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Abstract
In this paper, the generalized Love integral equation has been considered. In order to
approximate the solution, a Nyström method based on a mixed quadrature rule has
been proposed. Such a rule is a combination of a product and a “dilation” quadrature
formula. The stability and convergence of the described numerical procedure have
been discussed in suitable weighted spaces and the efficiency of the method is shown
by some numerical tests.
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1 Introduction

In 1949, Love investigated for the first time on a mathematical model describing the
capacity of a circular plane condenser consisting of two identical coaxial discs placed
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at a distance and having a common radius . In his paper [9], he proved that the
capacity of each disk is given by:

1

1

where is the solution of the following integral equations of the second kind:

1 1

1

1

2 2
1 (1.1)

with a real positive parameter. Then, he proved that (1.1) has a unique,
continuous, real, and even solution which analytically has the following form:

1
1

1
1

1

where the iterated kernels are given by:

1
1 1

2 2

1

1
1 1 2 .

From a numerical point of view, the developed methods [7, 8, 12, 15, 17] for the
undisputed most interesting case (i.e., when 1 0) have followed the very first
methods [4, 5, 16, 19, 20], and the most recent ones [11], proposed for the case when

1.
If 1 0 the kernel function is “close” to be singular on the bisector .

This kind of kernel belongs to the so-called nearly singular kernels class. Moreover,
Phillips noted in [16] that:

1 1

1

1

2 2
if 1 0. (1.2)

Hence, for sufficiently large, the left-hand side of (1.1), in the case “ ” is consid-
ered, becomes approximately zero which does not coincide with the right-hand side
of (1.1).

In [12], the authors presented a numerical approach based on a suitable transfor-
mation to move away from the poles 1 from the real axis. The numerical
method produced very accurate results in the case when 1 is not so small but they
are poor if 1 0.

Then, in order to get satisfactory errors also in this latter case, in [15] the author
proposed to dilate the integration interval and to decompose it into subintervals.
Hence, the equation was reduced to an equivalent system of integral equations and
a Nyström method based on a Gauss-Legendre quadrature formula was proposed for
its numerical approximation. The approach produces satisfactory order of conver-
gence even if 1 is small. However, the dimension of the structured linear system
that one needs to solve is very large as 1 decreases.

In [7], the authors improve the results given in [15] by using the same transfor-
mation as in [8] which takes into account the behavior of the unknown function
showed in (1.2). Then, they follow the approach given in [15]; i.e., they write the
integral as the sum of new integrals which are approximated by means of a -point
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Gauss-Legendre quadrature rule. In this way, they get a linear system of size that,
multiplied by suitable diagonal matrices, is equivalent to a new linear system which
is solved by using a preconditioned conjugate gradient method, being the matrix of
coefficients symmetric, positive definitive, and having a Toeplitz block structure.

In this paper, we consider the more general equation:

1

1

1

2 2
1 (1.3)

where β 1 1 β, β 1, is the unknown function,
is a known right-hand side, IR and 0 IR.
Such equation includes (1.1) (in the case when 1 and 1 ) and,

at the same time, the presence of the weight leads to the case when the unknown
function has algebraic singularities at the endpoints of 1 1 . So, the method we
propose and the theoretical results we prove can be applied not only in the special
case of the Love equation but also in the general one in which the involved functions
are singular at 1. This general case could be interesting in the future for other
possible physical models.

The method we propose is a Nyström method based on a mixed quadrature for-
mula. This is a product rule whose coefficients are computed by using a quadrature
scheme. In fact, following an idea presented in [2, 15], we approximate such coef-
ficients by using a “dilation” quadrature formula that we prove to be stable and
convergent. Such an idea which consists of a preliminary dilation of the domain, that
“relax” in some sense the pathological behavior of the kernel of the integral, allows
us to get very accurate results when is large, better than those in [7, 15]. The
proposed method, whose convergence and stability are proved in suitable weighted
spaces, leads to a well-conditioned linear system, the dimension of which is greatly
reduced w.r.t. the ones involved in [7, 15]. The size of the system we solve does not
depend on the magnitude of the parameter and the error is of the order of the best
polynomial approximation of the unknown function, independently of the value of
. Moreover, we underline that mutatis mutandis the numerical approach could be

applied to different Fredholm integral equations with other types of “nearly singular”
kernels.

The outline of the paper is as follows. At first, in Section 2, we introduce the
functional spaces in which we will analyze our method. In Section 3, we remind some
well-known quadrature rule (Section 3.1), we study a “dilation” quadrature formula
(Section 3.2), and we propose a new mixed quadrature scheme (Section 3.3) which
is used in the Nyström method presented in Section 4. Section 5 shows the efficiency
of the proposed procedure by means of several numerical tests, and finally, Section 6
contains the proofs of our main results.

2 Functional spaces and notations

Let us consider the following Jacobi weight function with parameters 0

1 1 (2.1)
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and let us define the space of weighted continuous functions defined as:

1 1 lim
1

0

in the case when 0. In the case 0 (respectively 0), consists of
all functions which are continuous on 1 1 (respectively 1 1 ) and such that

lim
1

0 respectively lim
1

0 . Moreover, if 0 we

set 0 1 1 . We equip the space with the weighted uniform norm

max
1 1

and we remark that endowed with such a weighted norm is a Banach space.
For smoother functions, we introduce the following Sobolev-type space

W

where the superscript denotes the th derivative of the function with a positive
integer and 1 2. We equip W with the norm:

W .

Finally, for any 0 , we denote by 1 1 the set of all continuous
functions having continuous derivatives.

Throughout the whole paper, we will denote by C a positive constant which will
have different meanings in different formulas. We will write C C in
order to say that C is a positive constant independent of the parameters , and
C C to say that C depends on . Moreover, if 0 are
quantities depending on some parameters, we write if there exists a constant
0 C C s.t. C C .

3 Integration formulae

3.1 Classical quadrature formulae

In this subsection, we remind two well-known quadrature rules [10] and we mention
the related convergence results which will be essential for our aims.

Let us introduce the Jacobi weight of parameters β 1, i.e.:

β 1 1 β 1 1 (3.1)

and let us denote by 0 the corresponding sequence of orthonormal
polynomials with positive leading coefficients, i.e.:

terms of lower degree 0. (3.2)
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Then, we recall the Gauss-Jacobi quadrature rule [10]:

1

1 1

R (3.3)

where 1 denote the Christoffel numbers w.r.t. the weight function , 1
are the zeros of and R stands for the remainder term.

About the latter, it is possible to estimate it (see, for instance, [10]) in terms of the
weighted error of best polynomial approximation of , i.e.:

inf

where denotes the set of all algebraic polynomials of degree at most . In fact, for
each , if the parameters of the weights and are such that 0 1
and 0 β 1, then

R C 2 1 C C (3.4)

whereas if 2 1 1 then

R
2

2 2
(3.5)

where is the positive leading coefficient of introduced in (3.2).
Now, we introduce a product rule in order to evaluate the integrals of the type

1

1

where , is a known kernel function and is the weight defined in (3.1).
Such rule reads as [10]:

1

1 1

E (3.6)

where E denotes the remainder term and the coefficients 1 are defined
as:

1

1
(3.7)

with

(3.8)

the th fundamental Lagrange polynomial.
About the stability and the convergence of the above formula, it is possible to

prove, by using a well-known Nevai theorem (see, for instance, [10, 13]), that if

sup
1

1

1
log 2 sup

1

1

1

(3.9)
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and the weights and are such that their exponents satisfy the following
inequalities:

max 0
2

3

4
min 1

2

5

4
(3.10)

max 0
β
2

3

4
min β 1

β
2

5

4
(3.11)

then, the rule (3.6) is stable and convergent and the following convergence estimate
holds true:

sup
1

E C 1 C C . (3.12)

Remark 3.1 Let us remark that the kernel function appearing in the Love (1.3) sat-
isfies (3.9). Moreover, if β 3

2 , then the parameters and can also be chosen
equal to zero.

3.2 A dilation formula

In this subsection, we present a quadrature formula in order to approximate the
integrals of the type:

1

1
(3.13)

where is a given function, is as in (3.1), and is a known kernel which
is close to be singular if 1 0. This is the case of the kernel function appearing
in the Love equation (1.3).

In order to construct such kind of formula, we follow the approach proposed in [2,
15] for the unweighted case.

First, in order to “relax” the “too fast” behavior of the kernel function when
grows, we introduce in (3.13) the change of variables , with

. In this way, (3.13) is equivalent to the following integral having a dilated
domain of integration :

1

1 1
.

Then, we split the new integration interval into subintervals of size

2 s.t. 2 , namely
1

1

getting

1

1 1
. (3.14)
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Now, we want to remap each integral into 1 1 . To this end, we introduce the
invertible linear maps 1 1 1 defined as:

2
2 1

and in (3.14) we make the change of variable:

1 1

2
1 . (3.15)

In this way, we get:

2
1

1

1
(3.16)

where
1

, are the new weight functions:

0 β 1
0 0 2 1
0

(3.17)

and are the new kernel functions:

2

β
1 0

1

1

1 β
1

2 1

2
1 0 β

1

or, equivalently, in terms of the original kernel ,

2

β 1
0

1

1

1
β

1

2 1

2

1
0 β

1

. (3.18)

Let us underline that the advantage of the change of variable we introduced in
(3.13) and the splitting of the dilated interval into parts of length is that
we reduce the computation of the integral into the computation of a sum of integrals
and in each of them the kernel function has complex poles sufficiently
far from the real axis. In fact, the distance from these poles to the axis is greater
than 2 .
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By approximating each integral appearing in (3.16) by means of the Gauss-Jacobi
quadrature rule (3.3) with in place of and instead of , we have the
following “dilation” quadrature formula:

2
1 1

(3.19)

where is the remainder term.
Next results state the stability of the previous formula and give an error estimate

for in the case when W or 2 1 1 .

Theorem 3.1 Let be with as in (2.1) and let be as in (3.1). If
0 min 1 1 , 0 min 1 β 1 and is s.t. max

1
then for the quadrature formula in (3.19) we have:

sup
12 1 1

C C C .

(3.20)
Moreover, for any W , if

max
1
max

1
(3.21)

we have

sup
1

C
W C C . (3.22)

Corollary 3.1 Let 2 1 1 w.r.t. the variable . Then

sup
1

C

2 1
2

2
48 2 1
24 2 1 2 (3.23)

with C C .

Remark 3.2 We outline that the quantity appearing in both the estimates (3.22) and

(3.23) is a quantity 1 if we divide the interval into a very large number

of subintervals , being
2
. Moreover, in accordance with what proven in [14],

we have experimented that an optimal choice is 2. We also remark that the -
derivative of the kernel function appearing in the assumption (3.21) depends on the
real parameter and its asymptotic behavior (with respect to such a parameter) goes
like 1.
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3.3 Amixed quadrature formula

In this subsection, we want to propose a mixed quadrature rule which will be essen-
tial for our method. It consists in applying an -point product rule (3.6) in order to
approximate the integral:

1

1

and in approximating the coefficients of such a product rule (defined in (3.7) with
) by means of the -point “dilation” quadrature formula (3.19).

Then, the mixed quadrature formula is the following:
1

1 1
E

E (3.24)

where E is the remainder term and:

2
1 1

with and as in (3.18) and (3.17), respectively, and
1

being and 1 defined as in (3.8) and (3.15), respectively.
Next theorem gives an error estimate for E in the case when .

Theorem 3.2 Let and be defined in (3.1) and (2.1), respectively with:

max 0
2

1

4
min 1 1

2

5

4
(3.25)

max 0
β
2

1

4
min 1 β 1

β
2

5

4
. (3.26)

If and the kernel function satisfies the conditions (3.9) and the assumptions
given in Theorem 3.1, the following error estimate holds true:

E C
1

log C C .

Remark 3.3 Let us remark that if β 1
2 , then the parameters of the weight

could also be chosen equal to zero. Moreover, in Theorem 3.2, for the sake of sim-
plicity, we considered the case . Nevertheless in practice in the numerical test
we can use fixed. Indeed, according with (3.23), the error decreases exponentially
and, for instance, for 20, 2, and 102, the quantity before the square
brackets is of the order 10 98. Hence, the error of the mixed quadrature formula is,
in practice, of the same order of the error of best approximation of . We emphasize
that the larger the is, the more the second term goes to zero quickly. In any case,
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whatever the magnitude of is, the first term of the estimate stated in Theorem 3.2
prevails on the second.

4 The numerical method

In this section, we propose a numerical method for the Love integral equation (1.3)
which can be rewritten in operatorial form as:

(4.1)

where is the identity operator and
1

1
(4.2)

with
1

2 2
. (4.3)

The next proposition shows the mapping properties of the operator .

Proposition 4.1 Let and be defined in (2.1) and (3.1), respectively s.t. the
parameters and β satisfy 0 1 and 0 1 β. Then
is continuous, bounded and compact. Moreover, , W IN.

Remark 4.1 We remark that according to Proposition 4.1 and in virtue of the Fred-
holm Alternative Theorem, under the assumption 0 , (4.1) has a
unique solution .

The proposed numerical strategy is a Nyström method based on the mixed
quadrature formula introduced in (3.24). Then, we consider the functional
equation:

(4.4)

where is unknown. We multiply both sides of (4.4) by the weight function
and we collocate each equation at the points 1. In this way, we have that the
quantities are the unknowns of the following linear system:

1

1 ... (4.5)

where is the Kronecker symbol. In terms of matrices the system is a b
where , with the identity matrix of order and

1

while
b 1 and a 1.
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Once (4.5) is solved, its solution a 1 allows us to construct the following
weighted Nyström interpolant:

1

(4.6)

which will approximate the unknown solution .
Next theorem states that the above described Nyström method is stable and con-

vergent, as well as that the condition number in infinity norm of the matrix ; i.e.,
A A 1 is bounded by a constant which does not depend on

.

Theorem 4.1 Let and be defined in (3.1) and (2.1), respectively with parameters
satisfying (3.25) and (3.26), and let us assume that 0 in . Then,

if W , 1, for sufficiently large, the operators
1
exist and are

uniformly bounded. Moreover, system (4.5) is well conditioned, since C
with C C and the following estimate holds true:

C
1 1

log W C C . (4.7)

Remark 4.2 Let us remark that the first step of our method is the natural and imme-
diate approximation of the integral by means of the mixed quadrature formula. In
doing this, we “isolate” in some sense the parameter in the computation of the
coefficients of the rule. The collocation is independent of and this produces the
advantage that the size of the system does not depend on it, as instead happens in
other methods available in the literature [7, 15]. Moreover, as stated in estimate (4.7),
the proposed global approximation method allows us to find the solution of the equa-
tion with a convergence order which is again independent of the magnitude of .
Indeed, the error is of the order of the best polynomial approximation of and being

W one has:
C

.

However, the function naturally depends on , being the solution of an equation
in which such a parameter appears (see also the analytical expression of the solution
recalled in the “Introduction”). Consequently, the norm of the th derivative (appear-
ing at the right-hand side of the above estimate) depends on and becomes large for
increasing values of . This is the only reason why for a large value of we need to
increase the dimension of the system in order to get high precision (see Table 1).

Remark 4.3 Let us underline that the numerical method we propose leads to a not
structured linear system of order in which each element of the matrix involves

evaluation of a polynomial of degree 1. However, the fact that the matrix
is not structured does not lead to any problem. In fact, as we can see in Section 5,
the method produces very accurate results for small values of and, as stated in the
previous theorem, the matrix is also well-conditioned. This is also the reason why we
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Table 1 Numerical results for Example 5.1

CPU time 20 0 20 0.5 20 0.9 20 1

102 350 16 0.036 2.884e 04 2.881e 04 1.807e 03 9.363e 03

32 0.045 4.723e 05 1.590e 05 7.419e 05 1.983e 04

64 0.074 6.739e 07 6.199e 07 2.088e 06 3.670e 07

128 0.134 2.190e 10 6.364e 11 2.478e 10 9.129e 13

256 0.267 3.330e 16 M.P. 1.110e 16 M.P.

103 750 16 0.337 3.215e 05 3.249e 05 2.390e 04 3.783e 02

32 0.410 2.422e 05 8.784e 06 5.220e 05 2.554e 02

64 0.732 1.375e 05 1.382e 05 1.011e 04 3.233e 03

128 1.317 4.872e 07 1.758e 07 2.617e 06 1.785e 05

256 2.644 6.148e 09 5.999e 09 8.002e 09 1.633e 08

512 6.308 5.880e 13 2.007e 13 1.246e 12 8.881e 16

700 10.48 2.886e 16 1.110e 16 2.220e 15 2.220e 16

104 750 16 3.471 3.136e 06 3.186e 06 2.341e 05 4.236e 02

32 4.264 2.259e 06 8.284e 07 4.873e 06 4.085e 02

64 7.673 1.669e 06 1.690e 06 1.317e 05 3.532e 02

128 14.53 1.254e 06 4.631e 07 8.017e 06 1.827e 02

256 27.98 4.966e 07 5.014e 07 8.856e 07 1.050e 04

512 66.20 1.475e 08 5.302e 09 5.738e 08 6.362e 06

700 101.8 8.386e 10 7.958e 10 3.767e 09 5.386e 08

do not propose a suitable and more performing numerical method in order to solve
the linear system we get.

5 Numerical tests

In this section, we show by some numerical tests the performance of the method
described in the previous section. Specifically, we first test the proposed approach on
the classical Love integral equation (Example 5.1) and then we show its effectiveness
on other two generalized Love’s equations (Examples 5.2 and 5.3). In all the numer-
ical tests, the solution is very smooth and we expect a fast convergence according
to estimate (4.7).

We approximate the solutions of the test equations by means of the Nyström
interpolants given by (4.6) and we compute the absolute errors:

(5.1)

in different points 1 1 . In (5.1) is the solution assumed to be exact which
is obtained with a fixed value .
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Fig. 1 From left to right, the approximated solution 20 of Example 5.1 with 700 and 102,
20
512

1
2

1
2 of Example 5.2 and 20

512
1
4

1
4 of Example 5.3

Moreover, in the tables, the CPU time average of the complete procedure (con-
struction and solution of the linear system+construction and evaluation of the
Nyström interpolant) is given. The numerical evidence is that the needed CPU time
depends linearly on and . Indeed, when is doubled also is the CPU time. And
if we see at the CPU time for 102 103 104, it is clear that for the same value of
, if is the time spent in the case 102, then it will be about 10 for 103

and 100 for 104.
All the numerical experiments were performed in double precision arithmetic on

an IntelCore i7 system (4 cores), running the Mac OS operating system and using
Matlab R2018a.

Example 5.1 Let us consider the classical Love integral (1.3) in the space with
1 and 1 . In Table 1 we report the results we get for different choices of .

By comparing them with those presented in [7, Table 1, Table 3, and Table 5], we can
see that, in the case when 102 by solving a square system of 256 equations
we get an error of the order of the machine precision (M.P.), instead of 10 5 as shown
in [7, Table 1]. If 103, by solving a system of order 700, we get the machine
precision, accuracy that in [7, Table 3] is reached with a system of 16384 equations.
Similarly, the method gives accurate results also in the case when 104. The first
graph of Fig. 1 shows the approximated solution 20

700 with 102.

Example 5.2 Let us test our method on the equation:

1 1

1

10 2

2 10 4

1
2

1
2

namely, a generalized Love integral equation with 102 and 1 . Table 2

shows the errors (5.1) that we get with
1
2

1
2 , 20 and 350

for increasing value of . As we can see by solving a linear system of order
256, we get the machine precision (M.P.). The second graph of Fig. 1 displays the
approximate solution 20

512 .
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Table 2 Numerical results for Example 5.2

CPU time 20
350 0 20

350 0.1 20
350 0.3 20

350 0.7

16 0.036 1.099e 04 1.617e 05 6.341e 05 1.650e 04

32 0.046 7.196e 07 7.714e 07 7.547e 07 1.405e 06

64 0.079 2.792e 09 2.966e 09 2.094e 09 6.056e 09

128 0.137 5.410e 13 5.526e 13 3.153e 14 8.726e 13

256 0.277 8.881e 16 M.P. M.P. 3.330e 16

Example 5.3 Let us consider the following generalized Love’s integral equation with
103:

1 1

1

10 3

2 10 6

1
2

1
2

1 3

2 9

in the space with
1
4

1
4 and where 1 . Table 3 contains the accu-

rate results we get also in this case and the last graph of Fig. 1 shows the approximated
solution 20

512 .

6 Proofs

Proof of Theorem 3.1 First, let us prove the stability of the formula, i.e., estimate
(3.20). We can write:

2
1 1

2
1 1

.

Table 3 Numerical results for Example 5.3

CPU time 20
750 0.5 20

750 0 20
750 0.5 20

750 0.9

16 0.36 1.914e 05 5.700e 05 6.142e 05 4.520e 04

32 0.45 2.288e 06 6.526e 06 7.033e 06 2.685e 05

64 0.75 2.639e 07 7.536e 07 7.980e 07 9.026e 06

128 1.38 6.095e 07 1.749e 06 1.845e 06 8.765e 06

256 2.68 2.383e 08 6.975e 08 7.242e 08 5.407e 07

512 6.44 2.914e 12 8.866e 12 8.802e 12 8.087e 13

700 10.8 4.538e 15 1.561e 14 1.632e 14 8.188e 16
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Then (3.20) follows taking into account the definition of given in (3.18), the first
assumption on the kernel, and by considering that in virtue on the assumptions on the
parameters of the weights, we have:

1

1

1
C . (6.1)

In order to prove (3.22), we can note that by (3.4), we have:

1

R C
1

2 1

so that by using the well-known estimate [10]:

2 1 1 2 1 2 1
2

2 2 2 2 1
2

1

we can write:

C
1

2 1
2

2 1
2

.

Then, taking into account that by the assumptions C and by
applying the Favard inequality [10]:

C
C C W (6.2)

once with the Jacobi weight 1, and then with , we deduce:

C

1

sup
1

.

Now, let us note that the functions defined in (3.18) can be rewritten as:

1

where the functions , defined as:

2

β
0

1

1

β
1

2 1

2
0 β

1

(6.3)
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are bounded functions such that:

sup
1

C
2

1 ... .

Hence, being for each 1

0

1

by using (3.21), we get:

sup
1
sup

1
C

0
2 2

C

and therefore

sup
1

C
W .

Proof of Corollary 3.1 Taking into account the error estimate (3.5), we have:

1

R

1

2
1

sup
1

2

2
.

Then, by applying the Leibnitz rule, we get:

2

2

2

0

2 1 2

2

0

2

2

2
2 sup

1

from which being [3] 2 C
22

2 2 , we get:

2

2

2

0

2

4

2

2
2

0

2

2

2

2 .

(6.4)
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By the definitions (3.18) of the kernels and taking into account the form of the
functions given in (6.3), we can write:

0

1

C
0

2 2
sup

1

1

and being [3]

sup
1

1

C
1

2
sup

1

1

22 sup
1

2

2

1

in virtue of the assumptions on the kernel , we have:

C 22 3
4 .

Thus, by replacing the above estimate in (6.4), we have:
2

2
C 2

2
2

from which we deduce

1

2

2 2
2 .

Therefore, by using the well-known Stirling formula:

2
1

12 2
1

12 1

and, taking into account that [10] 2 , we get the thesis.

Proof of Theorem 3.2 By (3.24), we can write:

E
1

1 1 1

E
1

.

The first term can be estimated by using (3.12) since (3.25) and (3.26) include (3.10)
and (3.11). Let us now estimate the last one. By using (3.22) with 1, we can
have:

C
1

1

W
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and thus, by applying the weighted Bernstein inequality (see, for instance [10, p.
170]) which leads to state that W C 1 we get:

C
1

.

Therefore,

1

1

1

C
1

log

being [10], in virtue of (3.10) and (3.11):

max
1

1

log (6.5)

and the proof is completed.

Proof of Proposition 4.1 First, let us note that the kernel given in (4.3) satisfies the
following conditions:

max
1

max
1

1.

(6.6)
By the definition (4.2), and taking into account the conditions on the parameters of
the weights, we have:

1

1

C max
1

from which, by using (6.6), we can deduce that the operator is continuous and
bounded. In order to prove its compactness, we remind that [18] if satisfies the
following condition:

lim sup
1

0 (6.7)

then is compact. We note that:

max
1

1

1
.

Hence, W for each , and by using the Favard inequality (6.2) with
instead of , in place of and in place of , we deduce (6.7).

Proof of Theorem 4.1. The goal of the proof is to prove that

1. tends to zero for any ;
2. The set of the operators is collectively compact.
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In fact, by condition 1, in virtue of the principle of uniform boundedness, we can
deduce that sup and, by condition 2, we can deduct that

tends to zero [1, Lemma 4.1.2]. Consequently, under all these conditions, we can
claim that for sufficiently large, the operator 1 exists and it is uniformly
bounded since:

1 1 1

1 1

i.e., the method is stable.
Condition 1 follows by Theorem 3.2. Condition 2 can be deducted by [6, Theorem

12.8] for the case 0. Concerning the general case, it is sufficient to prove
that [18]:

lim sup
1

0. (6.8)

To this end, let us introduce polynomials with 1 ... of degree
in each variable, and for any , let us define the univariate polynomial:

2
1 1 1

where we recall that 1 .

Then, in virtue of the definition (3.24), we can write:

2
1 1 1

2
1

max
1

1

max
1

1

from which by applying (6.1), (6.5), and taking into account the assumptions on the
parameters of the weights, we get:

C
2

log
1

max
1

.

The only point remaining is to estimate the quantity . To this end,
taking into account the definition of given in (3.18) and (6.6), by using the Favard
inequality (6.2), we get C i.e., (6.8).
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About the well-conditioning of the matrix , it is sufficient to prove that:
1 .

To this end, we can use the same arguments in [1, p. 113] only by replacing the usual
infinity norm with the weighted uniform norm of . Finally, estimate (4.7) follows
taking into account that:

1

and by applying Theorem 3.2 to the last term.

Acknowledgments The authors would like to thank the referees for the thorough review and the useful
comments which have helped improve the contents of the paper.

Funding information Luisa Fermo is partially supported by the research project “Algorithms for Approx-
imation with Applications [Acube], Fondazione di Sardegna - annualità 2017” and by the research
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