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Abstract
We prove upper and lower bounds for the spectral condition number of rectangular
Vandermonde matrices with nodes on the complex unit circle. The nodes are “off the
grid,” pairs of nodes nearly collide, and the studied condition number grows linearly
with the inverse separation distance. Such growth rates are known in greater general-
ity if all nodes collide or for groups of colliding nodes. For pairs of nodes, we provide
reasonable sharp constants that are independent of the number of nodes as long as
non-colliding nodes are well-separated.

Keywords Vandermonde matrix Colliding nodes Condition number
Frequency analysis Super resolution
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1 Introduction

Vandermonde matrices with complex nodes appear in polynomial interpolation prob-
lems and many other fields of mathematics (see, e.g., the introduction of [2] and
its references). In this paper, we are interested in rectangular Vandermonde matri-
ces with nodes on the complex unit circle and with a large polynomial degree. These
matrices generalize the classical discrete Fourier matrices to non-equispaced nodes
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and the involved polynomial degree is also called bandwidth. The condition number
of those matrices has recently become important in the context of stability analysis
of super-resolution algorithms like Prony’s method [6, 15], the matrix pencil method
[12, 18], the ESPRIT algorithm [20, 21], and the MUSIC algorithm [17, 22]. If the
nodes of such a Vandermonde matrix are all well-separated, with minimal separa-
tion distance greater than the inverse bandwidth, bounds on the condition number are
established for example in [2, 5, 14, 18].

If nodes are nearly colliding, i.e., their distance is smaller than the inverse band-
width, the behavior of the condition number is not yet fully understood. The seminal
paper [9] coined the term (inverse) super-resolution factor for the product of the band-
width and the separation distance of the nodes. For nodes on a grid, the results in
[7, 9] imply that the condition number grows like the super-resolution factor raised to
the power of 1 if all nodes nearly collide. More recently, the practically relevant
situation of groups of nearly colliding nodes was studied in [1, 4, 16, 19]. In differ-
ent setups and oversimplifying a bit, all of these refinements are able to replace the
exponent 1 by the smaller number 1, where denotes the number of nodes
that are in the largest group of nearly colliding nodes. The authors of [1, 19] focus
on quite specific quantities in an optimization approach and in the so-called Prony
mapping, respectively. In contrast, the condition number or the relevant smallest sin-
gular value of Vandermonde matrices with “off the grid” nodes on the unit circle is
studied in [4, 16]. While [4] provided the exponent 1 for the first time, the proof
technique leads to quite pessimistic constants and more restrictively asks all nodes
(including the well-separated ones) to be within a tiny arc of the unit circle. More
recently, the second version of [16] provided a quite general framework and reason-
able sharp constants, but involves a technical condition which prevents the separation
distance from going to zero for a fixed number of nodes and a fixed bandwidth.

Here, we present upper and lower bounds for the condition number of Vander-
monde matrices with pairs of nearly colliding nodes, i.e., the special case 2. We
achieve the expected linear order and all constants are reasonably sharp and absolute.
In contrast to the more general quoted results [4, 16], the nodes can be placed on
the full unit circle and the separation distance is allowed to approach zero. Our mild
technical conditions, which seem to be artifacts of our proof technique, are:

(i) A logarithmic growth in the separation distance of the well-separated nodes
(which can be dropped at a price of a larger constant for the condition number
estimate),

(ii) A uniformity condition that colliding nodes behave similarly (they have the
same separation distance up to a predefined constant), and

(iii) An a priori upper bound on the separation distance of the colliding nodes.

The outline of this paper is as follows: Section 2 fixes the notation, recalls results
for the case of well-separated nodes, and provides lower bounds for the condition
number. In Section 3, we establish upper bounds for nodes that are well-separated
from each other except for one pair of nodes that is nearly colliding. Section 4 goes
one step further and studies the more general case where an arbitrary number of pairs
of nodes nearly collide. Theoretical and numerical comparisons with [3, 4, 8, 16] can
be found at the end of Section 4 and in Section 5.
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2 Preliminaries

Let 1 be the complex torus and nodes 1 be
parametrized by e 2 i 1 , such that 1 [0 1 . We
fix a degree so that 2 1 and set up the rectangular Vandermonde
matrix:

1

1
1

1 1 1
1 1

...
...

...
1 1 1

. (2.1)

The Dirichlet kernel is given by:

e2 i
sin
sin otherwise

(2.2)

so that

1 .

The matrix is symmetric positive definite and the spectral condition number

cond max

min

1

is finite since all nodes are distinct (here and throughout the paper
sup 1 with 2 2). On the other hand, if two nodes
are equal, then two rows of are the same and by continuity the condition number
diverges if two nodes collide. The (wrap around) distance of two nodes is given by:

min .

and we introduce the normalized separation distance of the node set as:

min .

We call the case 1 critical separation, i.e., min 1 , and the
cases 1 and 1 nearly colliding and well-separated, respectively. Figure 1
illustrates the situation for 4 nodes on the unit circle. The parameter describes
a minimum separation distance of involved non-colliding nodes assumed in the
theorems.

A reasonable result for well-separated nodes is as follows.

Theorem 2.1 [2, 18] Let be a Vandermonde matrix as in (2.1) with 1, then

1
1 2

min
2
max 1

1
.

In particular, we have

cond 2 1
2

1
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Fig. 1 Sketch of four-node configurations, 1 2 3 4 [0 1 , 1 0, 3 1 2, large enough,
1 2 1 2 , 3 4 3 4 . dotted, Theorem can be applied; filled, well-separated; lined, 3
nearly colliding nodes; empty areas, at most 2 nearly coll. nodes, but not covered by results

and this implies and 1 † 2 1, where
† 1 denotes the Moore-Penrose pseudo inverse of .

We note in passing that the above lower bound on the smallest singular value
is an improvement of [18] by [2] and that [18] and [8] allow to replace 1 in the
upper and the lower bounds by 1 1 , respectively. Moreover, we have the following
lower bound on the condition number. This already shows that the upper bound for
well-separated nodes is quite sharp and provides the benchmark for nearly colliding
nodes.

Theorem 2.2 (Lower bound) Let be a Vandermonde matrix as in (2.1), then:
2
min

2
max .

In particular, we have:

cond 2 1
2

1

for 1
2 , uniformly in and almost matching the above upper bound.

For nearly colliding nodes, we have:

cond 2 12
2 2

1
1
2

for 12 2 1 0.46 and cond 6 0.77 for all 1.

Proof Without loss of generality, let 2 1 and consider the upper left 2 2
block in:

0
0

.

We apply Lemma A.5, and get:

cond 2 max

min

max

min

0

0
1

2

and Lemma A.1 yields the assertion.
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3 Nodes with one nearly colliding pair

Definition 3.1 Let 2 and 0 1 [0 1 such that:

1 2 0 1

3 1

then 1 is called a set of nodes with one nearly colliding pair; see Fig. 2 for
an illustration. Due to periodicity, the choice 1 0 and 1 2 is without
loss of generality.

Now, we estimate an upper bound on the condition number of the Hermitian matrix
by bounding directly and applying Lemma A.4 to 1 before bounding
1 . For that, we introduce some notation for abbreviation.

Definition 3.2 We define 1 1
1 and 2 2

1 so that with:

1 1 2 2 2 and 2 1

3
...

(3.1)

we have the partitioning:

1

2
and

2
(3.2)

where 2 is a Vandermonde matrix with nodes that are at least separated.

Lemma 3.3 Under the conditions of Definition 3.1 and for 6, we have:

2.3 .

Proof The key idea is to see the set of nodes as a union of two well-separated subsets
and use the existing bounds for these. In contrast to the next chapter, here, one of
the sets only consists of a single node. We start by noting that Theorem 2.1 and (3.1)

Fig. 2 Example of a node set with 5 satisfying Def. 3.1
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yield 2
1

2
2

2
2 . Together with the decomposition (3.2), the

triangle inequality, Lemma A.6, and Theorem 2.1, we obtain:

0
0 2

0
0 2

1 1
.

Lemma 3.4 Under the conditions of Definition 3.1 and with as in (3.1), we have:

2 1

where 1
1 denotes the first unit vector and:

2 2 2 2
4

12 2

1.21
3

4

180 4
.

Proof The vector can be approximated by the first column of 2 in the sense that:

3
...

0
3
...

1
...

1

.

We have 1 and for 2 1 the mean value theorem
yields:

1 1 1 1 .

Note that, in the worst case, half of the nodes can be as close as possible (under the
assumed separation condition) to 2 not only on its right but also on its left. Hence,
for 2 2 , 1 and Lemma A.1 lead to:

2

1

2 2 2 2 1

1

2 1 2 2
.

Thus, for all nodes, we get:

1

2

2 2
2

2

2 2 2
2

2 2
1

1
2

2
6

3
1

1
3

1.21

1

2 4
1

1
4

4
90

.

Lemma 3.5 Under the conditions of Definition 3.1 and for 5, we have:

1
2
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where

2 1

1 1
2

1
1

4

12 2

1.21
3

4

180 4

1

.

Proof We consider decomposed as in (3.2) and apply Lemma A.4 with respect to
2 to obtain:

1 0
1

2

1
2

1 0
0 1

2

1
2

0

and thus,

1 0
1

2

2

max 1
2

1
2

1
.

First of all, we establish an upper bound for the norm of the triangular matrix.
Equation (3.1) and Theorem 2.1 imply:

1
2 2 2

1
2 1

†
2 1

1
.

Together with Lemma A.6, we obtain:

0
1

2

2

1 1
2

1
2

2 2 1

1 1
. (3.3)

The next step is to bound 1
2

1. Lemma 3.4 yields:

1
2 2 1

1
2 2 1 2 0 1

2 .

Applying the second part of Lemma 3.4, Lemma A.1, and Theorem 2.1 yields:

1
2 2 2 1

2

2 1
2

1
2

1

2

2

2 2 1
2

1
2

2 2
4

12 2

1.21
3

4

180 4

2 2
1

1
4

12 2

1.21
3

4

180 4
.

For 5, the most inner bracketed term takes values in 1 1.4 such that the square
bracketed term is positive. Forming the reciprocal gives the result, since Theorem 2.1
also implies:

1
2 1

1

2
2

1
1

1

. (3.4)
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Theorem 3.6 (Upper bound) Under the conditions of Definition 3.1 with min
6, we have:

cond
4
.

Proof The bound follows from Lemmata 3.3 and 3.5 with 6 6.5.

Lower and upper bounds in Theorems 2.2 and 3.6 yield:

1
cond

4

for 0.46 and 6 . The condition on implies that for specific configurations
of nodes, our result becomes effective as early as 6 —this is in contrast to
the results [4, 16], where has to be much larger.

Remark 3.7 (Constants) Some comments regarding what is lost during our proof:

(i) The constant in Lemma 3.3 is a numerical value for all 6, indeed the proof
is valid for all values 1. The case 2 shows that Lemmata 3.3 and 3.4
are reasonably sharp since in this case 2 2 2 6
and 2 2 ; see Lemma A.1 for the two inequalities.

(ii) In Lemma 3.5, the constant is monotone decreasing in ; see also Fig. 3. It
is bounded below by 3 which is due to the relatively crude norm estimate on the
block triangular factors in the Schur complement decomposition. Note that the

left-hand side in (3.3) is bounded from below by 1 1
2

2
. An additional

minor improvement on and on the range of admissible values for can
be achieved when applying Lemma A.1 to two factors simultaneously.

5 6 7 8 9 10
4

5

6

7

8

9

10

11

Fig. 3 in Lemma 3.5
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Remark 3.8 (Generalizations and limitations) In principle, the suggested Schur com-
plement technique can be generalized to more than two nodes colliding and also to
the multivariate case:

(i) Let 3 and 0 1 [0 1 be such that 1 2 3 nearly
collide and decompose:

1

2
1

1 2

1 2

2 3 .

While it is clear that the Schur complement 1
1

2 is strictly positive
definite, establishing a lower bound on its smallest singular value similar to
the proofs of Lemmata 3.4 and 3.5 seems considerably harder. Already, the
linear approximation in Lemma 3.4 then needs to be replaced by a higher order
approximation for the matrix .

(ii) Consider the bivariate case and the Vandermonde matrix:

1
2

where e 2 i e 2 i 2, 2 is a multi-

index, and . The distance of the nodes 0 1 2

is measured by min 2 and we consider the
situation as in Definitions 3.1 and 3.2 with . Lemma 3.4 can be
proven using the bivariate mean value theorem to get ,

2 3 , and the packing argument [14, Lem. 4.5] to get:

2 2
2 2

2 12 2 4 2

1 2
1 log 6 .

We need additional assumptions for Lemma 3.5 to work since results for general
well-separated nodes, cf. [15], seem to be too weak. If the nodes 2

are a subset of equispaced nodes in 2, then [14, Cor. 4.11] yields 1
2

2. Together with 4 and 4 2 log , this yields 1

20 2 2.

4 Pairs of nearly colliding nodes

We now study the situation in which the Vandermonde matrix comes from pairs of
nearly colliding nodes.
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Definition 4.1 Let , 2 1, 1 and let 1
2

[0 1 and

2 1 [0 1 for 4 even such that:

2
1

2
0 1

2
1

then 1 is called a set of nodes with pairs of nearly colliding nodes (see
Fig. 4 for an illustration). The constant measures the uniformity of the collid-
ing nodes. For subsequent use, we additionally introduce the following wrap around
distance of indices min 2 with respect to 2 .

Definition 4.2 We define:

1 1 2
2 and 2 2 1

2

so that with 1 1 1, 2 2 2, and 2 1 we have the partitioning:

1

2

1

2
. (4.1)

Note that under the assumptions in Definition 4.1 the Vandermonde matrices 1 and
2 are each corresponding to nodes that are at least -separated.

The proof technique we use is analogous to the one we used in the case of two
nearly colliding nodes. The difference is that we have a matrix 1 instead of a scalar
and the block is a matrix instead of a vector. Subsequently, Lemma 4.3 establishes
an upper bound on and Lemmata 4.4, 4.5, and 4.6 establish an upper bound on

1 .

Lemma 4.3 Under the conditions of Definition 4.1, we have:

2
1
.

Fig. 4 Example of a node set with 8 satisfying Definition 4.1
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Proof Similar to Lemma 3.3, we start by noting that 2
1 2 . Together

with the decomposition (4.1), the triangle inequality, Lemma A.6, and Theorem 2.1,
this leads to:

1 0
0 2

0
0

max 1 2 1 2 2
1
.

Lemma 4.4 Under the conditions of Definition 4.1, 1 1 fulfills:

1
log 4 1 2

6 2
.

Proof The Dirichlet kernel is monotone decreasing on [0 1 ]. Hence, for the
diagonal entries, we obtain:

1
2 2

.

The off-diagonal entries are bounded by the mean value theorem and Lemma A.1 as:

1
2

2

1

2 2 2

where
2

implies:

1
2

1

2 2 2 1

for 1 2 , . Additionally, we set 1 . We
bound the spectral norm of 1 by the one of the real symmetric matrix 1 using
Lemma A.2 and proceed by:

1 1 1 2
4

1
2

1

2 2 2

from which the assertion follows.

Lemma 4.5 Under the conditions of Definition 4.1, 1 1 and 2 2
fulfill:

2 1 2 2 2 2
2 log 4 1 3

3 2

2.42
3

.
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Proof First, note that:

1 2
2 2 2 2

.

Monotonicity of the Dirichlet kernel on [0 1 ] gives:

2 1 2 2
2

2

for . For each fixed off-diagonal entry , the matrix 2 has no con-
tribution. We write the node 2 as a perturbation of by 2
and expand the Dirichlet kernel by its Taylor polynomial of degree 2 in the point

2 . Using:

2
2

for some , the constant term, as well as the linear term, cancels out
and we get:

1

8
1

2
2

2
3

2
4

2 .

Lemma A.1 and 1 4 imply:

1 2

3

4

2

2 2 2

1
3 3

2 2

and hence by

2 1 2
2 2

2

2 2 2

1
3 3

.

The matrix 2 1 2 is real symmetric so that:

2 1 2 2 1 2

2 2
4

1

2 2
2

2 2 2

1
3 3

2 2 2 2
2 log 4 1

2

3

6 2

1.21
3

and therefore the result holds.
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Lemma 4.6 Under the conditions of Definition 4.1 with 1 2 and 2, such
that:

2
2 2 log 4 1 2 3

3 2

2.42 2

3

1

2 2

6

log 4 1 2

6 2

2

is positive, we have:

1
2

where

2

1

1

1
.

Figure 5 visualizes the values of the constant with respect to and .
Please note that (i) increasing the constant by a factor 2 has to be compensated
approximately by halving and doubling and (ii) increasing the number of nodes

from 4 to 64 has to be compensated approximately by tripling .

Proof We proceed analogously to Lemma 3.5 and apply Lemma A.4 to the matrix
decomposed as in (4.1) and obtain:

1 max 1
1 2

1
1

1 0
1

1

2

. (4.2)

Definition 4.2 and Theorem 2.1 yield:

1
1 2

†
1

1

1

together with Lemma A.6, we obtain:

0
1

1

2

1 1
1

1
1

2 2

1

1

1
.

Fig. 5 Values of in Lemma 4.6 depending on and for different and . Negative values
are set to zero
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Now, we estimate 2
1

1
1 , which is done by the following steps:

(i) First, note that †
1 1 is an orthogonal projector and thus Theorem 2.1

implies:

2
1

1 2
†
1 1 2 2

2 2 .

We apply Lemma A.3 with 2 , use the identities 1 1 and
2 2, apply the triangular inequality, and the sub-multiplicativity of

the matrix norm to get:

2
1

1
1 1

2 2 2
1

1

1

2 2 1 2 1
2 1

1

. (4.3)

(ii) Lemma 4.5 leads to:

2 2 1 2 2

2 2
2 log 4 1 3

3 2

2.42
3

.

(iii) We apply Theorem 2.1 and Lemma 4.4 to get:

1
2 1

1 1

log 4 1 2

6 2

2

.

(iv) We use the estimates for the Dirichlet kernel 2 in ii) and
2

6
2 2 in iii) (see Lemma A.1), and insert this in (4.3) to

get finally:

2
1

1
1 1

2
2

2 2 log 4 1 2 3

3 2

2.42 2

3

1

2 2

6

log 4 1 2

6 2

2 1

.

This upper bound also bounds the maximum in (4.2) since for all 1 2 and
2 together with Theorem 2.1

1
1

2 1

2 2

1
2
2 1.

Theorem 4.7 (Upper bound) Under the conditions of Definition 4.1 with 4,
1
4 2 and min 10 2 log 4 1 , we have:

cond
5
.
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Proof In Lemma 4.6, the constant is monotone increasing in and
monotone decreasing in . Hence, after plugging in the bounds for and in our
assumptions, it is easy to see that the constant 1

4 2 10 2 log 4 1 is
monotone decreasing in and , respectively. Therefore, we get

1 4 10 1 4 11.3, so that 1 11.3 1 2. Together with the bound
22 10 2.2 from Lemma 4.3, we obtain the result.

If each pair of nearly colliding nodes has the same separation distance, i.e.,
1, we can improve the upper bound in the sense that restrictions on except for

1 can be dropped. In order to obtain the same constant, we have to increase the
restrictions on slightly.

Lemma 4.8 Under the conditions of Definition 4.1 with 1, such that:

2
2 log 4 1 3

3 2

2.42
3

1

2 log 4 1

1

2

3 1
2 log 4 1 2

1

3 log 4 1

3 2 1

4

36 3 1

is positive, we have
1

2

where 2
1

1
1 .

Proof The proof is analogous to that of Lemma 4.6, the only difference is in step
(iv). Setting 1 in (ii) and (iii), expanding the squared bracket in (iii) and inserting
this into (4.3) leads to:

2
1

1
1 [2

2
2 log 4 1 3

3 2

2.42
3 1

2

1
2

log 4 1 2

6 2

2

1

2 log 4 1 2

2

3 log 4 1

3 3

4

36 4

1

.

In three summands, we can factor out and use the estimate
2, leading to a larger bound after inverting the expression in the end.

Afterwards, in the third summand is left, for which we use the rough
bound . In the fourth summand, we use 1 for the single .
The same argument as in (3.4) shows that this also bounds the maximum in (4.2) and
we get the result.
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Theorem 4.9 (Upper bound) Under the conditions of Definition 4.1 with 1,
min 25 log 4 1 , we have:

cond
5
.

Proof Direct inspection gives monotonicity of with respect to and also
the estimate 25 log 4 1 25 4 12. Hence, 1

12 1 2 and together with the bound 52 25 from Lemma 4.3 we obtain
the result.

Remark 4.10 Due to Lemma A.5, the upper bound from Theorem 4.7 remains valid
if nodes are removed. We note in passing that min and max are monotone increasing
with and thus, condition number estimates for an even number follow. Lower
and upper bounds in Theorems 2.2 and 4.7 finally yield:

1
cond

5
.

The lower bound is tight and the numerical value 5 in the upper bound follows from
our proof technique and can be improved (see Fig. 6). The uniformity condition
1 4 2 is artificial and, except for the special cases in Theorems 3.6 and 4.9, prevents
letting 1.

Moreover, the technical condition min 25 log 4 1 in Theorem 4.7
is due to the slow decay of the Dirichlet kernel and can be weakened by a precon-
ditioning technique which however leads to a somewhat larger constant in the final
result.1 The diagonal matrix diag 1 1 is positive
definite with 1 and thus the Rayleigh-Riesz characterization of the smallest
eigenvalue for Hermitian matrices leads to:

min min
1

1 2
2

min
1

2
min .

The entries of the matrix consist of Fejér kernel evaluations and analogously
to Lemmata 4.4, 4.5, and 4.6 this yields (independently of ):

1
2

6 2

3 2 2

3 2 2

3 2 2

1

8
2

4 2 4

3 2

39 2

3

16 2 4 2 2 6

45 4

3 2

3 2 2

2 2 2

9

2 3

3 2

9.68
3

2

.

1We thank one of the peer reviewers for this clever hint.
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Under the conditions of Definition 4.1 with 1, 1
4 2 and min

11 2, we finally have cond 14 . Note that this approach also allows to drop
the logarithmic factor in Remark 3.8 (ii).

The absolute constant 5 in the upper bound of the condition number (or
† 11.3 3.4) follows from our proof technique and we give a

numerical comparison to the approaches [3, 4, 8, 16] in Fig. 7. A short theoretical
comparison including different assumptions on , , , and is given below.

Remark 4.11 (Comparison to [4]) This approach is more general and allows more
than two nodes in a group nearly colliding. The upper bound on the condition number
grows quite strongly like with the total number of nodes , cf. [4, Cor. 3.6].
Moreover, the a priori conditions 4 3 and 2 (see [4, Cor. 3.6, left
ineq. (3.4)]) are much stronger than ours. The uniformity condition 2 is
slightly weaker than ours but nonetheless artificial.

Remark 4.12 (Comparison to [16]) Again, this approach is more general and allows
more than two nodes in a group nearly colliding. The upper bound on the condi-
tion number grows like with the total number of nodes , cf. [16, Thm. 1
ineq. (2.3), Thm. 2 ineq. (2.7), and ineq. (2.8)]. With minor simplifications, the a
priori conditions 2 and:

1
1 4

with 1 42

2
1 2

with 2 63
(4.4)

are imposed; see [16, Thm. 1, ineq. (2.2), Thm 2, ineq. (2.5)]. We note that [16,
Thm. 1, Thm. 2] places no upper bound except 1 but that condition (4.4) is
in fact an a priori lower bound on which prevents 0 already for moderate
fixed 3. Recently, we refined this approach in [13], dropped the mentioned
dependencies on and could weaken the condition (4.4) considerably.

Remark 4.13 (Comparison to [8]) This approach deals with pairs of nearly collid-
ing nodes but differs completely from ours and the ones in [3, 4, 16], and rather
generalizes the construction of certain extremal functions in [18] to pairs of nearly
colliding nodes and subsets of them. The proven constant in the upper bound given
in [8, Cor. 4.2] is † 9 6 7.0 and thus is slightly larger than ours
( 11.3 3.4). Using the stronger assumption on from our setting in the proof
of [8, Thm. 3.6] and improving estimates in [8, Eq. (8)] provides the best result
( 1.7) for pairs of nearly colliding nodes. The conditions 1 and 3 are
quasi-optimal. Provided all technical results prove right, this approach is superior.

Remark 4.14 (Comparison to [3]) This approach uses a QR-decomposition technique
to establish bounds on all singular values of Vandermonde matrices with nearly col-
liding nodes. Adapted to the case of pairs of nearly colliding nodes, we obtain the
following: Let 4 even and as in Definition 4.1. With respect to the nearly col-
liding pairs, partition 1 2 2 with QR decompositions
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and set 1 2 2 . Tracing back all constants in lemmata and proofs
for the case of pairwise nearly colliding nodes, we obtain the uniform off-diagonal
estimate:

150 1079

which yields a constant “multiplicative perturbation” in [3, Lem. 5.1] and thus a
condition number estimate like Theorem 4.7 or [8] only if 1 and 2 ,
for some constants 1 2.

However, note that for two nearly colliding pairs 1 2 1 2, a direct
computation (avoiding a so-called limit basis used in [3]) yields the off-diagonal
estimate:

1 2 F
116

1 2
1 1 1 2 2 2 1 2 .

Together with 27
23 232 log 4 1 and Lemma A.6, this gives:

1 max
2

1

F 2
4

1

116

232 log 4 1 23

27
1 .

The Courant-Fisher min-max theorem [11, Thm. 4.2.6] and Weyl’s perturbation
theorem [11, Thm. 4.3.1] finally yield:

cond cond maxcond
5
.

Altogether, the improved variant of this technique can be used for nearly colliding
pairs, but leads to a stronger assumption on for all moderate uniformity constants .

5 Numerical examples

All computations were carried out using MATLAB R2019b. As a test for the bounds
in the case of one pair of nearly colliding nodes, we use the following configuration.
Let the number of nodes 20 and 200 be fixed, respectively. Moreover,
we choose 1 12 1 which ensures that all nodes fit on the unit interval.
We choose 10 11 1 logarithmically uniformly at random and 3
[6 12] uniformly at random. Then, we set the nodes 1 [0 1 such
that 1 0, 2 and for 3 , 1 . Afterwards,
the condition number of the corresponding Vandermonde matrix is computed. This
procedure is repeated 100 times and the results are presented in Fig. 6 (left).

For pairs of nearly colliding nodes, we use the following configuration. Let the
number of nodes 20 and 200 be fixed, respectively. Moreover, we
choose the parameter 2 and and min as in Theorem 4.7. To ensure that all
nodes fit on the unit interval, we choose as the smallest odd integer bigger than

2 min 2. Then, we choose 10 11 1 logarithmically uniformly at
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Fig. 6 Numerical experiments for bounds on the condition number, lower bounds from Theorem 2.2; left,
one nearly colliding pair, upper bound from Theorem 3.6; right, pairs of nearly colliding nodes, upper
bound from Theorem 4.7

random and set the nodes 1 [0 1 such that 1 0, 2 and for
3 , 1 if is odd or 1 if is even,

where [ ] and [ min 2 min] are picked uniformly at random, respec-
tively. Afterwards, the condition number of the corresponding Vandermonde matrix
is computed. This procedure is repeated 100 times and the results are presented in
Fig. 6 (right). Note that Theorem 4.7 makes the restriction 1

4 , which
seems to be an artifact of our proof technique.

In order to compare Theorem 4.7 with the results from [4, Cor. 3.6], we need
to satisfy the assumptions of both results. We take 3 nodes with two nodes
nearly colliding, i.e., 1 0, 1 and 2 1 . The assumptions in
[4, Cor. 3.6] make it necessary that the nodes lie on an interval of length 1

2 2
1
18 .

We choose the parameter 1, min 12, and 1001. Then, we pick

10 11 1 logarithmically uniformly at random and min 2 2 uniformly

at random. Afterwards, the inverse of the smallest singular value (norm of Moore-
Penrose pseudo inverse) of the corresponding Vandermonde matrix is computed. This
procedure is repeated 100 times and the results normalized by are presented in
Fig. 7 (left). From [4, Cor. 3.6], we get:

† 2 2 1 2 1

1 1

1
6116

1

for 1, whereas Theorem 4.7 provides † 11.3 1 3.4 1 for
1
4 .

In order to compare our results with the ones from the second version of [16,
Thm. 1, Thm. 2], we set the parameter 215 1, 1 and 4 and

20, respectively. All pairs of nodes are placed uniformly, such that 2 2

and 2 for 1 2 , where is picked logarithmically uniformly
at random from 10 11 1 . Afterwards, the inverse of the smallest singular value
(norm of Moore-Penrose pseudo inverse) of the corresponding Vandermonde matrix
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Fig. 7 Upper bounds for † . Left, Comparison of Thm. 4.7 with [4, Cor. 3.6]; right, comparison of
Thm. 4.7 with [16, Thm. 2], [8, Cor. 4.2] and its modification for our setting as mentioned in Remark 4.13

is computed. This procedure is repeated 100 times and the results normalized by
are presented in Fig. 7 (right). Note that [16, Thm. 1, ineq. (2.2), Thm. 2,

ineq. (2.5)] restricts:

202 25 3

2 1 3
1.9 10 4

2.4 10 2
104210 5

4 1 5
1.8 10 10 4
5.6 10 7 20

respectively, where we used the uniform bound 2 . The results are shown in
Fig. 7 (right) by proper lines [16, Thm. 2, ineq. (2.5)] and by broken lines [16, Thm. 1,
ineq. (2.2)]. In both cases and with minor corrections, the resulting estimate is:

† 20 2

19
1

2

12

1 2
1

2

1

2

1 4

1

1

9 1 4

20.1 1 20

whereas Theorem 4.7 provides again † 3.4 1 for 1
4 . We note that our

bound remains valid for 1 but the restriction on becomes more severe.

6 Summary

We proved upper and lower bounds for the spectral condition number of rectangu-
lar Vandermonde matrices with nodes on the complex unit circle. If pairs of nodes
nearly collide, the studied condition number grows linearly with the inverse separa-
tion distance. In contrast to the more general results [4, 16], we provide reasonable
sharp and absolute constants but have to admit that our technique most likely will
not generalize to more than two nodes nearly colliding. Note that our easy to achieve
lower bound seems to capture the situation more accurately than the upper bound.
We posed mild technical conditions in our proofs, which cannot be confirmed to
be necessary numerically. While [4] provided the right growth order for the first
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time, some of the imposed conditions are very restrictive and the involved constants
are quite pessimistic. The second version of [16] provided a quite general frame-
work and presented decent results with only a mild artificial growth of the condition
number with respect to the number of nodes. Moreover, a technical condition there
prevents the separation distance from going to zero for a fixed number of nodes and
a fixed bandwidth. We believe that both problems can be fixed at least partially and
thus [16] seems to be a good framework for understanding node configurations with
nearly colliding nodes. Recently, the manuscript [8] came to our attention—it con-
siders pairs of nearly colliding nodes and weakens the assumptions considerably and
gives, after modifications, stronger bounds on the smallest singular value. The taken
approach differs completely from ours and the ones in [4, 16], but rather generalizes
the construction of [18] to pairs of nearly colliding nodes.
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Appendix A

The following technical results are used within the proofs of our main results.

Lemma A.1 Let , 2 1, then the Dirichlet kernel (2.2) is bounded by

2

6
3 2 3 2 0

1
.

Furthermore, the Dirichlet kernel and its first two derivatives are bounded by

1

2

2

2

1

2 2 2

3
2

2 2 2

1
3 3

for 0 1 2.
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Proof Due to symmetry, it suffices to prove all bounds for 0 and we use the
explicit expression of the Dirichlet kernel in (2.2). The lower bound on can be
derived from the inequalities 3 6 sin , that hold for all 0 .
The left inequality with and the right inequality with lead to:

sin
2

6
3 2

2

6
3 2 sin .

The upper bound on can be derived from the inequality cos cos
that holds for all 0 2 and 1 such that 0 2 . Integrating this
inequality, choosing 2 and , and applying the double angle formula
yields:

sin

2 cos 2

sin
2 2

sin .

Reordering the inequality and applying that cos 1 4 2 2 for all 0 2
yields:

sin

sin
cos

2
1 2 2 .

Finally, the remaining bounds on the absolute values can be proven by calculating
the first and second derivatives and using sin 2 and cot 1 that hold
for all 0 2 .

Lemma A.2 Let with for all 1 ,
1 , then:

.

Proof We directly show the result by:

2 max
1

2 max
1

1 1

2

max
1

1 1

2

max
1

1 1

2

max
1

1 1

2
2
.

Note that similar estimates can be found for the Frobenius norm in [11, p. 520].

Lemma A.3 (Norm of matrix inverse) Let Hermitian and positive defi-
nite and the identity matrix. Let be a parameter satisfying ,
then:

1 1
.

Proof Since is positive definite, let its real, positive eigenvalues be given by
1 0. By assumption max and
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therefore, is positive definite as well with largest eigenvalue max

min . This finally leads to:

1 1

min

1

min

1

max

1
.

Lemma A.4 (Schur complement, cf. [11, eq. (0.8.5.3)]) Let 1 2 and the
matrix 1 2 1 2 be a 2 2 block matrix of the form:

1 2

3 4
1

1 1
4

2 2

with 1 being invertible. Then, the Schur complement decomposition is given by:

1 0

3
1

1 2

1
1 0
0 4 3

1
1 2

1
1

1 2
0 2

1

.

The block 1 4 3
1

1 2 is called Schur complement of 1 in .

Lemma A.5 (Cauchy interlacing theorem for eigenvalues, cf. [11, Thm. (4.3.28)])
Let be a Hermitian complex matrix, such that:

1 2

2 3
1 2 3 .

Let the eigenvalues of and 1 be ordered in non-decreasing order, then:

1 1 .

Lemma A.6 (Block Gerschgorin theorem, cf. [11, 6.1.P17] or [10, Thm. 5]) Let
be an block matrix with blocks . Let the diagonal

blocks be normal and denote 1 their eigenvalues, respectively. Then,
the eigenvalues of are included in the set:

1 1

.

In particular, we have for the inequalities:

0
0

and
0 2

1 2 .
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