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Abstract
In this note, we present two new algorithms for the Steinitz Exchange Lemma. They
are grounded on a single application of a procedure (finding either a row echelon
form or a basic minor) that has to be applied repeatedly in previously known algo-
rithms. Proving correctness of both the algorithms, we obtain two new, direct proofs
of the Exchange Lemma.
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1 Introduction

Let V be a finite dimensional vector space over a field K . Denote by span S the
subspace of V generated by a system S of vectors in V . Let A = (a1, . . . , ar ) and
B = (b1, . . . , bs) be two systems of vectors in V such that A is linearly indepen-
dent and spanA ⊂ spanB. The latter condition can be written in terms of matrix
multiplication as

AT = MBT , (1)

where superscript T denotes the matrix transpose operation and M is an appropriate
matrix in Mr,s(K). The Exchange Lemma, attributed by van der Waerden [8, p. 96],
to Steinitz [7, p. 133], but already discovered by Grassmann many decades earlier
[3, p. 30], says that r ≤ s and that there exists a system C consisting of the vectors
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Poznańskiego 4, 61-614 Poznań, Poland
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of A and of (s − r) vectors from B such that span C = spanB. The proofs and the
resulting algorithms for constructing C presented in the cited works as well as in our
contemporary textbooks use somewhat tedious procedures by induction on r , called
the exchange method or pivoting (cf. Section 3.3 in [5]).

The main aim of this note is to present two new concise algorithms for construct-
ing C (Section 2) and, in consequence, two new alternative proofs of the Exchange
Lemma. The second algorithm, using basic minors, is in a sense more general than the
first, using row echelon forms; the relation between the two algorithms is described in
Remark 3. As to the proofs, we comment on them in Remark 4 (for the computational
complexities, see Remarks 1 and 6).

The organization of the note is as follows. In Section 2, we present the algorithms,
and in an example juxtapose them with one by pivoting. In Section 3, we prove
correctness of the algorithm via row echelon forms. Prior to proving correctness of
the algorithm via basic minors in Section 6, in Section 4, we recall some properties
of basic minors, and in Section 5, we obtain certain spanning criterion. In Section 7,
we deal with this criterion in more detail. We establish two additional algorithms in
Section 8.

2 The algorithms

INPUT: Two systems of vectors A = (a1, . . . , ar ) and B = (b1, . . . , bs), and a matrix
M such that A is linearly independent and AT = MBT .
OUTPUT: A system C consisting of the vectors of A and of s − r vectors of B such
that span C = span B.

Algorithm via row echelon forms.

1. Transform M into a matrix G in row echelon form.
2. Let R be the set of the labels of those columns of G which do not contain the

leading coefficients.
3. Set C to be the concatenation of the systems A and (bl)l∈R .

Algorithm via basic minors.

1. Find1 a basic minor � = det(M̃) of M .
2. Let R be the set of the labels of those columns of M which do not intersect with

M̃ .
3. Set C to be the concatenation of the systems A and (bl)l∈R .

Example 1 Let (e1, e2, e3, e4) be the standard basis in R
4. Denote

a1 = [−1, −1, 1, 0],
a2 = [1, −1, −1, 0],
a3 = [1, 1, −1, −2],

1For instance, using the method described in Remark 2.
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A = (a1, a2, a3), and B = (b1, . . . , b5) = (e1, e2, e3, e4, −e4). For

M = [mij ] =
⎡
⎣ −1 −1 1 1 1

1 −1 −1 1 1
1 1 −1 −1 1

⎤
⎦

we have AT = MBT . One can check that A is linearly independent.

First, we find C using the algorithm via row echelon forms.

1. Add row 1 to rows 2 and 3 to get

G =
⎡
⎣ −1 −1 1 1 1

0 −2 0 2 2
0 0 0 0 2

⎤
⎦ .

2. R = {3, 4}.
3. C = (a1, a2, a3, b3, b4) = (a1, a2, a3, e3, e4).

Second, we find C using the algorithm via basic minors.

1. Apply the method described in Remark 2. Select �(1) = m3 5 = 1 �= 0. Minor

�(2) = det

[
m2 4 m2 5
m3 4 m3 5

]
= det

[
1 1

−1 1

]
= 2 contains �(1) and is nonzero.

Minor �(3) = det(M̃) = det([mij ]1≤i≤3≤j≤5) = 4 contains �(2) and is
nonzero, thus is a basic minor.

2. R = {1, 2}.
3. C = (a1, a2, a3, b1, b2) = (a1, a2, a3, e1, e2).

Now we find C using pivoting.

1. Since m1 1 = −1 �= 0, we can exchange vectors a1 and b1, and get [b1 a2 a3]T =
M ′[a1 b2 b3 b4 b5]T with

M ′ = [m′
ij ] =

⎡
⎣ −1 −1 1 1 1

−1 −2 0 2 2
−1 0 0 0 2

⎤
⎦ .

2. Since m′
2 2 = −2 �= 0, we can exchange vectors a2 and b2, and get [b1 b2 a3]T =

M ′′[a1 a2 b3 b4 b5]T with

M ′′ = [m′′
ij ] =

⎡
⎣ −1/2 1/2 1 0 0

−1/2 −1/2 0 1 1
−1 0 0 0 2

⎤
⎦ .

3. Since m′′
3 5 = 2 �= 0, we can exchange vectors a3 and b5, and get [b1 b2 b5]T =

M ′′′[a1 a2 b3 b4 a3]T with some matrix M ′′′.
4. C = (a1, a2, a3, b3, b4) = (a1, a2, a3, e3, e4).

Remark 1 The number of arithmetic operations (additions, subtractions, multiplica-
tions, and divisions) in the algorithms we consider is as follows (recall that s ≥ r =
rank(M)).
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(i) Algorithm via row echelon forms, provided M is transformed using Gaussian
elimination: r2(s − r

3 ) + O(r(s + r)).
(ii) Algorithm via basic minors, provided � is indicated using the method

described in Remark 2 with the intermediate minors found by elementary
operations: the same as in (i).

(iii) Algorithm via the exchange of vectors: 2r2s + O(r(s + r)).

3 Correctness of the algorithm via row echelon forms

We can assume that the matrix G is in the reduced row echelon form. Indeed, if
it is not the case, we transform G further to the reduced row echelon form using
Gauss-Jordan elimination. This does not affect R.

M is transformed to G by means of a finite sequence of elementary operations.
Apply these operations simultaneously to both sides of (1), namely at the left hand
side to the column matrix AT and at the right hand side to the matrix M . We get⎡

⎢⎢⎢⎣
a′

1
a′

2
...
a′
r

⎤
⎥⎥⎥⎦ = G

⎡
⎢⎢⎢⎣

b1
b2
...
bs

⎤
⎥⎥⎥⎦ . (2)

Denote A′ = (a′
1, . . . , a

′
r ). Since the elementary operations on a system of vectors

do not affect either its span or its linear independence, we conclude that

span A′ = span A (3)

and A′ is linearly independent. In particular, this means that the system A′ consists
of nonzero vectors. Thus, all the rows of the matrix G are nonzero. The number of
nonzero rows of any matrix in (the reduced) row echelon form is less than or equal
to the number of its columns. The inequality r ≤ s follows.

Put G = [gij ]. For i = 1, . . . , r denote by ji the label of the column of G which
contains the leading coefficient of the ith row. Let E be the set of these labels, i.e.,
E = {j1, . . . , jr }. So R = {l1, . . . , ls−r} = {1, . . . , s} \ E and

C = (a1, . . . , ar , bl1, . . . , bls−r ).

Since span A ⊂ span B, we have span C ⊂ span B. In order to prove the converse
inclusion span B ⊂ span C, it suffices to check that bj ∈ span C for each j ∈ E.
By the definition of the reduced row echelon form, the submatrix of G consisting
of the columns labeled by j ∈ E is the identity matrix. Thus, by (2), we have for
i = 1, . . . , r

a′
i = bji

+
∑
l∈R

gilbl .

Hence, for each j ∈ E

bj ∈ span A′ + span (bl)l∈R .

Thus, span B ⊂ span C by (3) and the definition of C.
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4 Basic minors

From now on, we use the following notation. For a matrix A ∈ Mk,l(K), we denote
by Ai (resp. Aj ) the ith row (resp. the j th column) of A. If S ⊂ {1, . . . , l} then AS

denotes the submatrix of A consisting of the columns Aj , where j ∈ S.

Let D = [dij ] ∈ Mk,l(K) and � be a nonzero minor of D of order p. We call
� a basic minor of D if either p = min(k, l) or all of the minors of order p + 1
that contain �, i.e., from which � is obtained by crossing out a row and column, do
vanish.

Lemma 1 Let D̃ be a square submatrix of D. If � = det(D̃) is a basic minor of D,
then the system consisting of the rows of D intersecting D̃ is a basis of the row space
span (D1, D2, . . . , Dk) of D.

For a proof using the Laplace expansion, see [6, pp. 9–10]. Although in [6] the
definition of a basic minor differs from the one we use by demanding the maximality
of the order of a nonzero minor, the proof referred to only uses the conditions we
impose. The equivalence of these two definitions is irrelevant to our note; actually, it
is implied by the equinumerosity of bases.

Remark 2 There is a concise inductive procedure of indicating a basic minor of a
matrix, called the bordering minors method. Since this method is presented in very
few textbooks available in English (e.g., [4, pp. 70–73]), let us sketch it here. Given
a nonzero matrix in Mk,l(K), select any nonzero first order minor �(1) of it. In the
inductive nth step, the input is the nonzero minor �(n). If n = min(k, l), then �(n)

is a basic minor and the procedure terminates. Else, check only those minors of order
n + 1 that contain �(n), i.e., from which �(n) is obtained by crossing out a row and
column. If all of these minors are zero, then �(n) is a basic minor and the procedure
terminates. Else, choose the first encountered nonzero one as �(n + 1) and proceed
to the next step.

5 Spanning criterion

Let A = (a1, . . . , ar ) and B = (b1, . . . , bs) be two systems of vectors, where r ≤ s.
Note well that we do not assume that the system A is linearly independent. Suppose
that span A ⊂ span B. This means that there exists a matrix M ∈ Mr,s(K) such
that AT = MBT . For a given set R ⊂ {1, . . . , s} of cardinality (s − r), define C
to be the concatenation of the systems A and (bl)l∈R . Define � = det(ME), where
E = {1, . . . , s} \ R. We have the following spanning criterion.

Lemma 2 If � �= 0, then span C = span B.

Proof It simplifies the exposition of our argument, and causes no loss of generality,
to assume that E = {1, . . . , r}. Indeed, it is enough to permute appropriately the
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vectors of B and the columns of M . Then R = {r + 1, . . . , s} and the new M equals
the block matrix

[
ME MR

]
.

The condition AT = MBT reads⎡
⎢⎣

a1
...
ar

⎤
⎥⎦ = ME

⎡
⎢⎣

b1
...
br

⎤
⎥⎦ + MR

⎡
⎢⎣

br+1
...
bs

⎤
⎥⎦ . (4)

Since � = det(ME) �= 0, the matrix ME is invertible. On multiplying (4) by M−1
E

we get ⎡
⎢⎣

b1
...
br

⎤
⎥⎦ = M−1

E

⎡
⎢⎣

a1
...
ar

⎤
⎥⎦ − M−1

E MR

⎡
⎢⎣

br+1
...
bs

⎤
⎥⎦ ,

so span B ⊂ span C. The converse inclusion is clear.

6 Correctness of the algorithm via basic minors

Let I be the set of the labels of those rows of M which intersect with M̃ . Suppose
that I �= {1, . . . r}. Take any i0 ∈ {1, . . . r} \ I . By Lemma 1 on basic minors, the
row Mi0 is a linear combination of the system (Mi)i∈I . Hence, the vector ai0 is the
corresponding linear combination of the system (ai)i∈I by (1). This contradicts the
assumption that A is linearly independent. Thus, I = {1, . . . r}, so the order of �

equals r . The inequality r ≤ s follows.
From Lemma 2, we get that span C = span B.

Remark 3 Let E = {1, . . . , s}\R, where R is as in the first algorithm. Then det(ME)

is one of the basic minors of M since det(GE) �= 0. If one chooses M̃ = ME in the
second algorithm, then the corresponding system C equals the one from the first.

Remark 4 The part of the above proof concerning the inequality r ≤ s is essentially
the same as in [2], pp. 30–31. This inequality is also being deduced, alternatively to
our direct argument from Section 3 and to the inductive procedure, from the theorem
on the existence of nontrivial solutions to systems of homogeneous linear equations
with the number of variables exceeding the number of equations (see, e.g., [1], Chap-
ter 3, Proposition 3.16 and Chapter 1, Corollary 2.17). This theorem is a corollary
of the fact that every matrix can be brought to the reduced row echelon form by
Gauss-Jordan elimination.

7 More on the spanning criterion

The condition in Lemma 2 is in general not necessary, even when A is linearly
independent. Indeed, we have the following example.
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Example 2 Let (e1, e2, e3) be the standard basis in R
3. Denote a1 = [1, −1, 0] and

a2 = [1, 1, 0]. Define A = (a1, a2) and B = (e1, e2, e3, −e3). Thus, for M =[
1 −1 0 0
1 1 0 0

]
, we have AT = MBT . Set R = {2, 4}. Then C = (a1, a2, e2, −e3), so

span C = span B but � = 0.

However, under the assumption that B is linearly independent, the condition turns
out to be necessary.

Proposition 3 � �= 0 if and only if span C = span B, provided B is linearly
independent.

Proof Since we have Lemma 2, we only need to prove that the assumption span C =
span B implies � �= 0. As in the proof of Lemma 2, we assume that E = {1, . . . , r}.
Write span B ⊂ span C and span C ⊂ span B as

BT = XCT and CT = YBT , (5)

with X ∈ Ms,s(K) and

Y =
[

ME MR

0 I

]
, (6)

where 0 ∈ Ms−r,r (K) is the zero matrix and I ∈ Ms−r,s−r (K) is the identity matrix.
By (5),

BT = XYBT .
Since B is linearly independent it follows that XY is the identity matrix, so
det(XY ) = 1. Thus � = det(ME) = det(Y ) �= 0 by (6) and the multiplicativity of
determinant.

Remark 5 If B is linearly independent and � �= 0, then both A and C are linearly
independent. This is clear by the equinumerosity of bases.

8 Two additional algorithms

Assuming the linear independence of B rather than of A, we have two algorithms,
analogue to those in Section 2. Their correctness can be easily established by com-
bining our arguments in Sections 3 and 6 with Remark 5.

INPUT: Two systems of vectors A = (a1, . . . , ar ) and B = (b1, . . . , bs), and a matrix
M such that B is linearly independent and AT = MBT .

Algorithm I.

OUTPUT: A system A∗ which is a basis of span A, and a system C which is the
completion of A∗ by some vectors of B to a basis of span B.

1. Transform M into a matrix G in row echelon form.
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2. Let R be the set of the labels of those columns of G which do not contain the
leading coefficients.

3. Set A∗ = (GiBT )i∈{1,...,rank(G)}.
4. Set C to be the concatenation of the systems A∗ and (bl)l∈R .

Algorithm II.

OUTPUT: A subsystem Ã of A which is a basis of span A, and a system C which is
the completion of Ã by some vectors of B to a basis of span B.

1. Find a basic minor � = det(M̃) of M .
2. Let I be the set of the labels of those rows of M which intersect with M̃ and R

the set of the labels of those columns of M which do not intersect with M̃ .
3. Set Ã = (ai)i∈I .
4. Set C to be the concatenation of the systems Ã and (bl)l∈R .

Example 3 Let B = (e1, e2, e3, e4) and AT = MBT where

M = [mij ] =

⎡
⎢⎢⎣

−1 −1 1 1
1 −1 −1 1
0 1 0 −1
1 0 −1 0

⎤
⎥⎥⎦

First, we find A∗ and C using Algorithm I.

1. Add row 1 to rows 2 and 4; add row 2 multiplied by 1/2 to row 3; subtract row 2
multiplied by 1/2 from row 4. The result is

G =

⎡
⎢⎢⎣

−1 −1 1 1
0 −2 0 2
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ .

2. R = {3, 4}.
3. A∗ = (G1, G2).
4. C = (G1, G2, e3, e4).

Second, we find Ã and C using Algorithm II.

1. Select �(1) = m4 3 = −1 �= 0. Minor �(2) = det(M̃) = det

[
m3 3 m3 4
m4 3 m4 4

]
=

det

[
0 −1

−1 0

]
= −1 contains �(1) and is nonzero. All four minors of order 3

that contain �(2) are zero. Thus �(2) is a basic minor.
2. I = {3, 4}, R = {1, 2}.
3. Ã = (a3, a4) = (M3, M4).
4. C = (a3, a4, e1, e2).

Remark 6 Given a vector space and a finite system of generating vectors, one can find
a basis by successively examining the vectors in the system, and retaining only those
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that are not linear combinations of the predecessors. This common idea, presented in
standard (linear) algebra textbooks (see, e.g., [1], Chapter 3, Proposition 3.13), can be
turned into the following algorithm with the same input and output as in Algorithm II.

Standard algorithm.

1. Form the block matrix
[
MT I

]
where I ∈ Ms,s(K) is the identity matrix, and

transform it into a matrix H in row echelon form.
2. Let E be the set of the labels of those columns of H which contain the leading

coefficients. Put K = {j ∈ E : j ≤ r} and R = E \ K .
3. Set Ã = (ai)i∈K .
4. Set C to be the concatenation of the systems Ã and (bl)l∈R .

The number of arithmetic operations in the standard algorithm is

2
s∑

n=1

n(r + n) + O(s(s + r)) = s2(r + 2

3
s) + O(s(s + r)).

For large r = s, the number of arithmetic operations in the algorithms we consider
in this section is approximately as follows.

(i) Algorithm I: 2
3 s3.

(ii) Algorithm II: the same as in (i).
(iii) Standard algorithm: 5

3 s3.
(iv) Algorithm via the exchange of vectors: 2s3.
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