure free jumps; (ii) repulsive jumps; (iii) pure coalescence; and (iv)
repulsive jumps with coalescence. It is worth emphasizing also that solution n(x, t)

depends cardinally on the choice of initial condition n0(x) ≡ n(x, 0). Like kernels,
the initial condition can be selected in the form of Gaussians (14) or rectangles (15),
trigonometric or step functions, etc.
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Rectangle initial density profiles The first example relates to the initial condition
in the form of periodic rectangle function n(x, 0) = C1,1,L(x). The infinite sys-
tem is reproduced by repeating the single rectangle segment C1,1(x) at x ∈ Ω =
[−L/2, L/2] on the interval ] − ∞, ∞[ with a period of L and applying PBC. The
jump a(x) = Gμa,σa (x), repulsion ϕ(x) = Gμϕ,σϕ (x), and coalescence b(x) =
Gμb,σb

(x) kernels are modelled by the Gaussians with intensities μa = 1, μϕ = 20,
and μb = 1. Three sets of kernel ranges were considered, namely, σa = σϕ = σb =
1, σa < σϕ < σb with σa = 0.5, σϕ = 1, σb = 2 and vice versa, σa > σϕ > σb with
σa = 2, σϕ = 1, σb = 0.5. The corresponding time evolution of spatial structure
n(x, t) is presented in Fig. 1 for the cases of pure free jumps, repulsive jumps, pure
coalescence, and repulsive jumps with coalescence with σa = σϕ = σb = 1, parts
(a), (b), (c), and (d), respectively, as well, with σa < σϕ < σb and σa > σϕ > σb for
coalescing repulsive jumps, parts (e) and (f).

From Fig. 1a, we see that for pure free jumps, the discontinuity of C1,1(x) at
x = ±1 soon disappears with increasing time, transforming the initial density into a
Gaussian-like shape at t � 10. For longer times, t � 40, the solution n(x, t) tends
to more and more homogeneous densities. In the limit t → ∞, we expect absolutely
flat function limt→∞ n(x, t) = n independent on x, where n = 1

L

∫
Ω

n(x, 0)dx =
1/L = 0.05. Moreover, for any time t , the total number

∫
Ω

n(x, t)dt of particles on
the interval Ω = [−L/2, L/2] is constant because of the absence of coalescence.
For strong repulsive jumps [part (b)], the density function n(x, t) remains discontin-
uous at x = ±1 up to t ∼ 40 and its shape at shorter times is more complicated. In
particular, apart from the existence of the main maximum at x = 0 which decreases
in amplitude with increasing t , two symmetric secondary maxima appear addition-
ally at 0 < t � 40 in the ranges x ≈ ±2 due to the repulsion between particles. We
believe that all the maxima disappear at t → ∞ with the same asymptotic behaviour
limt→∞ n(x, t) = n = 1/L = 0.05 as for free jumps. In contrast, for free coales-
cence [part (c)], we expect decay of n(x, t) to zero at t → ∞. Moreover, here, the
particles remain to be located exclusively within the initial interval [−1, 1] and they
are absent outside of it at any t . In other words, no density propagation is indicated
because the particles do not move apart from coalescence.

When the repulsive jumps are carried out in the presence of coalescence at equal
interaction ranges σa = σϕ = σb = 1 (see part (d) of Fig. 1), the pattern is some-
what similar to that of part (b). However, the three-maximum structure dissipates
now much faster, leading to the zeroth asymptotics already at t � 40. For short-
ranged jumps, where σa = 0.5, σϕ = 1, σb = 2, the central peaks at x = 0
become sharper, while the secondary side maxima at x ≈ ±2 do not appear; see part
(e) and compare it with subsect (d). In the case of short-ranged coalescence when
σa = 2, σϕ = 1, σb = 0.5, the central peaks transform into a more complicated struc-
ture with one central minimum at x = 0 and two side maxima at x ≈ ±0.5; see part
(f). The secondary maxima at x ≈ ±2 become more visible with respect to those for
equal-range interactions [cf. part (f)]. Thus, the influence of jumps on the dynamics
increases not only with increasing their intensity, but range as well. The same con-
cerns the coalescence. Note also that the density profiles in Fig. 1a–f are symmetric,
i.e., n(−x, t) = n(x, t), like the initial condition, n(−x, 0) = n(x, 0). This follows
from the symmetry of the kinetic equation.
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Fig. 1 Time evolution of density n(x, t) as dependent on spatial coordinate x at several moments of time
t for rectangle initial condition n(x, 0) = C1,1,L(x) in the cases: a pure free jumps; b repulsive jumps;
and c pure coalescence; as well as repulsive jumps and coalescence for d equal interaction ranges; e short-
ranged jumps; and f short-ranged coalescence. The infinite system is periodic (L = 20) on the interval
x ∈ [−10, 10] with jump, repulsion, and coalescence Gaussian kernels of different intensities and ranges
(see the legends inside)

The second choice deals with asymmetric initial condition n(−x, 0) �= n(x, 0) in
the form of N0 shifted single rectangle functions Cνk,σk

(x + sk) with intensities νk

and ranges σk , namely:

n(x, 0) = Cνk,σk,s,N0(x) =
N0∑
k=1

Cνk,σk
(x + sk) (17)
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Fig. 2 Time evolution of solution n(x, t) for asymmetric initial density in the form of three rectangle
functions with different amplitudes. Other notations are the same as in Fig. 1

where sk = (−N0 + 2k − 1)s are shifting parameters. We use s = L/(2N0) and
therefore sk = −L/2 + (k − 1/2)L/N0. Then, repeating (17) with period L, we
should apply PBC to deal with the infinite system. We used a particular case of (17)
with N0 = 3 and L = 20 as well as three different amplitudes ν1,2,3 generated at
random in the interval ]0, 1[. The corresponding result on this is shown in Fig. 2.

Looking at Fig. 2 and comparing it with Fig. 1, we see that behavior of n(x, t) at
short times can be approximately presented as a sum of independent separate solu-
tions obtained for single rectangle initial densities Cνk,σk

(x + sk). With increasing
time, a coherence between the separate solutions appears. Again, in the absence of
coalescence [μb = 0, parts (a) and (b)], the density n(x, t) at t → ∞ flattens in x
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and seems tend to the nonzero constant n = 1
L

∫
Ω

n(x, 0)dx = (ν1 + ν2 + ν3)/L for
any initial distributions. We mention that at μb = 0, the total amount

∫
Ω

n(x, t)dx of
particles in Ω is unchanged and equal to its initial value

∫
Ω

n(x, 0)dx. For μb > 0,
the density function n(x, t) seems to take its zeroth asymptotics limt→∞ n(x, t) = 0
at t → ∞ [parts (c)–(f)] with the flow of time (except special choices, see below).
For populations with an infinite number of particles and periodic initial conditions
n(x ± KL, 0) = n(x, 0) with x ∈ [−L/2, L/2], where K = 1, 2, . . . ,∞, the solu-
tion n(x ± KL, t) = n(x, t) will also be periodic for any time t > 0 with the same
(finite) period L. Then, in particular, n(−L/2, t) = n(L/2, t) as is confirmed in
Fig. 2. Investigations show that the increase of the strength μ and range σ of the
jump and coalescence kernels accelerates this process; see for instance, parts (e) and
(f) of Figs. 1 and 2. Using the Gaussian (instead of rectangle) initial conditions and
rectangle (instead of Gaussian) kernels leads to results (not shown) which are similar
to those of Figs. 1 and 2.

As visualized in Figs. 1 and 2, the presence of coalescence (b(x) �= 0) seems
to lead to the zeroth asymptotic

∫
Ω

n(x, t)dx → 0 at long times provided the
kernels are single rectangle functions with positive values around zero (the same con-
cerns simple Gaussians). However, the coalescence kernel can be chosen in the form
b(x) = Cμ,σ,s(x) of a pair of two shifted rectangle functions [(16)] with appropri-
ate shifting parameter s to avoid the zeroth density limit. The initial inhomogeneous
density n(x, 0) over the basic interval [−L/2, L/2] with PBC at period L should
also be chosen correspondingly. For instance, we can consider n(x, 0) in the form
Cνk,σk,s

′,N0(x) of two (N0 = 2) single rectangle functions [ (17)] with the same
amplitude νk = μb = 1 and ranges σk = σb ≡ σ = 1 as those of the coalescence
kernel b(x) but with different shifting parameter s′ �= s satisfying the constraint
s′ = 2s − 2σ . Choosing s = 5 one finds at σ = 1 that s′ = 8. The corresponding
result for the case n(x, 0) = C1,1,5,2(x) with L = 20 and b(x) = C1,1,8(x) in the
absence (a = 0) of jumps is depicted in Fig. 3a. We see that at the beginning, the
rectangles soon transform into triangle-shaped peaks centered at x = ±(5 + KL),
while the additional triangles appear exactly in the middle of them at x = 0 ± KL

Fig. 3 Dynamics of spatial structure n(x, t) for initial density in the form of two rectangle functions,
n(x, 0) = C1,1,5,2(x) in the cases: a pure coalescence and b coalescence with free jumps. The interactions
are modelled by shifted pair rectangle coalescence C1,1,8(x) and Gaussian jump G0.2,1(x) kernels
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(below we will omit the terms ±KL to simplify notation). With increasing time, the
widths of the triangle-shaped peaks decrease but their maxima at x = ±5 become
higher while unchanged at x = 0. At sufficiently long times t � 2 · 104, the
modification of the density profile slows down to a level suggesting that the sys-
tem approaches a non-trivial stationary state in which ∂n(x, t)/∂t = 0. In other
words, the shape of the density profile is transformed to such a form at which any
coalescence processes become impossible in view of the specific form of the coales-
cence kernel b(x) = C1,1,8(x). The latter accepts nonzero values only in the interval
s′ − σ = 7 < |x| < 9 = s′ + σ , so that the absence of coalescence at a given spatial
configuration means that there exists no pair of particles with interparticle separa-
tions |x| lying in the interval [7, 9]. Allowing particles to jump changes the situation
radically, as is demonstrated in Fig. 3b for Gaussian jump kernel G0.2,1(x). Even
for relatively small jump intensity μa = 0.2 and range σa = 1, the density quickly
decreases to zero for each x, after initial period of time, when new peaks are formed.
It is interesting to remark that the monotonic decrease of main maxima in x ± 5 is
accompanied by nonmonotonic change of the magnitude of the newly formed peaks
in x = 0 (and ±KL). This magnitude first increases at 0 < t � 4 achieving a
maximum at t ∼ 4, and then decreases at t � 4.

Fig. 4 Density profile n(x, t) starting from trigonometric initial condition n(x, 0) = T1,1,3(x). The jump,
repulsion, and coalescence kernels are Gaussians G1,1(x), G8,1(x), and G0.25,1(x), respectively. Other
notations are the same as for Fig. 1
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Trigonometric initial density profiles Another interesting case is the initial density in
the form of a trigonometric function:

n(x, 0) = Tn0,μ0,k(x) = n0 (1 + μ0 cos(2πkx/L)) , (18)

where 0 < μ0 < 1 is the coefficient of the modulation and k ≥ 1 defines the period
L/k in coordinate. Then, PBC should be used to reproduce the infinite system. The
obtained solutions n(x, t) for n(x, 0) = T1,1,3(x) with n0 = 1, μ0 = 1, k = 3,
and L = 20 are plotted in Fig. 4 when jump, repulsion, and coalescence kernels are
Gaussians a(x) = G1,1(x), ϕ(x) = G8,1(x), and b(x) = G0.5,1(x), respectively. For
convenience, we presented n(x, t) only on the right-hand side of coordinate space at
x ≥ 0.

From Fig. 4a, we see that pure free jumps do not change the form of density
profile which remains to be of the trigonometric shape with the same frequency k and
periodicity L. In particular, the density continues to oscillate around the same level
n0(1 + μ0)/2 = 1 for any t . However, the amplitude of these oscillations decreases
with increasing t , so that the particle density profile seems to become flat at long
times, limt→∞ n(x, t) = 1. Again, the total number

∫
Ω

n(x, t)dx of particles in Ω ∈
[−L/2, L/2] does not change in time. The repulsion makes the simple trigonometric
(cosine) form much more complicated with the existence of additional maxima and
minima inside Ω; see Fig. 4b. Moreover, the homogeneity is being achieved here
much slower than in the case of free jumps (compare density at t � 5000 versus for
t � 10 in Fig 4a). This can be explained by the strong intensity (μϕ = 8) of repulsion
potential ϕ(x) = G8,1(x).

For pure coalescence in Fig. 4c, the distribution n(x, t) is no longer of a trigono-
metric form at t > 0 contrary to pure free jumps and like as in the case of repulsion.
In addition, here the density seems to decrease to zero at t → ∞. The inclusion of
repulsive jumps changes the behavior of n(x, t) near its minima in a characteristic
way. Indeed, in Fig. 4c, these minima remain to be equal to zero, while in Fig. 4d
they have a tendency to increase to positive values at some t . On the other hand,
the speed of decrease of maxima in n(x, t) with increasing time practically does not
change at t � 10 despite their strength. Moreover, the shape of the density profile at
long t � 10 is modified as well, making it more flat with smaller oscillations. As a
result, spatial homogeneity is obtained here faster.

Step initial density profiles A special case presents initial condition in the form of
the Heaviside step function:

n(x, 0) = Hn0(x) =
{

n0, x ≤ 0
0, x > 0

. (19)

Here, the system is initially (t = 0) considered on the finite interval [−L/2, L/2]
with no PBC. Further (t > 0) its size is gradually increased to the infinity on the
unbounded interval x ∈]−∞, ∞[ at t → ∞ according to the automatically adjusted
system-size (AASS) approach. Then, a modified BC should be applied by combi-
nation of DBC and ABC together with AASS when analyzing the densities on the
boundaries ±L/2. The DBC are used from the right, where limx→∞ n(x, t) = 0 for
all t . From the left, where limx→−∞ n(x, t) = n(t) �= 0 with n(0) = n0, we must
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employ ABC. This means that we should exploit the DBC rule for ni+j given by
the second equality of (10), i.e., replace ni+j by 0 if i + j > N , and the ABC rule
for ni−j given by the first equality of (11), i.e., replace ni−j by n1 if i − j < N .
When nonzero values of n(x, t) approach the right boundary at x = L/2, i.e., when
n(L/2, t) > ε maxx n(x, t), the system size L is enlarged (in two times) and the
simulations are continued.

By monitoring from the left the difference between the actual values of n(x, t)

at x = −L/2 and their homogeneous counterpart nh
RK(t) (obtained by solving

numerically the kinetic equation for the spatially homogeneous initial condition
n(x, 0) = n0 in parallel to the spatially inhomogeneous case using the same RK
method), we can estimate the influence of the finiteness of L. If this difference
exceeds the predefined level ε maxx n(x, t) we should enlarge L according to the
automatically adjustable system-size approach. The asymptotic value n1(t) will
differ from the exact solution nh(t) even at very large L because of the approxi-
mate character of time integration. In the limit of sufficiently small step sizes Δt

when limΔt→0,L→∞ n1(t) = nh(t), we come to the limiting ABC-DBC scheme:
limx→−∞ n(x, t) = nh(t) and limx→∞ n(x, t) = 0. Calculating the difference
between the actual values of n(x, t) at x = −L/2 and their exact counterpart nh(t) at
x → −∞, we can estimate the influence of two effects in one fashion, namely, those
caused by the finiteness of L (should be significantly large) and Δt (should be sig-
nificantly small). In such a way, both ABC and DBC deviations are analyzed when
deciding on the size enlargement within the ABC-DBC scheme. This completes the
automatically adjustable system-size approach.

Time evolution of n(x, t) for n(x, 0) = H1(x) is presented in Fig. 5 using Gaus-
sian jump Gμa,σa , repulsion Gμϕ,σϕ , and coalescence Gμa,σb

kernels with different
intensities of μa = 1, μϕ = 8, and μb = 0.1, respectively, as well as with equal
[σa,ϕ,b = 1, parts (a)–(d)] or different [σa = 0.5, σϕ = 1, σb = 2, part (e), and
σa = 2, σϕ = 1, σb = 0.5, part (f)] ranges. As can be seen from Fig. 5a for pure free
jumps, the discontinuous step function n(x, 0) = H1(x) transforms into a continu-
ous S-shaped curve at finite times t > 0. All the curves intersect each other in the
same point (0, 1/2), where 1/2 is the arithmetic mean of two initial values (1 to the
left and 0 to the right). The slope of these curves becomes smaller with increasing
time, so that the system tends to the mid-value everywhere. Moreover, the decrease
of the amount of particles for x < 0 is equal to the corresponding increase for x > 0,
that can be written as

∫ 0
−∞[1−n(x, t)]dx = ∫ ∞

0 n(x, t)dx. The same statement con-
cerns repulsive jumps, but here the curves are intersected in a point which lies below
(0, 1/2). In addition, at short times t � 25 the density profile n(x, t) remains to be
discontinuous in x = 0, and the shape of the curves is more complicated, including
the existence of maximum in x ∼ 1. The latter disappears at t � 25, and n(x, t)

becomes more and more flat with the flow of time. However, the flattening process
is not as fast as in the case of free jumps.

For pure coalescence we can observe in Fig. 5c that the initial step function
n(x, 0) = H1(x) changes to a step-like dependence n(x, t) at t > 0 containing one
small peak in x ∼ −1. The density in ] − ∞, 0[ decreases from 1 at t = 0 to zero at

910 Numerical Algorithms (2021) 87:895–919



Fig. 5 Time evolution of density profile for initial condition H1(x). The jump, repulsion, and coalescence
kernels are Gaussians with different intensities and ranges (see the legends inside). Initially (t = 0) the
system is considered on the finite interval [−10, 10] with no periodic conditions and further (t > 0) its
size gradually increases to the infinity on x ∈]−∞,∞[ at t → ∞ according to the automatically adjusted
approach. Other notations are the same as for Fig. 1

larger t > 0. No particles appear at all in ]0, ∞[ for any t . Moreover, the initial dis-
continuity does not vanish even for relatively long times. The inclusion of repulsive
jumps, see Fig. 5d, prevents the appearance of peaks at x ∼ −1, while at x > 0 the
profile n(x, t) is more flat when compared to that in Fig. 5b. Here n(x, t) decreases
to zero at sufficiently large times (t � 100) as in the case of pure coalescence. As the
range of jumps becomes shorter, σa = 0.5, and the range of coalescence increases,
σb = 2 (see Fig. 5e), the peaks in n(x, t) appear again at x ∼ −σb = −2 (i.e. they
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shift to the left with respect to those for σb = 1). Moreover, they become more pro-
nounced with larger amplitudes. The right lying peaks at x ∼ 1 shift their positions
to x ∼ 0.5 and decrease their amplitudes. This is contrary to the case when the jump
range increases, σa = 2, and the coalescence range decreases, σb = 0.5 (see Fig. 5f).
Then, the peaks on the left do not appear, while the maximum on the right becomes
more visible. In addition, the density approaches zero more slowly here. Note that for
the inverse initial unit step function n(x, 0) = H1(−x), the results n(x, t) presented
in Fig. 5 for n(x, 0) = H1(x) should also be inversed by n(−x, t) to obtain solutions
without resolving the kinetic equation. This statement is quite general and remains
in force not only for step functions, but for any other asymmetric initial conditions.
Namely, when picking the initial condition n∗(x, 0) = n(−x, 0), we automatically
obtain n∗(x, t) = n(−x, t), where n(x, t) is the solution for n(x, 0). This follows
from the structure of kinetic equation (3) and the symmetricity of kernel functions.

Consider, finally, the dynamics of the initial step distribution n(x, 0) = H1(x) in
the presence of pairs of shifted Gaussian kernels. First, we used shifting parameter
s = 2 for moderate (μa = 1) jump kernel a(x) = G1,1,2(x) and weak (μb = 0.05)

Fig. 6 Dynamics of the system starting from unit step function H1(x) in the cases of pure repulsive jumps
with different kernel shifts: a s = 2, s′ = 4; c s = 1, s′ = 2; and d s = 4, s′ = 8; as well as of b
repulsive jumps and coalescence with s = 2 and s′ = 4. Initially (t = 0) the system is considered on the
finite interval [−20, 20] with no periodic conditions and further (t > 0) its size gradually increases to the
infinity on x ∈]−∞,∞[ at t → ∞ according to the automatically adjusted approach. The interactions are
described by the shifted pair Gaussian jump G1,1,s , repulsion G10,1,s′ and coalescence G0.05,1,2 kernels
(see the legends inside)
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coalescence interaction b(x) = G0.05,1,2(x), while s′ = 4 for strong (μϕ = 10)
repulsion potential ϕ(x) = G10,1,4(x) (the ranges were σa = σb = σϕ = 1 for
all the kernels). The corresponding results are presented in Fig. 6. From part (a) of
this figure, we see that for pure repulsive jumps such a choice leads at t > 0 to
the emergence of self-propagating spatial inhomogeneity in the from of persistent
oscillations with thin peaks of width of order of s = 2 at level of n(x) = 1 and
distance between them of order of 2s′ = 8. For n(x, 0) = H1(x), the inhomogeneous
front propagates to the left with increasing amplitude at not too large x and to the
right with dumping oscillations (for n(x, 0) = H1(−x) the pattern is inverse). The
inclusion of coalescence even with a slight intensity of μb = 0.05 drastically changes
the situation (see Fig. 6b). Here, the oscillations are not so strong, especially at x > 0,
and they quickly disappear with increasing time.

Furthermore, we decreased and increased the shifting parameters two times to
values s = 1 and s′ = 2 as well as to s = 4 and s′ = 8. The results for these two cases
are shown in parts (c) and (d) of Fig. 6, respectively, at the absence of coalescence. As
can be seen from Fig. 6c, the decrease of s and s′ suppresses the processes of density
propagation by lowering its speed and oscillation amplitude. Moreover, the distance
between peaks in n(x, t) and their width also decrease correspondingly to 2s′ = 4
and s = 1. This is in a contrast to the opposite case when the kernel shifts increase.
Such an increase leads to stimulation of density propagation with high amplitude of
the oscillations. Then, the distance between peaks and their width increase to 2s ′ =
16 and s = 4, respectively. The propagation speed grows proportionally as well.

Precision of the simulations Accuracy of our numerical simulations was measured in
terms of relative absolute deviations of density values ni = n(xi, t) in grid points xi

from “exact” data n̆i at time t using the relation:

Θ(h, Δt) =
∑N̆

i=1 |ni − n̆i |∑N̆
i=1 n̆i

× 100[%]. (20)

The total number N̆ ≤ N of grid points involved in summation (20) depends on the
spatial region considered. The “exact” (or rather reference) values n̆i were obtained
at high enough space and time resolutions with a tiny mesh of h = 0.005 and a tiny
time step of Δt = 0.01 in order to be entitled to ignore the numerical uncertain-
ties. The spatial and time integrations were performed with the help of the composite
Simpson rule and RK4 algorithm, respectively. The numerical error analysis was
done by carrying out a series of simulations at different h = 0.01, 0.02, 0.04, 0.1, 0.2
and Δt = 0.1, 0.2, 0.4, 1.0, 2.0, 2.5. The numerical deviations were then estimated
by (20) to plot Θ(h, Δt) in a wide range of varying h and Δt . For the purpose of
comparison, the simulation runs with the composite trapezoidal rule and RK2 algo-
rithm were performed as well. Error results presented below are related to one of
the situations considered in Figs. 1, 2, 3, 4, 5, and 6 when choosing initial condition
n(x, 0), namely, in the case of Fig. 5d at t = 50. There, the homogeneous and inho-
mogeneous intervals were x ∈ [−80,−20] and x ∈ [−20, 20], respectively. Similar
results were observed for all the rest choices of n(x, 0).
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Fig. 7 a Uncertainties Θ of the simulations related to single composite Simpson (SMPS) or trapezoidal
(TRPZ) spatial integrations and the overall spatial discretization obtained in homogeneous (SMPSh) and
inhomogeneous (SMPSi) regions at different mesh h; b Dependencies of Θ on the size of the time step
Δt for the RK2, RK2’, and RK4 time integrations

The numerical uncertainties Θ cased by spatial discretization and spatial integra-
tion are shown in Fig. 7a as functions of the length h of space mesh (at a fixed
RK4 time step of Δt = 0.01). Note that the log-log presentation was employed to
show the behavior of Θ(h, Δt) at small h and Δt in more detail. Here, we distin-
guish three kinds of errors. The first is related to uncertainties due to single spatial
integrations. The corresponding results for them obtained by the composite Simpson
and composite trapezoidal rules are marked by SMPS and TRPZ, respectively. We
see that for sufficiently small values of h, the relative SMPS or TRPZ errors Θ are
proportional to h4 or h2. Indeed, the log-log plots are lines with slopes 2 or 4, i.e.,
log Θ = c2 + 2 log h or log Θ = c4 + 4 log h, where c2 and c4 denote some con-
stants. This confirms the fact [21] that the composite Simpson and trapezoidal rules
are accurate to the fourth O(h4) and second O(h2) orders in h, respectively. The
accuracy is lowered significantly when considering the overall uncertainties caused
by spatial discretization of the kinetic equation. Such uncertainties observed in the
homogeneous and inhomogeneous interval with the Simpson integration are pre-
sented by curves labeled correspondingly as SMPSh and SMPSi. The TRPZh and
TRPZi data of the trapezoidal integration appear to be approximately the same (see
below the reason) and are not shown in the figure.

Maximal uncertainties are achieved in the inhomogeneous region because the
dependence of n(x, t) on x makes the functions under spatial integrals more sharp,
decreasing the precision of the discretization. The local uncertainties of such a dis-
cretization are of order of O(h3). Taking into account that the total number of
numerical operations is proportional to N2, the global errors appear as an accumula-
tion of local ones leading to the overall uncertainties Θ of order of N2O(h3) ∼ O(h),
since h = L/N . In other words, the SMPSh and SMPSi deviations behave as
log Θ = c1 + log h. Despite the linear dependence O(h), even the SMPSi errors are
relatively small and do not exceed about 0.01–0.03% at h = 0.01–0.02 (see Fig. 7).
They are, however, much larger than those of the single spatial integration. There-
fore, the errors caused by spatial discretization of the kinetic equation significantly
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prevail over the spatial integration uncertainties (the both use the same mesh h). For
this reason, it is not so important what the method (Simpson or trapezoidal) is applied
to spatial integration. This explains why the SMPSh/SMPSi and TRPZh/TRPZi data
are very close to each other.

Dependencies of Θ on the size of the time step Δt , obtained in the simulations
with the RK2, RK2’, and RK4 time integrations (at a fixed spatial mesh of h = 0.01
with the involved inhomogeneous interval x ∈ [−20, 20]), are depicted in Fig. 7b. It
can be seen clearly that for sufficiently small values of Δt , the relative deviations Θ

are proportional to Δt2 or Δt4 for the algorithms of the second (RK2 and RK2’) or
fourth (RK4) orders, respectively. Here, the log-log plots are lines with slopes 2 or
4, i.e., log Θ(Δt) = c2 + 2 log Δt or log Θ(Δt) = c4 + 4 log Δt (similarly as for
dependence of Θ on h for the single Simpson and trapezoidal spatial integrations, see
Fig. 7a). We mention that the local (single-step) errors of the RK4 algorithm are of
order of O(Δt5) (see (13)). So that the numerical integration over long times t � Δt

leads to the global errors of order of t/ΔtO(Δt5) = O(Δt4) as this requires repeat-
ing of the single-step integration by t/Δt times. Analogously, the RK2 and RK2’
local uncertainties O(Δt3) modify the global O(Δt2)-errors. Since Δt4 decreases
with decreasing Δt much faster than Δt2, the fourth-order RK4 algorithm produces
much more precise solutions than the second-order integrators RK2 and RK2’. Thus,
the former can be recommended when a very high accuracy is required. For instance,
the RK4 algorithm is precise up to a negligible level of order of Θ ∼ 10−9% at
Δt ∼ 0.1. On the other hand, the RK2 and RK2’ integrators can provide here only
an accuracy of 10−3 (RK2 is slightly better than RK2’, see Fig. 7b). Remember,
however, that the overall errors include also the spatial discretization uncertainties
which are of order of 10−2% at h = 0.01 (see Fig. 7a). For this reason, the RK4
algorithm can be applied with much larger time steps of Δt ∼ 1 – 2, where the
time-discretization uncertainties did not exceed ∼ 10−3 and are comparable with the
space-discretization errors. This significantly accelerates the simulations since the
computational time is inverse proportional to Δt . In particular, the RK4 speedup at
t = 1 (when Θ ∼ 10−5%) with respect to the RK2 and RK2’ schemes at Δt = 0.1
(where a worse precision of Θ ∼ 10−3% is observed despite the smaller time step) is
of order of 1/0.1/2 = 10/2 = 5 (the factor “2” takes into account the fact that RK4
requires a twice larger number of operations per step than those of RK2 or RK2’).
With further increasing Δt , all the integrators become unstable and cannot be used at
Δt > 2, where Θ > 1%.

5 Conclusion

In this paper, we have derived an efficient algorithm to obtain numerical solutions for
the time-differential kinetic equation which approximates nonlocal stochastic evolu-
tion of coalescing and repulsively jumping particles in the continuous space Rd . The
equation is very difficult from the analytical point of view due to the presence of com-
plicated spatial integrals with nonlinear and nonlocal terms and therefore requires
numerical analysis. The proposed algorithm is based on a set of techniques including
time-space discretization, periodic, Dirichlet, and asymptotic boundary conditions,
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composite Simpson and trapezoidal rules, Runge-Kutta schemes, and automatically
adjustable system-size approaches. This has allowed us to carry out simulations of
dynamics for one-dimensional systems with various initial inhomogeneous densities
and different forms of the coalescence, jump, and repulsion kernels, giving a com-
prehensive study of the jump-coalescence dynamics. A numerical error analysis of
the obtained results has also been performed.

For some specific choices of the model parameters and initial densities, a nontriv-
ial dynamics has been revealed. In the case of pure free jumps, the system always
tends to a nonzero homogeneous density for any initial conditions. In contrast, the
presence of strong repulsion potentials can result in the appearance of persistent
wave-like density propagations when the repulsion and jump kernels are chosen in
the form of a sum of shifted single Gaussian functions. The shifting parameters define
the shape and spatial period of density structures. The introduction of even relatively
weak coalescence prevents them from persisting. In the case of pure coalescence,
the population eventually goes extinct, except for a special choice of the initial den-
sity profile and coalescence kernel. For instance, if the particles are initially located
exclusively on an archipelago of islands and the minimal distance between them is
equal to the shifting parameter of the coalescence kernel consisting of two simple
rectangle functions with the ranges which do not exceed the sizes of the islands, then
a stationary state with inhomogeneous particle distributions can arise. The inclusion
of any jumps even with extremely small intensity radically changes the situation,
leading to the collapse of the system.

The proposed algorithm is implemented in a Fortran program code which can be
received by request and exploited by any researcher free of charge. The code can
be adapted to more complex multicomponent models of jumping and coalescence
particles of different types. The numerical simulations can be extended to systems of
higher dimensions. The Poisson approximation used for the derivation of the kinetic
equation can be improved by advancing to the Kirkwood [22] or Fisher-Kopeliovich
[23] ansatz like for birth-death models. Mass and size of particles can also be taken
into account. These and other topics as well as possible applications of the obtained
results to real populations will be the subject of our further investigations.
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Appendix

In the absence of coalescence [b(x) = 0], we can apply the convolution theorem
to avoid the direct spatial integration. Indeed, then the kinetic equation (4) can be
rewritten in the form:

∂n(x, t)

∂t
= −n(x, t)

∫
a(x − y)g(y, t)dy + g(x, t)

∫
a(x − y)n(y, t)dy, (A1)

where

g(x, t) = exp

(
−

∫
ϕ(x − u)n(u, t)du

)
. (A2)

To simplify notation, consider the case d = 1 and introduce the discrete direct and
inverse one-dimensional spatial Fourier transforms [24]:

f̃k =
N−1∑
i=0

fi exp(−2πıki/N) ≡ {fi}k, fi = 1

N

N−1∑
k=0

f̃k exp(2πıki/N) ≡ {fk}−1
i

(A3)
where fi = f (xi) and xi = −L/2 + (i − 1/2)h ∈] − L/2, L/2[ with even N and
h = L/N . Now, applying the convolution theorem, the discrete counterpart of (A1)
in view of (A2) can be presented as:

ṅi = dni

dt
= −hni{ãkg̃k}−1

i + hgi{ãkñk}−1
i , gi = exp(−h{ϕ̃kñk}−1

i ) (A4)

where ni = n(xi, t) with ñk , ãk , and ϕ̃k being the discrete Fourier transforms of
ni, ai = a(xi), and ϕi = ϕ(xi) according to (A3) at fi ≡ ni, ai, gi and f̃k ≡
ñk, ãk, ϕ̃k .

Because the kernel function a(x) and repulsive potential ϕ(x) do not depend
on time, their Fourier components ãk and ϕ̃k can be calculated once at the very
beginning. Furthermore, having the current values ni for i = 0, 1, . . . , N − 1,
we compute their Fourier duplicates ñk for k = 0, 1, . . . , N − 1. On the basis
of the known products ãknk and ϕ̃kñk , we evaluate their coordinate counterparts
{ãkñk}−1

i and {ϕkNk}−1
i by exploiting the inverse Fourier transform. Constructing

gi = exp(−{ϕ̃kñk}−1
i ), we calculate g̃k by means of the direct Fourier transform

and use again the inverse transform to obtain {ãkg̃k}−1
i . In such a way, we have all

the necessary components to form the time derivatives ṅi according to (A4). Despite
this requiring several direct and inverse transformations, the order of total number
of operations can be reduced from N2 (when the spatial integration is performed
directly, see Section 3) to N ln N when exploiting the fast discrete direct and inverse
Fourier transforms. This is a very important feature because N � 1 is large (in prac-
tice N ∼ 102 – 103 at least). However, such an approach can work not so well for
discontinuous functions. Moreover, it assumes that all involved functions are periodic
on the interval [−L/2, L/2].

The generalization to any higher dimensionality d > 1 can also be done by replac-
ing i and k on the d-dimensional vectors i = (i1, i2, . . . , id) and k = (k1, k2, . . . , kd)

as well as their multiplication ki on the scalar product k · i with summation in (A3)
from 0 to N − 1 for each dimension, where fi = f (xi1 , xi2, . . . , xid ). As a result, the
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total number of operations increases from N2 to N2d or from N ln N to Nd ln Nd

when applying the product of d one-dimensional usual or fast Fourier transform in
Cartesian coordinates. If the functions possess radial symmetry, we can consider the
Fourier transform in polar or spherical coordinates at d = 2 or 3, for instance. This
allows reducing d-dimensional integrations to discrete Hankel [25] or Fourier-Bessel
[26] transforms in one (radial) dimension by integrating analytically out all angle
dependencies. The chief advantage of this approach is the fact that then the total
number of operations becomes independent of d and remains the same (of order of
N ln N) for any dimensionality [27], just as at d = 1.

In the spatially homogeneous case, i.e., when n(x, t) = n(t) does not change
on x, we can carry out the spatial integrations in (4) and (5) over y explicitly. This
significantly simplifies the kinetic equations to the form dn/dt = −μbn

2 which
gives the analytical solution n(t) = n(0)/[1+μbn(0)t]. It tends to zero with t → ∞
for any initial density n(0) and μb �= 0. In this case, the jump contribution completely
disappears. At μb = 0, this leads to the time-independent solution n(t) = n(0). It
disappears also in the spatially inhomogeneous case for systems with finite number
N = ∫

n(x)dx of particles when calculating dN /dt (then during integration in the
rhs of (3) over x, the first two terms are mutually cancelled).
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