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Abstract
We investigate the techniques and ideas used in Shefi and Teboulle (SIAM J Optim
24(1), 269–297, 2014) in the convergence analysis of two proximal ADMM algo-
rithms for solving convex optimization problems involving compositions with linear
operators. Besides this, we formulate a variant of the ADMM algorithm that is able to
handle convex optimization problems involving an additional smooth function in its
objective, and which is evaluated through its gradient. Moreover, in each iteration, we
allow the use of variable metrics, while the investigations are carried out in the set-
ting of infinite-dimensional Hilbert spaces. This algorithmic scheme is investigated
from the point of view of its convergence properties.
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1 Introduction

One of the most popular numerical algorithms for solving optimization problems of
the form

inf
x∈Rn

{f (x) + g(Ax)}, (1)

where f : R
n → R := R ∪ {±∞} and g : R

m → R are proper, convex, lower
semicontinuous functions and A : Rn → R

m is a linear operator, is the alternating
direction method of multipliers (ADMM). Here, the spaces Rn and R

m are equipped
with their usual inner products and induced norms, which we both denote by 〈·, ·〉
and ‖ · ‖, respectively, as there is no risk of confusion.

By introducing an auxiliary variable z, one can rewrite (1) as

inf
(x,z)∈Rn×Rm

Ax−z=0

{f (x) + g(z)}. (2)

The Lagrangian associated with problem (2) is

l : Rn × R
m × R

m → R, l(x, z, y) = f (x) + g(z) + 〈y, Ax − z〉,
and we say that (x∗, z∗, y∗) ∈ R

n ×R
m ×R

m is a saddle point of the Lagrangian, if

l(x∗, z∗, y) ≤ l(x∗, z∗, y∗) ≤ l(x, z, y∗) ∀(x, z, y) ∈ R
n × R

m × R
m. (3)

It is known that (x∗, z∗, y∗) is a saddle point of l if and only if z∗ = Ax∗, (x∗, z∗)
is an optimal solution of (2), y∗ is an optimal solution of the Fenchel-Rockafellar
dual problem (see [3–5, 20, 30]) to (1)

sup
y∈Rm

{−f ∗(−AT y) − g∗(y)}, (4)

and the optimal objective values of (1) and (4) coincide. Notice that f ∗ and g∗ are the
conjugates of f and g, defined by f ∗(u) = supx∈Rn{〈u, x〉 − f (x)} for all u ∈ R

n

and g∗(y) = supz∈Rm{〈y, z〉 − g(z)} for all y ∈ R
m, respectively.

If (1) has an optimal solution and A(ri (domf )) ∩ ri domg = ∅, then the set of
saddle points of l is nonempty. Here, we denote by ri(S) the relative interior of a
convex set S, which is the interior of S relative to its affine hull.

For a fixed real number c > 0, we further consider the augmented Lagrangian
associated with problem (2), which is defined as

Lc : Rn ×R
m ×R

m → R, Lc(x, z, y) = f (x)+g(z)+〈y, Ax − z〉+ c

2
‖Ax − z‖2.

The ADMM algorithm reads:

1304 Numerical Algorithms (2021) 86:1303–1325



If A has full column rank, then the set of minimizers in (5) is a single-
ton, as is the set of minimizers in (6) without any further assumption, and the
sequence (xk, zk, yk)k≥0 generated by Algorithm 1 converges to a saddle point of
the Lagrangian l (see, for instance, [19]). The alternating direction method of mul-
tipliers was first introduced in [25] and [23]. Gabay has shown in [24] (see also
[19]) that ADMM is nothing else than the Douglas-Rachford algorithm applied to the
monotone inclusion problem

0 ∈ ∂(f ∗ ◦ (−AT ))(y) + ∂g∗(y)

For a function k : Rn → R, the set-valued operator defined by ∂k(x) := {u ∈ R
n :

k(t)− k(x) ≥ 〈u, t −x〉 ∀t ∈ Rn}, for k(x) ∈ R, and ∂k(x) := ∅, otherwise, denotes
its (convex) subdifferential.

One of the limitations of the ADMM algorithm comes from the presence of the
term Ax in the update rule of xk+1 (we refer to [14] for an approach to circumvent
the limitations of ADMM). While in (6) a proximal step for the function g is taken,
in (5), the function f and the operator A are not evaluated independently, which
makes the ADMM algorithm less attractive for implementations than the primal-
dual splitting algorithms (see, for instance, [8–10, 12, 13, 16, 29]). Despite of this
fact, the ADMM algorithm has been widely used for solving convex optimization
problems arising in real-life applications (see, for instance, [11, 17, 21]). For a ver-
sion of the ADMM algorithm with inertial and memory effects, we refer the reader
to [7].

In order to overcome the above-mentioned drawback of the classical ADMM
method and to increase its flexibility, the following so-called proximal alternating
direction proximal method of multipliers has been considered in [28] (see also [22,
26]):

Here, M1 ∈ R
n×n and M2 ∈ R

m×m are symmetric positive semidefinite matri-
ces and ‖u‖2

Mi
= 〈u, Miu〉 denotes the squared semi-norm induced by Mi , for

i ∈ {1, 2}.
Indeed, for M1 = M2 = 0, Algorithm 1 becomes the classical ADMM method,

while for M1 = μ1Id and M2 = μ2Id with μ1, μ2 > 0 and Id denoting the
corresponding matrix, it becomes the algorithm proposed and investigated in [18].
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Furthermore, if M1 = τ−1Id−cAT A with τ > 0 such that cτ‖A‖2 < 1 and M2 = 0,
then one can show that Algorithm 2 is equivalent to one of the primal-dual algorithms
formulated in [16].

The sequence (zk)k≥0 generated in Algorithm 2 is uniquely determined due to the
fact that the objective function in (9) is lower semicontinuous and strongly convex.
On the other hand, the set of minimizers in (8) is in general not a singleton and it
can be even empty. However, if one imposes that M1 +A∗A is positive definite, then
(xk)k≥0 will be uniquely determined, too.

Shefi and Teboulle provide in [28] in connection to Algorithm 2 an ergodic conver-
gence rate result for a primal-dual gap function formulated in terms of the Lagrangian
l, from which they deduce a global convergence rate result for the sequence of
function values (f (xk) + g(Axk))k≥0 to the optimal objective value of (1), when
g is Lipschitz continuous. Furthermore, they formulate a global convergence rate
result for the sequence (‖Axk − zk‖)k≥0 to 0. Finally, Shefi and Teboulle prove
the convergence of the sequence (xk, zk, yk)k≥0 to a saddle point of the Lagrangian
l, provided that either M1 = 0 and A has full column rank or M1 is positive
definite.

Algorithm 2 from [28] represents the starting point of our investigations. More
precisely, in this paper:

• We point out some flaws in the proof of a statement in [28], which is fundamental
for the derivation of the global convergence rate of (‖Axk − zk‖)k≥0 to 0 and of
the convergence of the sequence (xk, zk, yk)k≥0.

• We show how the statement in cause can be proved by using different
techniques.

• We formulate a variant of Algorithm 2 for solving convex optimization problems
in infinite-dimensional Hilbert spaces involving an additional smooth function
in their objective that we evaluate through its gradient and which allows in each
iteration the use of variable metrics.

• We prove an ergodic convergence rate result for this algorithm involving a
primal-dual gap function formulated in terms of the associated Lagrangian
l and a convergence result for the sequence of iterates to a saddle point
of l.

2 Fixing some results from [28] related to the convergence analysis
for Algorithm 2

In this section, we point out several flaws that have been made in [28] when
deriving a fundamental result for both the rate of convergence of the sequence
(‖Axk − zk‖)k≥0 to 0 and the convergence of the sequence (xk, zk, yk)k≥0 to
a saddle point of the Lagrangian l. We also show how these arguments can be
fixed by relying on some of the building blocks of the analysis we will carry out
in Section 3.

To proceed, we first recall some results from [28]. We start with a statement that
follows from the variational characterization of the minimizers of (8)–(9).
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Lemma 1 (see [28, Lemma 4.2]) Let (xk, zk, yk)k≥0 be a sequence generated by
Algorithm 2. Then, for all k ≥ 0 and for all (x, z, y) ∈ R

n × R
m × R

m it holds

l(xk+1, zk+1, y) ≤ l(x, z, yk+1) + c〈zk+1 − zk, A(x − xk+1)〉
+1

2

(
‖x−xk‖2

M1
−‖x−xk+1‖2

M1
+‖z−zk‖2

M2
−‖z−zk+1‖2

M2

)

+1

2

(
c−1‖y − yk‖2 − c−1‖y − yk+1‖2

)

−1

2

(
‖xk+1 − xk‖2

M1
+ ‖zk+1 − zk‖2

M2
+ c−1‖yk+1 − yk‖2

)
.

Furthermore, by invoking the monotonicity of the convex subdifferential of g, in
[28], the following estimation is derived.

Lemma 2 (see [28, Proposition 5.3(b)]) Let (xk, zk, yk)k≥0 be a sequence generated
by Algorithm 2. Then, for all k ≥ 1 and for all (x, z) ∈ R

n × R
m, it holds

c〈zk+1 − zk, A(x − xk+1)〉 ≤ c

2

(
‖z − zk‖2 − ‖z − zk+1‖2 + ‖Ax − z‖2

)

+1

2

(
‖zk−1 − zk‖2

M2
− ‖zk − zk+1‖2

M2

)
.

By taking (x, z, y) := (x∗, z∗, y∗) in Lemma 1, where (x∗, z∗, y∗) is a saddle
point of the Lagrangian l, and by using the inequality (see (3))

l(xk+1, zk+1, y∗) ≥ l(x∗, z∗, yk+1) ∀k ≥ 0,

and the estimation in Lemma 2, one easily obtains the following result.

Lemma 3 Let (x∗, z∗, y∗) be a saddle point of the Lagrangian l associated with (1),
M1, M2 be symmetric positive semidefinite matrices and c > 0. Let (xk, zk, yk)k≥0
be a sequence generated by Algorithm 1. Then, for all k ≥ 1, the following inequality
holds

‖xk+1 − xk‖2
M1

+ ‖zk+1 − zk‖2
M2

+ c−1‖yk+1 − yk‖2 (11)

+‖x∗ − xk+1‖2
M1

+ ‖z∗ − zk+1‖2
M2+cIm

+ c−1‖y∗ − yk+1‖2

+‖zk+1 − zk‖2
M2

(12)

≤‖x∗ − xk‖2
M1

+ ‖z∗ − zk‖2
M2+cIm

+ c−1‖y∗ − yk‖2 + ‖zk − zk−1‖2
M2

. (13)

By using the notations from [28, Section 5.3], namely

vk+1 := ‖xk+1 − xk‖2
M1

+ ‖zk+1 − zk‖2
M2+cId + c−1‖yk+1 − yk‖2 ∀k ≥ 0

and

uk := ‖x∗ − xk‖2
M1

+ ‖z∗ − zk‖2
M2+cId + c−1‖y∗ − yk‖2 + ‖zk − zk−1‖2

M2
∀k ≥ 1,

the inequality in Lemma 3 can be equivalently written as

vk+1 − c‖zk+1 − zk‖2 ≤ uk − uk+1 ∀k ≥ 1. (14)
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In [28, Lemma 5.1, (5.37)], instead of (14), it is stated that

vk+1 ≤ uk − uk+1 ∀k ≥ 1, (15)

however, its proof, which follows the argument that goes through Lemma 1, Lemma
2, and Lemma 3, is not correct, since it leads to (14) instead of (15).

Since the sequence (vk)k≥0 is monotonically decreasing, statement (15), in com-
bination with straightforward telescoping arguments, leads to the fact that (vk)k≥0
converges to zero with a rate of convergence of O(1/k). This implies that (‖Axk −
zk‖)k≥0 converges to zero with a rate of convergence of O(1/

√
k) (see [28, Theorem

5.4]). In addition, statement (15) is used in [28, Theorem 5.6] to prove the conver-
gence of the sequence (xk, zk, yk)k≥0 to a saddle point of the Lagrangian l. However,
the techniques used in [28], involving function values and the saddle point inequality,
do not lead to (15), but to the weaker inequality (14).

In the following, we will show that one can in fact derive (15), however, to this
end one needs to use different techniques. These are described in detail in the next
section; here, we will just show how do they lead to (15). We would like to notice
that, differently from [28], in our analysis we will only use properties related to the
fact that the convex subdifferential of a proper, convex, and lower semicontinuous
function is a maximally monotone set-valued operator.

We start our analysis with relation (40), which in case h = 0, L = 0, Mk
1 = M1 �

0, and Mk
2 = M2 � 0 for all k ≥ 0 (see the setting of Section 3) reads

c‖zk − Axk+1‖2 + ‖xk − xk+1‖2
M1

+ ‖zk − zk+1‖2
M2

≤ ‖xk − x∗‖2
M1

+ ‖zk − Ax∗‖2
M2+cId + 1

c
‖yk − y∗‖2

−
(

‖xk+1 − x∗‖2
M1

+ ‖zk+1 − Ax∗‖2
M2+cId + 1

c
‖yk+1 − y∗‖2

)
. (16)

for all k ≥ 0. Using that

c‖zk − Axk+1‖2 = c

∥∥∥∥zk − zk+1 − 1

c
(yk+1 − yk)

∥∥∥∥
2

= c‖zk − zk+1‖2 + 1

c
‖yk+1 − yk‖2 + 2〈zk+1 − zk, yk+1 − yk〉,

we obtain from (16) that

2〈zk+1−zk, yk+1−yk〉 + ‖xk−xk+1‖2
M1

+‖zk−zk+1‖2
M2+cId+ 1

c
‖yk+1−yk‖2

≤ ‖xk − x∗‖2
M1

+ ‖zk − Ax∗‖2
M2+cId + 1

c
‖yk − y∗‖2

−
(

‖xk+1 − x∗‖2
M1

+ ‖zk+1 − Ax∗‖2
M2+cId + 1

c
‖yk+1 − y∗‖2

)
(17)

for all k ≥ 0. By taking into account that, according to (54),

〈zk+1 − zk, yk+1 − yk〉 ≥ 1
2‖zk+1 − zk‖2

M2
− 1

2‖zk − zk−1‖2
M2
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for all k ≥ 1, it yields

‖xk − xk+1‖2
M1

+ ‖zk − zk+1‖2
M2+cId + 1

c
‖yk+1 − yk‖2

≤ ‖xk − x∗‖2
M1

+ ‖zk − Ax∗‖2
M2+cId + 1

c
‖yk − y∗‖2 + ‖zk − zk−1‖2

M2

−
(

‖xk+1−x∗‖2
M1

+‖zk+1−Ax∗‖2
M2+cId + 1

c
‖yk+1−y∗‖2+‖zk+1 − zk‖2

M2

)
,

which is nothing else than (15).
From here, by using that vk+1 ≤ vk for all k ≥ 0 and straightforward telescoping

arguments, it follows immediately that (‖Axk −zk‖)k≥0 converges to zero with a rate
of O(1/

√
k).

We will see in the following section that the inequality (40) will play an essential
role also in the convergence analysis of the sequence of iterates. When applied to
the particular context of the optimization problem (1) and Algorithm 2, Theorem
12 provides a rigorous formulation and a correct and clear proof of the convergence
result stated in [28, Theorem 5.6].

3 A variant of the ADMM algorithm in the presence of a smooth
function and by involving variable metrics

In this section, we propose an extension of the ADMM algorithm considered in
[28] that we also investigate from the perspective of its convergence properties. This
extension is twofold: on the one hand, we consider an additional convex differen-
tiable function in the objective of the optimization problem (1), which is evaluated
in the algorithm through its gradient, and on the other hand, instead of fixed matri-
ces M1 and M2, we use different matrices in each iteration. Furthermore, we change
the setting to infinite-dimensional Hilbert spaces. We start by describing the problem
under investigation:

Problem 4 Let H and G be real Hilbert spaces, f : H → R, g : G → R be
proper, convex, and lower semicontinuous functions, h : H → R a convex and
Fréchet differentiable function with L-Lipschitz continuous gradient (where L ≥ 0)
and A : H → G a linear continuous operator. The Lagrangian associated with the
convex optimization problem

inf
x∈H

{f (x) + h(x) + g(Ax)} (18)

is

l : H × G × G → R, l(x, z, y) = f (x) + h(x) + g(z) + 〈y, Ax − z〉.
We say that (x∗, z∗, y∗) ∈ H × G × G is a saddle point of the Lagrangian l, if the
following inequalities hold

l(x∗, z∗, y) ≤ l(x∗, z∗, y∗) ≤ l(x, z, y∗) ∀(x, z, y) ∈ H × G × G. (19)
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Notice that (x∗, z∗, y∗) is a saddle point if and only if z∗ = Ax∗, x∗ is an optimal
solution of (18), y∗ is an optimal solution of the Fenchel-Rockafellar dual problem
to (18)

(D′) sup
y∈G

{−(f ∗
Boxh∗)(−A∗y) − g∗(y)}, (20)

and the optimal objective values of (18) and (20) coincide, where A∗ : G → H is the
adjoint operator defined by 〈A∗v, x〉 = 〈v, Ax〉 for all (v, x) ∈ G × H. The infimal
convolution f ∗�h∗ : H → R is defined by (f ∗�h∗)(x) = infu∈H{f ∗(u) + h∗(x −
u)} for all x ∈ H.

For the reader’s convenience, we discuss some situations which lead to the exis-
tence of saddle points. This is for instance the case when (18) has an optimal solution
and the Attouch-Brézis qualification condition

0 ∈ sri(domg − A(domf )) (21)

holds. Here, for a convex set S ⊆ G, we denote by

sriS := {x ∈ S : ∪λ>0λ(S − x) is a closed linear subspace of G}
its strong relative interior. Notice that the classical interior is contained in the strong
relative interior: int S ⊆ sriS; however, in general, this inclusion may be strict. If G
is finite-dimensional, then for a nonempty and convex set S ⊆ G, one has sriS = riS.
Considering again the infinite-dimensional setting, we remark that condition (21) is
fulfilled if there exists x′ ∈ domf such that Ax′ ∈ domg and g is continuous at Ax′.

The optimality conditions for the primal-dual pair of optimization problems (18)-
(20) read

− A∗y − ∇h(x) ∈ ∂f (x) and y ∈ ∂g(Ax). (22)

This means that if (18) has an optimal solution x∗ ∈ H and the qualification condition
(21) is fulfilled, then there exists y∗ ∈ G, an optimal solution of (20), such that (22)
holds and (x∗, Ax∗, y∗) is a saddle point of the Lagrangian l. Conversely, if the pair
(x∗, y∗) ∈ H × G satisfies relation (22), then x∗ is an optimal solution to (18), y∗ is
an optimal solution to (20) and (x∗, Ax∗, y∗) is a saddle point of the Lagrangian l.
For further considerations on convex duality, we invite the reader to consult [3–5, 20,
30].

Furthermore, we discuss some conditions ensuring that (18) has an optimal solu-
tion. Suppose that (18) is feasible, which means that its optimal objective value is not
+∞. The existence of optimal solutions to (18) is guaranteed if, for instance, f + h

is coercive (that is lim‖x‖→∞(f + h)(x) = +∞) and g is bounded from below.
Indeed, under these circumstances, the objective function of (18) is coercive and the
statement follows via [3, Corollary 11.15]. On the other hand, if f + h is strongly
convex, then the objective function of (18) is strongly convex, too, thus (18) has a
unique optimal solution (see [3, Corollary 11.16]).

Some more notations are in order before we state the algorithm for solving Prob-
lem 4. We denote by S+(H) the family of operators U : H → H which are linear,
continuous, self-adjoint, and positive semidefinite. For U ∈ S+(H), we consider the
semi-norm defined by

‖x‖2
U = 〈x, Ux〉 ∀x ∈ H.
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We also make use of the Loewner partial ordering defined for U1, U2 ∈ S+(H) by

U1 � U2 ⇔ ‖x‖2
U1

≥ ‖x‖2
U2

∀x ∈ H.

Finally, for α > 0, we set

Pα(H) = {U ∈ S+(H) : U � αId}.

Remark 5 (i) If h = 0 and Mk
1 = M1, Mk

2 = M2 are constant in each iteration,
then Algorithm 3 becomes Algorithm 2, which has been investigated in [28].

(ii) In order to ensure that the sequence (xk)k≥0 is uniquely determined one can
assume that for all k ≥ 0, there exists αk

1 > 0 such that Mk
1 +cA∗A ∈ Pαk

1
(H).

This is in particular the case when

∃α > 0 such that A∗A ∈ Pα(H). (26)

Relying on [3, Fact 2.19], on can see that (26) holds if and only if A is injective
and ranA∗ is closed. Hence, in finite-dimensional spaces, namely, if H = R

n

and G = R
m, with m ≥ n ≥ 1, (26) is nothing else than saying that A has full

column rank.
(iii) One of the pioneering works addressing proximal ADMM algorithms in

Hilbert spaces, in the particular case when h = 0 and Mk
1 and Mk

2 are equal for
all k ≥ 0 to the corresponding identity operators, is the paper by Attouch and
Soueycatt [2]. We also refer the reader to [22, 26] for versions of the proximal
ADMM algorithm stated in finite-dimensional spaces and with proximal terms
induced by constant linear operators.

Remark 6 We show that the particular choices Mk
1 = 1

τk
Id − cA∗A, for τk > 0,

and Mk
2 = 0 for all k ≥ 0 lead to a primal-dual algorithm introduced in [16]. Here,

Id : H → H denotes the identity operator on H. Let k ≥ 0 be fixed. The optimality
condition for (23) reads (for xk+2):

0∈ ∂f (xk+2) + cA∗(Axk+2 − zk+1+ c−1yk+1) + Mk+1
1 (xk+2−xk+1) + ∇h(xk+1)

=∂f (xk+2) + (cA∗A + Mk+1
1 )xk+2 + cA∗(−zk+1 + c−1yk+1) − Mk+1

1 xk+1

+∇h(xk+1).
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From (25), we have

cA∗(−zk+1 + c−1yk+1) = A∗(2yk+1 − yk) − cA∗Axk+1;
hence,

0 ∈ ∂f (xk+2)+(cA∗A+Mk+1
1 )(xk+2 −xk+1)+A∗(2yk+1 −yk)+∇h(xk+1). (27)

By taking into account the special choice of Mk
1 , we obtain

0 ∈ ∂f (xk+2) + 1

τk+1

(
xk+2 − xk+1

)
+ A∗(2yk+1 − yk) + ∇h(xk+1);

thus,

xk+2 = (Id + τk+1∂f )−1
(
xk+1 − τk+1∇h(xk+1) − τk+1A

∗(2yk+1 − yk)
)

= arg min
x∈H

{
f (x) + 1

2τk+1

∥∥∥x −
(
xk+1 − τk+1∇h(xk+1)

−τk+1A
∗(2yk+1 − yk)

)∥∥∥
2
}

. (28)

Furthermore, from the optimality condition for (24), we obtain

c(Axk+1 − zk+1 + c−1yk) + Mk
2 (zk − zk+1) ∈ ∂g(zk+1), (29)

which combined with (25) gives

yk+1 + Mk
2 (zk − zk+1) ∈ ∂g(zk+1). (30)

Using that Mk
2 = 0 and again (25), it further follows

0 ∈ ∂g∗(yk+1) − zk+1

= ∂g∗(yk+1) + c−1(yk+1 − yk − cAxk+1),

which is equivalent to

yk+1 = (Id + c∂g∗)−1
(
yk + cAxk+1

)

= arg min
z∈G

{
g∗(z) + 1

2c

∥∥∥z −
(
yk + cAxk+1

)∥∥∥
2
}

. (31)

The iterative scheme obtained in (31) and (28) generates, for a given starting point
(x1, y0) ∈ H × G and c > 0, the sequence (xk, yk)k≥1 for all k ≥ 0 as follows

yk+1 = arg min
z∈G

{
g∗(z) + 1

2c

∥∥∥z −
(
yk + cAxk+1

)∥∥∥
2
}

xk+2 = arg min
x∈H

{
f (x) + 1

2τk+1

∥∥∥x −
(
xk+1 − τk+1∇h(xk+1)

−τk+1A
∗(2yk+1 − yk)

)∥∥∥
2
}

.

For τk = τ > 0 for all k ≥ 1, one recovers a primal-dual algorithm from [16]
that has been investigated under the assumption 1

τ
− c‖A‖2 > L

2 (see Algorithm
3.2 and Theorem 3.1 in [16]). We invite the reader to consult [8, 9, 13, 29] for more
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insights into primal-dual algorithms and their highlights. Primal-dual algorithms with
dynamic step sizes have been investigated in [13] and [9], where it has been shown
that clever strategies in the choice of the step sizes can improve the convergence
behavior.

3.1 Ergodic convergence rates for the primal-dual gap

In this section, we will provide a convergence rate result for a primal-dual gap
function formulated in terms of the associated Lagrangian l. We start by proving a
technical statement (see also [28]).

Lemma 7 In the context of Problem 4, let (xk, zk, yk)k≥0 be a sequence generated
by Algorithm 3. Then, for all k ≥ 0 and all (x, z, y) ∈ H × G × G, the following
inequality holds

l(xk+1, zk+1, y) ≤ l(x, z, yk+1) + c〈zk+1 − zk, A(x − xk+1)〉
+ 1

2

(
‖x − xk‖2

Mk
1

+ ‖z − zk‖2
Mk

2
+ c−1‖y − yk‖2

)

− 1

2

(
‖x − xk+1‖2

Mk
1

+ ‖z − zk+1‖2
Mk

2
+ c−1‖y − yk+1‖2

)

− 1

2

(
‖xk+1 − xk‖2

Mk
1

− L‖xk+1 − xk‖2 + ‖zk+1 − zk‖2
Mk

2

+c−1‖yk+1 − yk‖2
)

.

Moreover, we have for all k ≥ 0

c〈zk+1 − zk, A(x −xk+1)〉 ≤ c

2

(
‖Ax − zk‖2 − ‖Ax − zk+1‖2

)
+ 1

2c
‖yk+1 −yk‖2.

Proof We fix k ≥ 0 and (x, z, y) ∈ H × G × G. Writing the optimality conditions
for (23), we obtain

− ∇h(xk) + cA∗(zk − c−1yk − Axk+1) + Mk
1 (xk − xk+1) ∈ ∂f (xk+1). (32)

From the definition of the convex subdifferential, we derive

f (xk+1) − f (x) ≤ 〈∇h(xk) + cA∗(−zk + c−1yk + Axk+1)

+Mk
1 (−xk + xk+1), x − xk+1〉

= 〈∇h(xk), x − xk+1〉 + 〈yk+1, A(x − xk+1)〉
−c〈zk − zk+1, A(x − xk+1)〉
+〈Mk

1 (xk+1 − xk), x − xk+1〉, (33)

where for the last equality, we used (25).
Furthermore, we claim that

h(xk+1) − h(x) ≤ −〈∇h(xk), x − xk+1〉 + L

2
‖xk+1 − xk‖2. (34)
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Indeed, this follows by applying the convexity of h and the descent lemma (see [3,
Theorem 18.15 (iii)]):

h(x) − h(xk+1) − 〈∇h(xk), x − xk+1〉
≥ h(xk) + 〈∇h(xk), x − xk〉 − h(xk+1) − 〈∇h(xk), x − xk+1〉
= h(xk) − h(xk+1) + 〈∇h(xk), xk+1 − xk〉
≥ −L

2
‖xk+1 − xk‖2.

By combining (33) and (34), we obtain

(f + h)(xk+1) ≤ (f + h)(x) + 〈yk+1, A(x−xk+1)〉 − c〈zk − zk+1, A(x−xk+1)〉
+1

2
‖x − xk‖2

Mk
1

− 1

2
‖x − xk+1‖2

Mk
1

− 1

2
‖xk+1 − xk‖2

Mk
1

+ L

2
‖xk+1 − xk‖2. (35)

From the optimality condition for (24), we obtain

c(Axk+1 − zk+1 + c−1yk) + Mk
2 (zk − zk+1) ∈ ∂g(zk+1), (36)

which, combined with (25), gives

yk+1 + Mk
2 (zk − zk+1) ∈ ∂g(zk+1). (37)

From here, we derive the inequality

g(zk+1) − g(z) ≤ 〈−yk+1 + Mk
2 (zk+1 − zk), z − zk+1〉

= −〈yk+1, z − zk+1〉 + 1

2
‖z − zk‖2

Mk
2

− 1

2
‖z − zk+1‖2

Mk
2

−1

2
‖zk+1 − zk‖2

Mk
2
. (38)

The first statement of the lemma follows by combining the inequalities (35) and (38)
with the identity (see (25))

〈y, Axk+1 − zk+1〉 = 〈yk+1, Axk+1 − zk+1〉
+ 1

2c

(
‖y − yk‖2 − ‖y − yk+1‖2 − ‖yk+1 − yk‖2

)
.

The second statement follows easily from the arithmetic-geometric mean inequality
in Hilbert spaces (see [28, Proposition 5.3(a)]).

A direct consequence of the two inequalities in Lemma 7 is the following
result.

Lemma 8 In the context of Problem 4, assume that Mk
1 − LId ∈ S+(H), Mk

1 �
Mk+1

1 , Mk
2 ∈ S+(G), Mk

2 � Mk+1
2 for all k ≥ 0, and let (xk, zk, yk)k≥0 be the
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sequence generated by Algorithm 3. Then, for all k ≥ 0 and all (x, z, y) ∈ H×G×G
the following inequality holds

l(xk+1, zk+1, y) ≤ l(x, z, yk+1) + c

2

(
‖Ax − zk‖2 − ‖Ax − zk+1‖2

)

+1

2

(
‖x − xk‖2

Mk
1

− ‖x − xk+1‖2
Mk+1

1

+‖z − zk‖2
Mk

2
− ‖z − zk+1‖2

Mk+1
2

)

+ 1

2c

(
‖y − yk‖2 − ‖y − yk+1‖2

)
.

We can now state the main result of this subsection.

Theorem 9 In the context of Problem 4, assume that Mk
1 − LId ∈ S+(H), Mk

1 �
Mk+1

1 , Mk
2 ∈ S+(G), Mk

2 � Mk+1
2 for all k ≥ 0, and let (xk, zk, yk)k≥0 be the

sequence generated by Algorithm 3. For all k ≥ 1 define the ergodic sequences

xk := 1

k

k∑
i=1

xi, zk := 1

k

k∑
i=1

zi, yk := 1

k

k∑
i=1

yi .

Then for all k ≥ 1 and all (x, z, y) ∈ H × G × G it holds

l(xk, zk, y) − l(x, z, yk) ≤ γ (x, z, y)

k
,

where γ (x, z, y) := c
2‖Ax −z0‖2 + 1

2

(
‖x − x0‖2

M0
1

+ ‖z − z0‖2
M0

2

)
+ 1

2c
‖y −y0‖2.

Proof We fix k ≥ 1 and (x, z, y) ∈ H × G × G. Summing up the inequalities in
Lemma 8 for i = 0, ..., k − 1 and using classical arguments for telescoping sums, we
obtain

k−1∑
i=0

l(xk+1, zk+1, y) ≤
k−1∑
i=0

l(x, z, yk+1) + γ (x, z, y).

Since l is convex in (x, z) and linear in y, the conclusion follows from the definition
of the ergodic sequences.

Remark 10 Let (x∗, z∗, y∗) be a saddle point for the Lagrangian l. By taking
(x, z, y) := (x∗, z∗, y∗) in the above theorem it yields

(f + h)(xk) + g(zk) + 〈y∗, Axk − zk〉 − (
f (x∗) + h(x∗) + g(Ax∗)

)

≤ γ (x∗, z∗, y∗)
k

∀k ≥ 1,

where f (x∗) + h(x∗) + g(Ax∗) is the optimal objective value of the problem
(18). Hence, if we suppose that the set of optimal solutions of the dual prob-
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lem (20) is contained in a bounded set, there exists R > 0 such that for
all k ≥ 1

(f + h)(xk) + g(zk) + R‖Axk − zk‖ − (
f (x∗) + h(x∗) + g(Ax∗)

)

≤ 1

k

(
c

2
‖Ax∗ − z0‖2 + 1

2
‖x∗ − x0‖2

M0
1

+ 1

2
‖z∗ − z0‖2

M0
2

+ 1

c
(R2 + ‖y0‖2)

)
.

The set of dual optimal solutions of (20) is equal to the convex subdifferential of
the infimal value function of the problem (18)

ψ : G → R, ψ(y) = inf
x∈H

(f (x) + h(x) + g(Ax + y)) ,

at 0. This set is weakly compact, thus bounded, if 0 ∈ int(domψ) = int(A(domf ) −
domg) (see [3, 5, 30]).

3.2 Convergence of the sequence of generated iterates

In this subsection, we will address the convergence of the sequence of iterates gen-
erated by Algorithm 3 (see also [6, Theorem 7]). One of the important tools for the
proof of the convergence result will be [15, Theorem 3.3], which we recall below.

Lemma 11 (see [15, Theorem 3.3]) Let S be a nonempty subset of H and (xk)k≥0 a
sequence in H. Let α > 0 and Wk ∈ Pα(H) be such that Wk � Wk+1 for all k ≥ 0.
Assume that:

(i) For all z ∈ S and for all k ≥ 0: ‖xk+1 − z‖Wk+1 ≤ ‖xk − z‖Wk .
(ii) Every weak sequential cluster point of (xk)k≥0 belongs to S.

Then, (xk)k≥0 converges weakly to an element in S.

The proof of the convergence result relies on techniques specific to monotone
operator theory and does not make use of the values of the objective function or of the
Lagrangian l. This makes it different from the proofs in [28] and from the majority of
other conventional convergence proofs for ADMM methods. To the few exceptions
belong [2] and [19].

Theorem 12 In the context of Problem 4, assume that the set of saddle points of
the Lagrangian l is nonempty and that Mk

1 − L
2 Id ∈ S+(H), Mk

1 � Mk+1
1 , Mk

2 ∈
S+(G), Mk

2 � Mk+1
2 for all k ≥ 0, and let (xk, zk, yk)k≥0 be the sequence generated

by Algorithm 7. If one of the following assumptions

(I) There exists α1 > 0 such that Mk
1 − L

2 Id ∈ Pα1(H) for all k ≥ 0.
(II) There exists α, α2 > 0 such thatMk

1 − L
2 Id+A∗A ∈ Pα(H) andMk

2 ∈ Pα2(G)

for all k ≥ 0.
(III) There exists α > 0 such that Mk

1 − L
2 Id+A∗A ∈ Pα(H) and 2Mk+1

2 � Mk
2 �

Mk+1
2 for all k ≥ 0.
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is fulfilled, then (xk, zk, yk)k≥0 converges weakly to a saddle point of the Lagrangian
l. This means that (xk)k≥0 converges weakly to an optimal solution of problem (18),
and (yk)k≥0 converges weakly to an optimal solution of its dual problem (20).

Proof Let S ⊆ H×G×G denote the set of the saddle points of the Lagrangian l and
(x∗, z∗, y∗) be a fixed element in S. Then, z∗ = Ax∗ and the optimality conditions
hold

−A∗y∗ − ∇h(x∗) ∈ ∂f (x∗), y∗ ∈ ∂g(Ax∗).
Let k ≥ 0 be fixed. Taking into account (32), (36) and the monotonicity of ∂f and
∂g, we obtain

〈cA∗(zk−Axk+1−c−1yk)+Mk
1 (xk−xk+1)−∇h(xk)+A∗y∗+∇h(x∗), xk+1−x∗〉≥0

and

〈c(Axk+1 − zk+1 + c−1yk) + Mk
2 (zk − zk+1) − y∗, zk+1 − Ax∗〉 ≥ 0.

We consider first the case L > 0. By the Baillon-Haddad Theorem (see [3, Corollary
18.16]), the gradient of h is L−1-cocoercive; hence, the following inequality holds

〈∇h(x∗) − ∇h(xk), x∗ − xk〉 ≥ L−1‖∇h(x∗) − ∇h(xk)‖2.

Summing up the three inequalities obtained above, we get

c〈zk − Axk+1, Axk+1 − Ax∗〉 + 〈y∗ − yk, Axk+1 − Ax∗〉
+〈∇h(x∗) − ∇h(xk), xk+1 − x∗〉 + 〈Mk

1 (xk − xk+1), xk+1 − x∗〉
+c〈Axk+1 − zk+1, zk+1 − Ax∗〉 + 〈yk − y∗, zk+1 − Ax∗〉
+〈Mk

2 (zk − zk+1), zk+1 − Ax∗〉 + 〈∇h(x∗) − ∇h(xk), x∗ − xk〉
−L−1‖∇h(x∗) − ∇h(xk)‖2 ≥ 0.

Furthermore, by taking into account (25), it holds

x〈y∗ − yk, Axk+1 − Ax∗〉 + 〈yk − y∗, zk+1 − Ax∗〉 = 〈y∗ − yk, Axk+1 − zk+1〉
= c−1〈y∗ − yk, yk+1 − yk〉.

By using some expressions of the inner products in terms of norms, we obtain

c

2

(
‖zk − Ax∗‖2 − ‖zk − Axk+1‖2 − ‖Axk+1 − Ax∗‖2

)

+ c

2

(
‖Axk+1 − Ax∗‖2 − ‖Axk+1 − zk+1‖2 − ‖zk+1 − Ax∗‖2

)

+ 1

2c

(
‖y∗ − yk‖2 + ‖yk+1 − yk‖2 − ‖yk+1 − y∗‖2

)

+1

2

(
‖xk − x∗‖2

Mk
1

− ‖xk − xk+1‖2
Mk

1
− ‖xk+1 − x∗‖2

Mk
1

)

+1

2

(
‖zk − Ax∗‖2

Mk
2

− ‖zk − zk+1‖2
Mk

2
− ‖zk+1 − Ax∗‖2

Mk
2

)

+〈∇h(x∗) − ∇h(xk), xk+1 − xk〉 − L−1‖∇h(x∗) − ∇h(xk)‖2 ≥ 0.
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By using again relation (25) for expressing Axk+1 − zk+1 and by taking into account
that

〈∇h(x∗) − ∇h(xk), xk+1 − xk〉 − L−1‖∇h(x∗) − ∇h(xk)‖2

= −L

∥∥∥∥L−1
(
∇h(x∗) − ∇h(xk)

)
+ 1

2

(
xk − xk+1

)∥∥∥∥
2

+ L

4
‖xk − xk+1‖2,

it yields

1

2
‖xk+1 − x∗‖2

Mk
1

+ 1

2
‖zk+1 − Ax∗‖2

Mk
2 +cId

+ 1

2c
‖yk+1 − y∗‖2

≤ 1

2
‖xk − x∗‖2

Mk
1

+ 1

2
‖zk − Ax∗‖2

Mk
2 +cId

+ 1

2c
‖yk − y∗‖2

− c

2
‖zk − Axk+1‖2 − 1

2
‖xk − xk+1‖2

Mk
1

− 1

2
‖zk − zk+1‖2

Mk
2

−L

∥∥∥∥L−1
(
∇h(x∗) − ∇h(xk)

)
+ 1

2

(
xk − xk+1

)∥∥∥∥
2

+ L

4
‖xk − xk+1‖2

and from here, by using the monotonicity assumptions on (Mk
1 )k≥0 and (Mk

2 )k≥0, we
finally get

1

2
‖xk+1 − x∗‖2

Mk+1
1

+ 1

2
‖zk+1 − Ax∗‖2

Mk+1
2 +cId

+ 1

2c
‖yk+1 − y∗‖2

≤ 1

2
‖xk − x∗‖2

Mk
1

+ 1

2
‖zk − Ax∗‖2

Mk
2 +cId

+ 1

2c
‖yk − y∗‖2

− c

2
‖zk − Axk+1‖2 − 1

2
‖xk − xk+1‖2

Mk
1 − L

2 Id
− 1

2
‖zk − zk+1‖2

Mk
2

−L

∥∥∥∥L−1
(
∇h(x∗) − ∇h(xk)

)
+ 1

2

(
xk − xk+1

)∥∥∥∥
2

. (39)

In case L = 0, similar arguments lead to the inequality

1

2
‖xk+1 − x∗‖2

Mk+1
1

+ 1

2
‖zk+1 − Ax∗‖2

Mk+1
2 +cId

+ 1

2c
‖yk+1 − y∗‖2

≤ 1

2
‖xk − x∗‖2

Mk
1

+ 1

2
‖zk − Ax∗‖2

Mk
2 +cId

+ 1

2c
‖yk − y∗‖2

− c

2
‖zk − Axk+1‖2 − 1

2
‖xk − xk+1‖2

Mk
1

− 1

2
‖zk − zk+1‖2

Mk
2
. (40)

It is easy to see, by using arguments invoking telescoping sums, that, in both cases,
(39) and (40) yield

∑
k≥0

‖zk − Axk+1‖2 < +∞,
∑
k≥0

‖xk − xk+1‖2
Mk

1 − L
2 Id

< +∞,

∑
k≥0

‖zk − zk+1‖2
Mk

2
< +∞. (41)

The case when Assumption (I) is valid.
By neglecting the negative terms from the right-hand side of both (39) and (40),

it follows that the first assumption in Lemma 11 holds, when applied in the product
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space H×G×G, for the sequence (xk, zk, yk)k≥0, for Wk := (Mk
1 , Mk

2 +cId, c−1Id)

for k ≥ 0, and for S ⊆ H × G × G the set of saddle points of the Lagrangian l.
From (41), we get

xk − xk+1 → 0 (k → +∞), (42)

since Mk
1 − L

2 Id ∈ Pα1(H) for all k ≥ 0 with α1 > 0, and

zk − Axk+1 → 0 (k → +∞). (43)

A direct consequence of (42) and (43) is

zk − zk+1 → 0 (k → +∞). (44)

From (25), (43), and (44), we derive

yk − yk+1 → 0 (k → +∞). (45)

The relations (42)–(45) will play an essential role in the verification of the second
assumption in Lemma 11. Let (x, z, y) ∈ H×G×G be such that there exists (kn)n≥0,
kn → +∞ (as n → +∞), and (xkn, zkn, ykn) converges weakly to (x, z, y) (as
n → +∞).

From (42), we obtain that (Axkn+1)n∈N converges weakly to Ax (as n → +∞),
which combined with (43) yields z = Ax. We use now the following notations for
all n ≥ 0

a∗
n := cA∗(zkn − Axkn+1 − c−1ykn) + M

kn

1 (xkn − xkn+1) + ∇h(xkn+1) − ∇h(xkn)

an := xkn+1

b∗
n := ykn+1 + M

kn

2 (zkn − zkn+1)

bn := zkn+1.

From (32) and (37), we have for all n ≥ 0

a∗
n ∈ ∂(f + h)(an) (46)

and
b∗
n ∈ ∂g(bn). (47)

Furthermore, from (42), we have

an converges weakly to x (as n → +∞). (48)

From (45) and (44), we obtain

b∗
n converges weakly to y (as n → +∞). (49)

Moreover, (25) and (45) yield

Aan − bn converges strongly to 0 (as n → +∞). (50)

Finally, we have

a∗
n + A∗b∗

n = cA∗(zkn − Axkn+1) + A∗(ykn+1 − ykn) + M
kn

1 (xkn − xkn+1)

+A∗Mkn

2 (zkn − zkn+1) + ∇h(xkn+1) − ∇h(xkn).

By using the fact that ∇h is Lipschitz continuous, from (42)–(45), we get

a∗
n + A∗b∗

n converges strongly to 0 (as n → +∞). (51)
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Taking into account the relations (46)–(51) and applying [1, Proposition 2.4] to the
operators ∂(f + h) and ∂g, we conclude that

−A∗y ∈ ∂(f + h)(x) = ∂f (x) + ∇h(x) and y ∈ ∂g(Ax);
hence, (x, z, y) = (x, Ax, y) is a saddle point of the Lagrangian l; thus, the second
assumption of the Lemma 11 is verified, too. In conclusion, (xk, zk, yk)k≥0 converges
weakly to a saddle point of the Lagrangian l.

The case when Assumption (II) is valid .
We show that the relations (42)–(45) are fulfilled also in this case. Indeed,

Assumption (II) allows to derive from (41) that (43) and (44) hold. From (25), (43),
and (44), we obtain (45). Finally, the inequalities

α‖xk+1 − xk‖2 ≤ ‖xk+1 − xk‖2
Mk

1 − L
2 Id

+ ‖Axk+1 − Axk‖2

≤ ‖xk+1 − xk‖2
Mk

1 − L
2 Id

+ 2‖Axk+1 − zk‖2 + 2‖zk − Axk‖2 ∀k ≥ 0

yield (42).
On the other hand, notice that both (39) and (40) yield

∃ lim
k→+∞

(
1

2
‖xk − x∗‖2

Mk
1

+ 1

2
‖zk − z∗‖2

Mk
2 +cId

+ 1

2c
‖yk − y∗‖2

)
; (52)

hence, (yk)k≥0 and (zk)k≥0 are bounded. Combining this with (25) and the condi-
tion imposed on Mk

1 − L
2 Id + A∗A, we derive that (xk)k≥0 is bounded, too. Hence,

there exists a weakly convergent subsequence of (xk, zk, yk)k≥0. By using the same
arguments as in the proof of (I), it follows that every weak sequential cluster point of
(xk, zk, yk)k≥0 is a saddle point of the Lagrangian l.

Now, we show that the set of weak sequential cluster points of (xk, zk, yk)k≥0 is
a singleton. Let (x1, z1, y1), (x2, z2, y2) be two such weak sequential cluster points.
Then, there exist (kp)p≥0, (kq)q≥0, kp → +∞ (as p → +∞), kq → +∞ (as
q → +∞), a subsequence (xkp , zkp , ykp )p≥0 which converges weakly to (x1, z1, y1)

(as p → +∞), and a subsequence (xkq , zkq , ykq )q≥0 which converges weakly to
(x2, z2, y2) (as q → +∞). As seen, (x1, z1, y1) and (x2, z2, y2) are saddle points
of the Lagrangian l and zi = Axi for i ∈ {1, 2}. From (52), which is true for every
saddle point of the Lagrangian l, we derive

∃ lim
k→+∞

(
E(xk, zk, yk; x1, z1, y1) − E(xk, zk, yk; x2, z2, y2)

)
, (53)

where, for (x∗, z∗, y∗), the expression E(xk, zk, yk; x∗, z∗, y∗) is defined as

E(xk, zk, yk; x∗, z∗, y∗) = 1

2
‖xk − x∗‖2

Mk
1

+ 1

2
‖zk − z∗‖2

Mk
2 +cId

+ 1

2c
‖yk − y∗‖2.

Further, we have for all k ≥ 0

1

2
‖xk − x1‖2

Mk
1

− 1

2
‖xk − x2‖2

Mk
1

= 1

2
‖x2 − x1‖2

Mk
1

+ 〈xk − x2, M
k
1 (x2 − x1)〉,
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1

2
‖zk − z1‖2

Mk
2 +cId

− 1

2
‖zk − z2‖2

Mk
2 +cId

= 1

2
‖z2 − z1‖2

Mk
2 +cId

+〈zk − z2, (M
k
2 + cId)(z2 − z1)〉,

and

1

2c
‖yk − y1‖2 − 1

2c
‖yk − y2‖2 = 1

2c
‖y2 − y1‖2 + 1

c
〈yk − y2, y2 − y1〉.

Applying [27, Théorème 104.1], there exists M1 ∈ S+(H) such that (Mk
1 )k≥0 con-

verges to M1 in the strong operator topology, i.e., ‖Mk
1 x − M1x‖ → 0 for all x ∈ H

(as k → +∞). Similarly, the monotonicity condition imposed on (Mk
2 )k≥0 implies

that supk≥0 ‖Mk
2 + cId‖ < +∞. Thus, according to [15, Lemma 2.3], there exists

α′ > 0 and M2 ∈ Pα′(G) such that (Mk
2 + cId)k≥0 converges to M2 in the strong

operator topology (as k → +∞).
Taking the limit in (53) along the subsequences (kp)p≥0 and (kq)q≥0 and using

the last three relations above, we obtain

1

2
‖x1 − x2‖2

M1
+ 〈x1 − x2, M1(x2 − x1)〉 + 1

2
‖z1 − z2‖2

M2
+ 〈z1 − z2, M2(z2 − z1)〉

+ 1

2c
‖y1−y2‖2+1

c
〈y1−y2, y2−y1〉 = 1

2
‖x1−x2‖2

M1
+1

2
‖z1−z2‖2

M2
+ 1

2c
‖y1−y2‖2;

hence,

−‖x1 − x2‖2
M1

− ‖z1 − z2‖2
M2

− 1

c
‖y1 − y2‖2 = 0.

From here, we get ‖x1 − x2‖M1 = 0, z1 = z2 and y1 = y2. Since
(

α + L

2

)
‖x1 − x2‖2 ≤ ‖x1 − x2‖2

M1
+ ‖Ax1 − Ax2‖2,

we obtain that x1 = x2. In conclusion, (xk, zk, yk)k≥0 converges weakly to a saddle
point of the Lagrangian l.

The casewhenAssumption (III) is valid Under Assumption (III), we can further refine
the inequalities in (39) and (40). Let k ≥ 1 be fixed. By considering the relation
(37) for consecutive iterates and by taking into account the monotonicity of ∂g,
we derive

〈zk+1 − zk, yk+1 − yk + Mk
2 (zk − zk+1) − Mk−1

2 (zk−1 − zk)〉 ≥ 0;
hence,

〈zk+1 − zk, yk+1 − yk〉 ≥ ‖zk+1 − zk‖2
Mk

2
+ 〈zk+1 − zk, Mk−1

2 (zk−1 − zk)〉

≥ ‖zk+1 − zk‖2
Mk

2
− 1

2
‖zk+1 − zk‖2

Mk−1
2

−1

2
‖zk − zk−1‖2

Mk−1
2

. (54)
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Using that yk+1 − yk = c(Axk+1 − zk+1), the last inequality yields

‖zk+1 − zk‖2
Mk

2
− 1

2
‖zk+1 − zk‖2

Mk−1
2

− 1

2
‖zk − zk−1‖2

Mk−1
2

≤ c

2

(
‖zk − Axk+1‖2 − ‖zk+1 − zk‖2 − ‖Axk+1 − zk+1‖2

)
. (55)

In case L > 0, adding (55) and (39) leads to

1

2
‖xk+1 − x∗‖2

Mk+1
1

+ 1

2
‖zk+1 − Ax∗‖2

Mk+1
2 +cId

+ 1

2c
‖yk+1 − y∗‖2 + 1

2
‖zk+1 − zk‖2

3Mk
2 −Mk−1

2

≤ 1

2
‖xk − x∗‖2

Mk
1

+ 1

2
‖zk − Ax∗‖2

Mk
2 +cId

+ 1

2c
‖yk − y∗‖2 + 1

2
‖zk − zk−1‖2

Mk−1
2

−1

2
‖xk+1 − xk‖2

Mk
1 − L

2 Id
− c

2
‖zk+1 − zk‖2 − 1

2c
‖yk+1 − yk‖2

−L

∥∥∥∥L−1
(
∇h(x∗) − ∇h(xk)

)
+ 1

2

(
xk − xk+1

)∥∥∥∥
2

.

Taking into account that, according to Assumption (III), 3Mk
2 −Mk−1

2 � Mk
2 , we can

conclude that for all k ≥ 1 it holds

1

2
‖xk+1 − x∗‖2

Mk+1
1

+ 1

2
‖zk+1 − Ax∗‖2

Mk+1
2 +cId

+ 1

2c
‖yk+1 − y∗‖2 + 1

2
‖zk+1 − zk‖2

Mk
2

≤ 1

2
‖xk − x∗‖2

Mk
1

+ 1

2
‖zk − Ax∗‖2

Mk
2 +cId

+ 1

2c
‖yk − y∗‖2 + 1

2
‖zk − zk−1‖2

Mk−1
2

−1

2
‖xk+1 − xk‖2

Mk
1 − L

2 Id
− c

2
‖zk+1 − zk‖2 − 1

2c
‖yk+1 − yk‖2. (56)

Similarly, in case L = 0, we obtain

1

2
‖xk+1 − x∗‖2

Mk+1
1

+ 1

2
‖zk+1 − Ax∗‖2

Mk+1
2 +cId

+ 1

2c
‖yk+1 − y∗‖2 + 1

2
‖zk+1 − zk‖2

Mk
2

≤ 1

2
‖xk − x∗‖2

Mk
1

+ 1

2
‖zk − Ax∗‖2

Mk
2 +cId

+ 1

2c
‖yk − y∗‖2 + 1

2
‖zk − zk−1‖2

Mk−1
2

−1

2
‖xk+1 − xk‖2

Mk
1

− c

2
‖zk+1 − zk‖2 − 1

2c
‖yk+1 − yk‖2. (57)

Using telescoping sum arguments, we obtain that ‖xk+1 − xk‖
Mk

1 − L
2 Id → 0, yk −

yk+1 → 0 and zk − zk+1 → 0 as k → +∞. Using (25), it follows that A(xk −
xk+1) → 0 as k → +∞, which, combined with the fact that Mk

1 − L
2 Id + A∗A ∈

Pα(H), for all k ≥ 0, yields xk − xk+1 → 0 as k → +∞. Consequently, zk −
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Axk+1 → 0 as k → +∞. Hence, the relations (42)–(45) are fulfilled. On the other
hand, from both (56) and (57), we derive

∃ lim
k→+∞

(
1

2
‖xk − x∗‖2

Mk
1

+ 1

2
‖zk − Ax∗‖2

Mk
2 +cId

+ 1

2c
‖yk − y∗‖2 + 1

2
‖zk − zk−1‖2

Mk−1
2

)
.

By using that

‖zk − zk−1‖2
Mk−1

2
≤ ‖zk − zk−1‖2

M0
2

≤ ‖M0
2‖‖zk − zk−1‖2 ∀k ≥ 1,

it follows that limk→+∞ ‖zk − zk−1‖2
Mk−1

2
= 0, which further implies that (52) holds.

From here, the conclusion follows by arguing as in the proof provided in the setting
of Assumption (II).

Remark 13 Choosing as in Remark 6, Mk
1 = 1

τk
Id − cA∗A, with τk > 0 and such

that τ := supk≥0 τk ∈ R, and Mk
2 = 0 for all k ≥ 0, we have

〈
x,

(
Mk

1 − L

2
Id

)
x

〉
≥

(
1

τk

− c‖A‖2 − L

2

)
‖x‖2

≥
(

1

τ
− c‖A‖2 − L

2

)
‖x‖2 ∀x ∈ H,

which means that under the assumption 1
τ

− c‖A‖2 > L
2 (which recovers the one in

Algorithm 3.2 and Theorem 3.1 in [16]), the operators Mk
1 − L

2 Id belong for all k ≥ 0
to the class Pα1(H), with α1 := 1

τ
− c‖A‖2 − L

2 > 0.

Remark 14 By taking h = 0 and L = 0, and in each iteration constant operators
Mk

1 = M1 � 0 and Mk
2 = M2 � 0 for all k ≥ 0, Theorem 12 in the context of

Assumption (I) covers the first situation investigated in [28, Theorem 5.6], where in
finite-dimensional spaces the matrix M1 was assumed to be positive definite and the
matrix M2 to be positive semidefinite.

The arguments used in [28, Theorem 5.6] for proving convergence in the case
when M1 = 0 and A has full column rank contain flaws and rely on incorrect
statements. Theorem 12 provides in the context of Assumption (III) (for h = 0,
L = 0, Mk

1 = 0 and Mk
2 = M2 � 0 for all k ≥ 0) the correct proof of this

result.
Finally, we notice that the convergence theorem for the iterates of the classical

ADMM algorithm (which corresponds to the situation when h = 0, L = 0, M1 =
M2 = 0 and A has full column rank, see for example [19]) is covered by Theorem
12 in the context of Assumption (III).
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12. Búi, M.N., Combettes, P.L.: Warped proximal iterations for monotone inclusions, arXiv:1908.07077
(2019)

13. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications
to imaging. J. Math. Imaging Vis. 40(1), 120–145 (2011)

14. Combettes, P.L.: Monotone operator theory in convex optimization. Math. Programm. 170(1), 177–
206 (2018)
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