
https://doi.org/10.1007/s11075-020-00900-1

ORIGINAL PAPER

Local error estimation and step size control
in adaptive linear multistep methods

Carmen Arévalo1 ·Gustaf Söderlind1 ·Yiannis Hadjimichael2 · Imre Fekete2,3

Received: 11 June 2019 / Accepted: 30 January 2020 /
© The Author(s) 2020

Abstract
In a k-step adaptive linear multistep methods the coefficients depend on the k − 1
most recent step size ratios. In a similar way, both the actual and the estimated
local error will depend on these step ratios. The classical error model has been the
asymptotic model, chp+1y(p+1)(t), based on the constant step size analysis, where
all past step sizes simultaneously go to zero. This does not reflect actual compu-
tations with multistep methods, where the step size control selects the next step,
based on error information from previously accepted steps and the recent step size
history. In variable step size implementations the error model must therefore be
dynamic and include past step ratios, even in the asymptotic regime. In this paper
we derive dynamic asymptotic models of the local error and its estimator, and show
how to use dynamically compensated step size controllers that keep the asymptotic
local error near a prescribed tolerance TOL. The new error models enable the use
of controllers with enhanced stability, producing more regular step size sequences.
Numerical examples illustrate the impact of dynamically compensated control, and
that the proper choice of error estimator affects efficiency.

Keywords Adaptivity · Time stepping · Step size control · Local error estimation ·
Linear multistep methods · Dynamic compensator · Variable step size · Differential
equations · Initial value problems · Control theory

1 Introduction

We shall consider a standard initial value problem

ẏ = f (t, y), y(0) = y0,

� Gustaf Söderlind
Gustaf.Soderlind@gmail.com

Extended author information available on the last page of the article.

Published online: 5 June 2020

Numerical Algorithms (2021) 86:537–563

http://crossmark.crossref.org/dialog/?doi=10.1007/s11075-020-00900-1&domain=pdf
http://orcid.org/0000-0003-3559-960X
mailto: Gustaf.Soderlind@gmail.com

and let yn denote the numerical approximation to y(tn). Further, we let y′
n denote

f (tn, yn). Thus derivatives of functions are denoted by a dot, while samples of the
vector field are denoted by prime. The methodology developed here does not depend
on whether the problem is scalar or a system of equations.

We will study linear multistep methods on nonuniform grids for this initial value
problem, of the normalized form

yn+1 +
k∑

j=1

ak−j,nyn−j+1 =
k∑

j=0

bk−j,n hny
′
n−j+1, (1)

where hn = tn+1 − tn. Normalization will also be discussed in connection with
error constants. The subscript n of the coefficients indicates that these are rational
functions of the step ratios, ρn−1 = hn/hn−1. The method is implicit if bk,n �= 0. We
shall consider the grid-independent representation, [1], where every linear multistep
method is defined in terms of a fixed set of parameters and interpolation conditions.
Given any grid point distribution {tn}∞0 , this representation generates the coefficients
ak−j,n and bk−j,n.

Time-step adaptivity is of key importance to make initial value problem solvers
efficient. In particular, in stiff problems, where time scales may vary by several
orders of magnitude, it is necessary to vary the step size accordingly. If possible, an
implementation should offer tolerance proportionality, i.e., the global error should
be proportional to a preset accuracy requirement, TOL.

The classical approach has been to assume that the local error can be represented
asymptotically by

rn = ϕnh
q
n, (2)

where ϕn is the norm of the principal error function, hn is the current time step, and
rn is the norm of the error estimate. The time step is then typically changed according
to the elementary control law

hn+1 =
(

TOL

rn

)1/q

hn. (3)

For a method of order p, we take q = p+1 or q = p depending on whether the local
error per step (EPS) or the local error per unit step (EPUS) is controlled. The scheme is
usually accompanied by safety heuristics, and detailed descriptions can e.g. be found
in monographs such as [3, 6, 12, 13, 17].

Starting in the late 80s, adaptivity based on control theory was developed, [9–
11], leading to [18] and a framework for using digital filters and signal processing,
[19, 21]. Computational stability was further studied in [20]. Special controllers for
explicit and implicit geometric integration were also developed in [14] and [23].
Combinations of these techniques have been applied to near-Hamiltonian problems
with weak Rayleigh damping, [16].

This theory has focused on one-step methods, for which the asymptotic error
model (2) applies whenever the tolerance is small enough. Taking logarithms, (2)
becomes

log rn = q · loghn + logϕn, (4)

538 Numerical Algorithms (2021) 86:537–563

suggesting that a step size change affects the error (approximately) by a constant
“gain” factor of q, without any dependence on step size history. While this static
error model is correct for one-step methods in the asymptotic regime, it is no longer
correct outside asymptotic operation, [10].

For a k-step linear multistep method it is not even correct in the asymptotic
regime. As the method coefficients depend on k − 1 past step ratios, errors are
similarly affected, and the error’s step size dependence becomes dynamic. Never-
theless, the elementary controller (3) has been applied to multistep methods, with
varying success. Unfortunately, its stability may deteriorate in combination with e.g.
the Adams–Bashforth methods. Thus, depending on the choice of error estimator, the
dynamic interaction of method and controller may become resonant and oscillatory.
The problems can be overcome by a careful combination of method, estimator and
controller.

In order to improve adaptive multistep methods, we shall investigate new dynamic
error models of multiplicative form,

rn = ϕnh
q
n ·

s∏

j=1

ρ
δj

n−j . (5)

Here the first factor is identical to the static model (2). The second factor accounts
for step size history in terms of step ratios ρn−j = hn−j+1/hn−j . The number of
past step ratios is s = k−1 for a k-step method if rn represents the actual error, while
it is s = k for error estimators that use additional data from one previous step. The
parameters δj are characteristic of each multistep method and its error estimator.

In multistep methods, there is a concern over zero stability when the step size
varies, focusing on how large step ratios can be allowed without causing instabil-
ity, see e.g. [5, 7, 8, 22]. While this issue is of significance, it does not reflect that
feedback control interacts with the method and manages overall stability. Thus, in
a strongly zero stable method a stable computational process can be maintained by
generating a smooth step size sequence (i.e., having step ratios ρn ≈ 1). This can be
achieved by a well designed controller, working with incremental step size changes,
avoiding traditional step size halving/doubling.

The grid-independent approach to multistep methods has also been implemented
in a proof-of-concept software platform, [2], where any multistep method can be
evaluated under ceteris paribus conditions. While the theory makes it possible to find
method-specific dynamic error estimators in terms of current and past step sizes, the
implementation has so far only offered controllers for the static model (2). Our main
objectives in this paper are therefore 1) to analyze dynamic error estimators, based
on models of the form (5); and 2) to devise suitable controllers that manage the local
error as well as the stability of the interaction of method and controller. Our approach
is based on using discrete control theory as outlined in [19].

The main result is that we construct a dynamic compensator that extracts the static
part of the asymptotic error model from the estimator, allowing us to employ standard
digital filters and other controllers to achieve results comparable to those of one-
step methods. We further show that without this dynamic compensation, conventional
techniques are not completely reliable. Thus, for example, the elementary controller

539Numerical Algorithms (2021) 86:537–563

(3) is unsuitable for the control of adaptive linear multistep methods, as the stability
margin of the process deteriorates with increasing step size history dependence.

2 Dynamic error models and control objectives

In the classical constant step size theory, the local error of a multistep method has an
asymptotic expansion with leading term

ln = c∗hp+1y(p+1)(tn), (6)

as h → 0, where c∗ is referred to as the method’s (normalized) error constant. But
this assumes that all steps shrink simultaneously. In adaptive methods, however, hav-
ing reached the point tn+1 = tn + hn, we consider changing the next step size, hn+1,
but none of the previously accepted steps hn, . . . , hn−k+1. As a consequence, the
asymptotic error will depend on previous step ratios.

Local error control is justified by the possibility of linking a local error bound
to the global error via tolerance proportionality. Global error accumulation can be
modeled by the variational equation, u̇ = J (t)u + w, where J (t) = ∂f/∂y along the
exact solution y(t). Here u(t) andw(t) represent global and local errors, respectively.
Let μ[J (t)] denote the logarithmic norm of J (t), and assume that μ[J (t)] ≤ M for
all t ≥ 0. Note that M may be negative. Further, let ‖w‖∞ = maxt≥0 ‖w‖. Then a
global error bound can be obtained by integrating the differential inequality

d

dt
‖u‖ ≤ M · ‖u‖ + ‖w‖∞

over a single step to obtain

‖u(t + h)‖ ≤ ehM‖u(t)‖ + ehM − 1

M
‖w‖∞. (7)

In nonstiff computation, we have |hM| � 1. Apart from the error propagation, the
global error is then incremented by approximately h‖w‖∞ in a step of length h. By
using the control objective ‖w‖∞ ≤ TOL we keep the global error growth rate in
check and achieve tolerance proportionality. This corresponds to local error per unit
step (EPUS) control.

If on the other hand −hM � 1, modeling stiff computation and strong damping,
the exponential terms in (7) can be neglected, and we have

‖u(t + h)‖ � −‖w‖∞
M

= −h‖w‖∞
hM

� h‖w‖∞.

Thus, with little or no error propagation, the global error effectively equals (a fraction
of) the local error. To achieve tolerance proportionality, it is then sufficient to use the
control objective h‖w‖∞ ≤ TOL, corresponding to local error per step (EPS) control.
The choice of EPUS or EPS determines the power q in the error model, but by suitably
expressing the controller’s parameters in terms of q, one can obtain similar overall
dynamics for both control objectives as well as for methods of different orders.

540 Numerical Algorithms (2021) 86:537–563

Inserting the exact solution y(t) into (1), we obtain a residual,

y(tn+1) +
k∑

j=1

ak−j,ny(tn−j+1) −
k∑

j=0

bk−j,n hnẏ(tn−j+1) = −l̃n, (8)

where l̃n = c(ρ̄n) h
p+1
n y(p+1)(tn). Compared to (6), the error constant c∗ has been

replaced by a function c(ρ̄n), which depends on the k − 1 most recent step ratios,
collected in the vector ρ̄n = (ρn−1, . . . , ρn−k+1). Letting un = yn −y(tn) denote the
global error, we subtract (8) from (1) and linearize to obtain

un+1 +
k∑

j=1

ak−j,nun−j+1 −
k∑

j=0

bk−j,n hn[J (tn−j+1)un−j+1 + l̃n

b(ρ̄n)hn

] = 0,

where b(ρ̄n) = ∑k
0bk−j,n. This is the multistep discretization of the variational

equation u̇ = J (t) · u + w. The function w is constant within each step, and

w = l̃n

b(ρ̄n)hn

= y(p+1)(tn) h
p
n · π(ρ̄n), (9)

where π(ρ̄n) = c(ρ̄n)/b(ρ̄n) introduces dynamics into the error model.
In constant step size theory, ρ̄ = (1, 1, . . . , 1) = 1. The method is often normal-

ized so that b(1) = 1, implying that c(1) = c∗, cf. [12, p. 373]. It then follows that
π(1) = c∗. Since we have used the normalization ak,n = 1 instead, the error constant
is affected. Let π̂(ρ̄) = π(ρ̄)/π(1). Then (9) becomes

w = ĉ∗ y(p+1)(tn) h
p
n · π̂(ρ̄n), (10)

making the error constant ĉ∗ = π(1) conform to the method normalization and error
propagation model above. For the Adams methods, it always holds that b(ρ̄n) ≡ 1,
implying that ĉ∗ = c∗ even when our normalization is used.

For general multistep methods, we have thus arrived at the error model

rn = ϕnh
q
n · π̂(ρ̄n), (11)

with q = p for EPUS control and q = p + 1 for EPS. Let δ̄ = {δj }s1 be given by the
gradient

δ̄T = gradρ̄ π̂ (ρ̄)
∣∣
ρ̄=1 . (12)

Assume that ρ̄n = 1 + v̄n with ‖v̄n‖∞ � 1. It follows that log ρ̄n ≈ v̄n, and

log π̂(ρ̄n) ≈ log
[
1 + δ̄T · v̄n

]
≈

s∑

j=1

δj vn−j ≈
s∑

j=1

log ρ
δj

n−j = log
s∏

j=1

ρ
δj
n−j .

Hence the approximation π̂(ρ̄n) ≈ ∏s
1ρ

δj
n−j is accurate to O(‖v̄‖2∞), and establishes

the multiplicative dynamic error model (5). This approximation enables the design
of a controller that compensates the specific linear dynamics of the error. It is also
a necessary simplification when the step number k is large, as the rational function
π̂(ρ̄n) consists of multinomials with a very large number of terms. For this reason,
the determination of the powers δj typically requires symbolic computation.

541Numerical Algorithms (2021) 86:537–563

The error model is best illustrated by studying a simple example, and we choose
the two-step Adams–Bashforth (AB2) of order p = 2. In the grid-independent
formulation [1] the adaptive AB2 method reads

yn+1 = yn +
(
1 + ρn−1

2

)
hny

′
n − ρn−1

2
hny

′
n−1, (13)

where hn = tn+1 − tn. The local error rn = y(tn+1) − yn+1 at tn+1 is found by
inserting exact data, i.e., yn = y(tn), y′

n = ẏ(tn) and y′
n−1 = ẏ(tn−1), and expanding

in a Taylor series to obtain the asymptotic error expression

l̃n ≈ 5

12

...
y (tn+1)h

3
n

(
2

5
+ 3

5ρn−1

)
, (14)

where higher order terms (here fourth order in the step size) have been neglected. For
constant step size (ρn−1 = 1) we recognize the classical asymptotic principal error
function of the AB2 with its error constant, as ϕn = 5

...
y /12.

For variable steps, we now have

π̂(ρ) = 2

5
+ 3

5ρ
⇒ δ1 = π̂ ′(1) = −3

5
. (15)

Consequently, the asymptotic local error model in multiplicative form (5) is

l̃n ≈ ϕn h3n · ρ−3/5
n−1 = ϕn h

12/5
n h

3/5
n−1. (16)

While “dimensionless,” the step ratio does not affect the order q, but modifies indi-
vidual powers of the step sizes. This has little influence on error magnitude (as
ρn−1 ≈ 1) but alters step size dynamics and the subsequent control design.

In one-step methods, the elementary controller is derived from (2) by assuming
that ϕ is slowly varying along the solution to the differential equation. Thus, if the
error rn deviates from TOL, the next step size can be chosen to make rn+1 ≈ TOL by
solving

TOL = ϕn+1h
q

n+1, (17)

for hn+1, assuming that ϕn+1 = ϕn. Dividing (17) by (2) we obtain the control law
(3), known as a deadbeat controller, [19]. This has finite impulse response (FIR),
since an impulse in the sequence {ϕj }∞0 will be compensated by the controller in
a finite number of steps, in this case a single step. In fact, it is easily shown that
the control law yields ϕnh

q

n+1 ≈ TOL, i.e., the proposed step size is matched to the
previous value of the principal error function.

The same intuitive approach could be considered for multistep methods. Assuming
that ϕn+1 = ϕn in the AB2 method and dividing the two equations

TOL = ϕn+1 h
12/5
n+1 h

3/5
n

rn = ϕn h
12/5
n h

3/5
n−1

results in the control law

hn+1 =
(

TOL

rn

)5/12

ρ
−1/4
n−1 · hn. (18)

542 Numerical Algorithms (2021) 86:537–563

Apart from the unexpected power of TOL/rn in (18), the controller has an extra factor
due to the error’s dynamic character. Perhaps more surprisingly, (18) is not deadbeat,
and has a less desirable behavior.

There are also alternative ways to estimate the error, and a few will be described in
detail in Section 5. Above, the error (16) was obtained by Taylor series expansion. It
can be computed in practice, using a comparison method (at least) one order higher
than AB2, say the AB3, operating in the asymptotic regime. Another common esti-
mation technique is to compare the results from two methods of the same order. This
is similar to the classical predictor–corrector technique. Thus, if the AB2 method is
represented as a method constructing a polynomial of degree 2, the error can be esti-
mated by comparing this polynomial at tn+1 to the result obtained by extrapolating
the corresponding polynomial, constructed on the previous step. While crude, this
difference can still be used to compute an asymptotically correct error. The dynamic
asymptotic error model is then more complex,

rn = ϕn h
q
n ρ

−45/23
n−1 ρ

−12/23
n−2 . (19)

An attempt to derive control laws by the simple approach used above fails, and results
in unstable controllers, both in EPUS and EPS modes. The elementary control law (3)
fares a little better, and is stable in EPS mode in combination with (19), but unstable
in EPUS mode. Thus, if methods, estimators and controllers are combined arbitrarily,
performance is often underwhelming, see Fig. 1, where the elementary controller
is compared to one of the dedicated dynamically compensated controllers we will
develop in this paper. This motivates a thorough investigation of error estimation and
step size control for adaptive multistep methods, focusing on the dynamics of the
error model.

3 Tools from linear control theory

In the implementation of a discrete time system, it is important to synchronize vari-
able indexation. When using the z transform, all variables, sequences and transforms
are expressed in relation to the reference index n, corresponding to the point tn, and
we use the following time domain numbering convention:

1. Given the numerical solution (tn, yn), the method takes a step size hn to compute
yn+1 at tn+1 = tn + hn

2. The method produces an error estimate rn at tn+1, modeled in the asymptotic
regime by an error model such as (5)

3. The controller computes the next step size ratio ρn from rn
4. The controller then updates the step size according to hn+1 = ρnhn

5. The computational process repeats from 1.

We shall analyze this process using linear control theory, which is based on the
analysis of linear difference equations. The multiplicative forms of the error model
and controller are necessary, since they can be converted to difference equations
by taking logarithms, after which the z transform is used to analyze stability and

543Numerical Algorithms (2021) 86:537–563

0 0.002 0.004 0.006 0.008 0.01

10-4

10-3
AB2(3) EPUS step size

0 0.002 0.004 0.006 0.008 0.01

time

10-4

10-3
AB2(2) EPUS step size

0 0.002 0.004 0.006 0.008 0.01

10-4

10-3
AB2(3) EPS step size

0 0.002 0.004 0.006 0.008 0.01

time

10-4

10-3
AB2(2) EPS step size

Fig. 1 The AB2 method is combined with two different error estimators and two different controllers,
running in EPUS and EPS modes. Top panels show emulated step size sequences with a pre-constructed
ϕ(t) for AB2(3) with third order error estimator. Lower panels show corresponding data for AB2(2) with
second order error estimator. The tolerances were TOL = 2 · 10−6 (EPUS) and TOL = 10−9 (EPS), respec-
tively. Oscillatory sequences (red) are due to resonances, caused by the elementary controller (3). Smooth
sequences (blue) are generated by a dynamically compensated controller with vastly improved stability.
Lower left panel shows that AB2(2) is unstable in EPUS mode when the elementary controller is used (red)

frequency response. For a simple demonstration of this procedure, let us consider (5)
for s = 2, i.e.,

rn = ϕn h
q
n · ρ

δ1
n−1 ρ

δ2
n−2 = ϕn h

q+δ1
n h

δ2−δ1
n−1 h

−δ2
n−2. (20)

Now, taking logarithms in (20), we obtain the difference equation

log rn = G(E) loghn + logϕn, (21)

where E is the forward shift operator, informally defined by Eun = un+1 for any
discrete sequence. The rational function G is defined by

G(z) = q + δ1 + (δ2 − δ1)z
−1 − δ2z

−2 = (q + δ1)z
2 + (δ2 − δ1)z − δ2

z2
. (22)

Note that, due to the structure of (20), it follows that G(1) = q.

544 Numerical Algorithms (2021) 86:537–563

We let h = {hj }∞0 denote the entire sequence of step sizes, and use the simpli-
fied notation logh = {loghj }∞0 . A standard tool in discrete control theory is the z

transform, defined for the sequence logh by

(Z logh)(z) =
∞∑

j=0

(loghj)z
−j .

Since the risk of misunderstanding is minimal, with a slight abuse of notation we
follow [19] and let logh denote the z transform of the sequence logh. The z transform
of the linear difference equation (21) is then

log r = G(z) logh + logϕ. (23)

The function G(z), referred to as the process model, is the z transform of the operator
associated with the step size–error relation (21), while the additive term logϕ is an
external disturbance corresponding to the principal error function, which is to be
“rejected” by the controller. This means that the controller adjusts the step size to
counteract the influence of logϕ.

In order to control the error magnitude by adjusting the step size, the error
sequence log r is compared to the tolerance log TOL, and the sequence

{
log

TOL

rj

}∞

0
= log TOL − log r

is referred to as the control error. The controller aims to eliminate the control error,
continually adjusting the step size according to the control law

logh = C(z) · (log TOL − log r), (24)

where C(z) is the z transform of the linear difference operator associated with
the controller. The overall interaction between process and controller is usually
represented by a block diagram, see Fig. 2.

Next we analyze the process–controller interaction. Combining the control law
with the process model, we have the linear system

logh + C(z) log r = C(z) log TOL

−G(z) logh + log r = logϕ.

Fig. 2 Time step adaptivity viewed as a feedback control system. Represented by the transfer function
G(z), the computational process takes logh as input, producing an error estimate log r = G(z) log h +
logϕ. The principal error function logϕ enters as an additive disturbance, to be compensated by the con-
troller. The error estimate log r is fed back and compared to log TOL. The controller, represented by its
transfer functionC(z), constructs the next step size through log h = C(z)·(log TOL−log r). All sequences,
as well as the controller and the process, are represented by their z transforms

545Numerical Algorithms (2021) 86:537–563

Solving for logh and log r in terms of the data logϕ and log TOL, we obtain

logh = Hϕ(z) logϕ + HTOL(z) log TOL

log r = Rϕ(z) logϕ + RTOL(z) log TOL,

where we identify the four closed loop transfer functions, from logϕ and log TOL

respectively, to logh and log r . As the constant TOL is of little interest, we take TOL =
1 (log TOL := 0), meaning that the error is measured in units of TOL. Note that
changing the constant TOL has no effect on the error, since RTOL(z) log TOL = 0 for
any constant TOL. Likewise, it has little effect on the step size, other than adding a
constant to the step size sequence logh.

The step size transfer function and error transfer function are, respectively,

Hϕ(z) = − C(z)

1 + C(z)G(z)
; Rϕ(z) = 1

1 + C(z)G(z)
. (25)

The asymptotic process model G(z) is found by analyzing the error estimator of
a given linear multistep method, while the controller C(z) can be chosen to meet
various design criteria for stability and smooth step size sequences.

The closed loop transfer functions have the same poles, which correspond to the
zeros of the characteristic equation and govern stability. They must remain well
located inside the unit circle. It is sometimes possible to construct C(z) so as to move
all poles to z = 0, corresponding to deadbeat control.

To model a bounded, quasi-periodic input one frequency at a time, we take logϕ =
{eiωn} for ω ∈ [0, π], with ω = π corresponding to the highest discrete frequency,
logϕn = (−1)n. For such periodic inputs, it holds that

logh = Hϕ(eiω) logϕ ; log r = Rϕ(eiω) logϕ

where the complex value Hϕ(eiω) reveals the phase and amplitude of the step size
sequence compared to the input logϕ = {eiωn}. Disregarding phase, the scaled step
size frequency response and the error frequency response are given by, respectively,

Ah(ω) = |qHϕ(eiω)| ; Ar(ω) = |Rϕ(eiω)|, (26)

where the extra factor of q in |qHϕ(eiω)| normalizes the step size attenuation so
that Ah(0) = 1. This factor is only a matter of convenience, reflecting that for the
asymptotic process it always holds that G(1) = q.

Step size and error attenuations are dimensionless ratios, measured in the ISO unit
of decibel (dB), defined by 20 · log10 Ah(ω). Thus an attenuation of +20 dB corre-
sponds to an amplification by one order of magnitude. Likewise, an attenuation of
−6 dB corresponds to a damping by a factor of 2.

The zeros (if any) of the step size transfer function |qHϕ(z)| block signal trans-
mission. Thus, selecting C(z) such that Ah(π) = 0, one can design low-pass digital
filters that suppress noise and produce smooth step size sequences. This is covered
in detail for the static process G(z) = q in [19, 21].

In Fig. 3 we plot the step size frequency responses corresponding to the AB2
method operating in EPUS and EPS modes, using two different error estimators and
the same two controllers as in Fig. 1, with a one-to-one correspondence between
the plots. As before, the designation AB2(3) refers to a third order error estimator,

546 Numerical Algorithms (2021) 86:537–563

10-1 100
-10

-5

0

5

10

15
Ah() AB2(3) EPUS (dB)

10-1 100
-10

-5

0

5

10

15
Ah() AB2(3) EPS (dB)

10-1 100
-10

-5

0

5

10

15
Ah() AB2(2) EPUS (dB)

10-1 100
-10

-5

0

5

10

15
Ah() AB2(2) EPS (dB)

Fig. 3 Frequency response diagrams show step size attenuation when the AB2 method is combined with
two different controllers, and two different error estimators in EPUS mode (left panels) and EPS mode
(right panels). The elementary controller (red) has strong resonances near ω ≈ 1, making it unsuitable
for multistep methods. With the third order estimator (top panels) the resonance is less pronounced. By
contrast, a dynamically compensated controller (blue) eliminates the resonance and offers additional high
frequency suppression, generating smooth step size sequences. Dashed black reference curve represents
deadbeat control. Attenuation is measured in decibels, dB

while AB2(2) refers to a second order estimator. For the latter, the frequency response
reveals that the elementary controller has a damaging resonance near ω ≈ 1. This
contaminates the transient performance of the elementary controller, even causing
the unstable oscillatory behavior in EPUS mode observed in Fig. 1. Although EPUS

mode is always worse than EPS, the resonance is much less prominent for the third
order estimator. There are two conclusions to be drawn. First, as performance differs
strongly, it is important to combine good error estimators with controllers so as to
avoid resonance and instability. While the choice of error estimator is important, a
dynamically compensated controller is always better than the elementary controller,
which is unsuitable for multistep methods. Figure 3 demonstrates that a dynamically
compensated controller cannot only manage the benign third order estimator, but also
the second order estimator, with a nearly uniform behavior, irrespective of whether
the objective is EPS or EPUS.

547Numerical Algorithms (2021) 86:537–563

4 Control analysis of dynamic error models

Beginning with two-step methods, we assume that a computable error estimator can
be modeled near ρ̄ = 1 by

rn = ϕnh
q
n · ρ

δ1
n−1 ρ

δ2
n−2 = ϕnh

q+δ1
n h

δ2−δ1
n−1 h

−δ2
n−2. (27)

The validity of this structure will be demonstrated in Section 5. The objective is
to construct a controller that determines ρn and updates the step size according to
hn+1 = ρnhn. The process has three parameters, (q, δ1, δ2), and by combining this
process with a controller of the following structure,

ρn =
(

TOL

rn

)β/q

ρ
α1
n−1 ρ

α2
n−2 (28)

hn+1 = ρnhn (29)

we have three free parameters, (β, α1, α2), to control the placement of the three poles
of the closed loop. The control structure is general and follows the pattern of digital
filters, [19], and we note that the elementary controller has β = 1 and α1 = α2 = 0.
The general result is the following.

Theorem 1 Assume that a linear multistep method has an asymptotic error estimate
represented in multiplicative form as

rn = ϕn h
q
n ·

s∏

j=1

ρ
δj

n−j . (30)

If this method is combined with the step size control law

hn+1 =
(

TOL

rn

)β/q

hn ·
s∏

j=1

ρ
αj

n−j , (31)

taking αj = δj ·β/q for all j , the closed loop has a single nontrivial pole at z = 1−β,
with all other poles at z = 0. If in addition β = 1, the controller is deadbeat (finite
impulse response).

Proof Taking logarithms in (30), we obtain

log rn = (q + δ1) loghn + (δ2 − δ1) loghn−1 + · · · − δs loghn−s + logϕn

=
[
(q + δ1) + δ2 − δ1

z
+ δ3 − δ2

z2
+ · · · − δs

zs

]
loghn + logϕn,

implying that the transfer function is

G(z) = (q + δ1)z
s + (δ2 − δ1)z

s−1 + . . . (δs − δs−1)z − δs

zs
. (32)

In a similar fashion, for the controller we obtain
(

z − (1 + α1) − α2 − α1

z
− α3 − α2

z2
− · · · + αs

zs

)
loghn = β

q
log

(
TOL

rn

)
.

548 Numerical Algorithms (2021) 86:537–563

Factoring out the difference operator z − 1, this simplifies to

(z − 1)(zs − α1z
s−1 − α2z

s−2 − · · · − αs−1z − αs) loghn = βzs

q
log

(
TOL

rn

)
.

Thus we find the control transfer function

C(z) = βzs

q(z − 1)(zs − α1zs−1 − α2zs−2 − · · · − αs−1z − αs)
. (33)

It follows that the closed loop error transfer function is

Rϕ(z) = (z − 1)(zs − α1z
s−1 − · · · − αs)

(z − 1)(zs − · · · − αs) + β
q
(q + δ1)zs + · · · + β

q
(δs − δs−1)z − β

q
δs

.

As for the poles, starting at j = s, we recursively find that the coefficient of zs−j

can be made zero by taking

αj = β

q
δj , (34)

putting successively more poles at z = 0, until j = 1. If all αj have been cho-
sen accordingly, z = 0 is a pole of multiplicity s and the denominator of Rϕ(z) is
reduced to

zs (z − (1 − β)) ,

with the last pole located at z = 1 − β.

Remark 1 The factor z−1 in the numerator of Rϕ(z) represents a difference operator
that removes any persistent disturbance in logϕ. This first order adaptivity, [19], is
a consequence of the controller’s integral action (29), loghn+1 = loghn + log ρn,
which generates the step size by summing (“integrating”) the step ratios.

Remark 2 Consider the elementary controller (3) in the case s = 2, for which α1 =
α2 = 0 and β = 1. The poles are then determined by

z3 + δ1

q
z2 + δ2 − δ1

q
z − δ2

q
= 0. (35)

In the static error model (like in all one-step methods) δ1 = δ2 = 0, implying that
all roots are located at z = 0. This makes the elementary controller deadbeat for
one-step methods. For multistep methods, however, the elementary controller is not
deadbeat, as δj �= 0. In two-step methods, if the error estimator is one order higher
than the method, there is a single δ coefficient. When δ1 < 0 there are two com-
plex conjugate poles, leading to the resonance peaks of the type already observed in
Fig. 3. Although the elementary controller is stable in tandem with standard multi-
step methods such as AB2 and AM2, the matching is poor, inducing slowly damped
oscillations in the step size sequence. As the modulus of the roots is |z| = √|δ1/q|,
the damping is weaker in EPUS mode than in EPS.

549Numerical Algorithms (2021) 86:537–563

Remark 3 The theorem implies that there is a basic class of single-parameter
controllers of the form

hn+1 =
⎛

⎝TOL

rn
·

s∏

j=1

ρ
δj

n−j

⎞

⎠
β/q

· hn (36)

that can be applied in tandem with any linear multistep method, characterized by its
asymptotic error parameters q and {δj }s1. The closed loop is stable whenever β ∈
(0, 2), but in order to have a non-negative root, only β ∈ (0, 1] is of interest. It is
necessary to include a step ratio compensator to achieve deadbeat control. While a
deadbeat controller is not always preferable, its existence is of significance as pole
locations depend continuously on the parameters. Thus there is a neighborhood of
stable controllers near αj = δj · β/q and β = 1, and the full set of parameters {αj }s1
and β can be chosen to place the s + 1 poles at suitable locations.

Remark 4 Due to (36) the control problem is simplified by introducing the dynami-
cally compensated error,

r̃n = rn ·
s∏

j=1

ρ
−δj

n−j , (37)

which recovers the static model, as r̃n ≈ ϕnh
q
n. In terms of the compensated error,

the control system (36) above becomes

hn+1 =
(

TOL

r̃n

)β/q

hn. (38)

This is merely a standard reduced gain integral controller, identical to the exponential
forgetting used for one-step methods, [19]. By taking the gain parameter β = 2/3,
which puts the nontrivial pole at z = 1/3, one obtains a good performance for all
multistep methods operating in the asymptotic regime. This value is used in Figs. 1
and 3. Other types of controllers for one-step methods, including digital filters, [19],
are also applicable to the dynamically compensated error model. As long as the step
ratios are near 1, the dynamic compensator will not significantly affect the magni-
tude of the error, implying that r̃n ≈ rn. However, the compensator will affect the
dynamics and eliminate damaging resonances in the adaptive scheme.

5 Local asymptotic error estimators

Using the grid-independent representation of multistep methods in [1] the step from
tn to tn+1 = tn + hn is based on constructing a polynomial Pn+1(t) satisfying a
number of structural conditions and slack conditions, such that the solution to the
differential equation y(tn+1) can be approximated by

yn+1 = Pn+1(tn+1).

550 Numerical Algorithms (2021) 86:537–563

The error is defined by inserting the exact solution into the discretization, and
satisfies

yn+1 − y(tn+1) ≈ cy(ρ̄n) · y(py+1)(tn) · h
py+1
n .

However, this quantity is not directly computable. To obtain a reference value, we
need a comparison method that produces another approximation,

zn+1 − y(tn+1) ≈ cz(ρ̄n) · y(pz+1)(tn) · h
pz+1
n .

Although this quantity is not directly computable either, it follows that

yn+1 − zn+1 = [yn+1 − y(tn+1)] − [zn+1 − y(tn+1)]
≈ cy(ρ̄n) · y(py+1)(tn) · h

py+1
n − cz(ρ̄n) · y(pz+1)(tn) · h

pz+1
n

is computable. Here we need to distinguish two cases.
Case 1. In the first case, the comparison method is one order higher, i.e., pz =

py +1. For example, if the method is AB2, one can use AB3 to compute the reference
value. We shall refer to this method/error estimation combination as AB2(3), where
the number within paranthesis refers to the order pz of the error estimator.

Now, if both methods operate in the asymptotic regime, the higher order result can
be considered “exact,” and the error estimate is effectively

l̃n = ‖yn+1 − zn+1‖ ≈ |cy(1)| · ‖y(py+1)(tn)‖ · h
py+1
n · π̂l(ρ̄).

This implies that the error constant and the dynamics π̂l(ρ̄) are those from the lower
order method. In effect, it emulates the situation where the actual error of the method
has been computed.

Case 2. In the second case, the order of the comparison method is the same as that
of the method, i.e., pz = py . In the AB2 example, this method/error combination will
be denoted AB2(2) to distinguish it from AB2(3) above. This computation can be
arranged in different ways. If the solution at time tn+1 is represented by the value of a
polynomial yn+1 = Pn+1(tn+1), one may e.g. use the polynomial from the previous
step, Pn(t), and compute the extrapolated reference value zn+1 = Pn(tn+1). We then
have

yn+1 − zn+1 = [Pn+1(tn+1) − y(tn+1)] − [Pn(tn+1) − y(tn+1)]
≈ (cy(ρ̄n) − cz(ρ̄n)) · hpy+1

n · y(py+1)(tn),

obtaining a raw error estimate,

en = ‖yn+1 − zn+1‖ ≈ |cy(1) − cz(1)| · ‖y(py+1)(tn)‖ · h
py+1
n · π̂e(ρ̄n),

where π̂e(ρ̄) accounts for the dynamics of the estimator, with which the con-
troller interacts. This function is derived in the same way as before, by obtaining a
variable step size formula for the method, as well as a formula for how the previ-
ous polynomial predicts zn+1 through extrapolation. When the difference between
these formulas are expanded in a Taylor series, we obtain en and π̂e(ρ̄), which is
approximated in the usual multiplicative way.

The raw estimates l̃n and en need further scaling to conform to the function w in
(10). In Case 2 in EPUS mode, en must be scaled back to the desired estimate rn of

551Numerical Algorithms (2021) 86:537–563

the method’s actual error. According to (9), we want to control the magnitude of the
quantity

‖w‖ ≈ |cy(1)|
by(1)

· ‖y(py+1)(tn)‖ · h
py
n ≈ Ce · ‖yn+1 − zn+1‖

hn · π̂e(ρ̄n)
,

where the estimator’s error constant is given by

Ce = 1

by(1)

∣∣∣∣
cy(1)

cy(1) − cz(1)

∣∣∣∣ . (39)

In Case 1, the constant Ce is replaced by Cl = 1/by(1) and π̂e(ρ̄n) is replaced by
π̂l(ρ̄n). We can then describe the computational process as follows.

1. Given (tn, yn), compute yn+1 = Pn+1(tn+1) at tn+1 = tn + hn.
2. For Case 1, take K̃ = Cl , and for Case 2, take K̃ = Ce, and compute the

dynamically compensated error estimate

r̃n = K̃ · ‖yn+1 − zn+1‖
hn

·
s∏

j=1

ρ
−δj

n−j . (40)

3. Compute the scaled control errors cn = (TOL/r̃n)
1/q , where q = py .

4. Apply recursive digital filter with coefficients (β1, β2, γ) to generate ρn from

ρn = cβ1
n c

β2
n−1ρ

−γ

n−1.

and update the step size according to hn+1 = ρnhn.

The complete system is illustrated in Fig. 4, where the classical use of the ele-
mentary controller corresponds to taking K(z) = 1 (no dynamic compensation)
and F(z) = 1 (no digital filter). Note that π̂e(ρ̄n) and π̂l(ρ̄n) are replaced by their
respective multiplicative approximants to construct the dynamically compensated
error estimate. Then r̃n ≈ ϕnh

py
n in the asymptotic regime, enabling the use of stan-

dard controllers. Without the compensator, controller performance drops, sometimes
exciting resonances or instability. Table 1 gives filter coefficients for the step size
controllers available in the proof-of-concept software [2].

Fig. 4 A complete feedback control system with digital filter F(z) and dynamic compensator K(z), which
transforms the error estimate log r using the step ratios log ρ. The controller is decomposed into three
parts. The first is a simple gain of 1/q, converting the compensated control error into the scaled control
error log c. The digital filter F(z) generates the step ratio log ρ. Finally, a simple integrator, 1/(z − 1),
changes the step size, which enters the computational process G(z). Here, we have taken log TOL = 0

552 Numerical Algorithms (2021) 86:537–563

Table 1 Filter coefficients for various controllers, [2, 21]

For selected methods of step number k ≤ 4, we give the parameters Cl , Ce and
{δj }s1 in Tables 2 and 3. The computation of these parameters is complex and was
carried out in MATHEMATICA and MAPLE, while numerical emulations and experi-
ments were done in MATLAB. Parameters for 5-step methods can also be provided on
request. The method parameters are associated with the particular type of error esti-
mation procedures described above, and may not work if other estimation procedures
are used.

Table 2 Error coefficients and parameters for selected 2-step, 3-step and 4-step methods

In each method designation, the number within parenthesis refers to the order of the error estimator, which
in this table is one order higher than the method order, i.e., pz = py + 1 with s = k − 1. The parameters
are independent of the actual choice of estimator as long as pz > py . Method designations refer to those
used in [1, 2]

553Numerical Algorithms (2021) 86:537–563

Table 3 Error coefficients and parameters for selected 2-step, 3-step and 4-step methods

In each method designation, the number within parenthesis refers to the order of the error estimator, which
in this table is the same as the method order, i.e., pz = py with s = k. The parameters are given for the
specific estimation procedure obtained by using polynomial extrapolation. Method designations refer to
those used in [1, 2]

6 Experimental results

Four well-known standard problems, linear as well as nonlinear, were chosen to
benchmark controller performance when different two-step methods were combined
with two different types of error estimators. Three-step methods were also tried, and
the controllers were either the elementary controller (the reference) and three dynam-
ically compensated controllers: exponential forgetting with gain β = 2/3, and the
digital filters H211PI and H211b. All combinations were run both in EPUS and EPS

modes, and for three different tolerances, for the first three problems, to check step
size sequences and step ratios, as well as tolerance proportionality. In all cases the
step size was selected to control the absolute error, and care was taken to ensure that
the methods operated in the asymptotic regime. Initial step sizes were equally spaced,
and in implicit methods the nonlinear systems were solved by Newton iteration to
full accuracy.

This provided a vast evaluation material, and only a few tests can be included
to illustrate the new adaptivity in practical operation. The selected examples were
chosen to illustrate various performance aspects. For example, a poor combina-
tion of method and error estimator may go unstable in tandem with the elementary

554 Numerical Algorithms (2021) 86:537–563

controller, but with a dynamic compensator the problems can be rectified. But this
relies crucially on knowing the δj coefficients listed above for selected methods.

The first test problem is the two-compartment dilution process

y′
1 = −1

5
y1

y′
2 = −2

5
(y2 − y1)

for t ∈ [0, 20], with exact solution
y1 = 0.3e−0.2t

y2 = 0.6(e−0.2t − e−0.4t).

The initial values were chosen as the exact solution values at the first steps.
The second test problem is the Lotka–Volterra equation,

y′
1 = 0.1y1 − 0.3y1y2

y′
2 = 0.5(y1 − 1)y2

for t ∈ [0, 62]. The initial values were taken as [1, 1], using a second order Taylor
expansion around this point.

The third problem is the van der Pol equation,

y′
1 = y2

y′
2 = μ(1 − y2

1)y2 − y1

with t ∈ [0, 20]. The initial values were [2, 0], with a second order Taylor expansion
providing additional initial values. We chose μ = 2 for nonstiff computation. Toler-
ance proportionality was checked by taking TOL = 10−m for a suitable integer m in
each test, as well as TOL = 10−m±q . Thus, when the local error per (unit) step is con-
trolled to keep ϕhq ∼ TOL, the step size should scale accordingly, like h ∼ TOL1/q ,
along the entire solution. All computations confirm that the control system as well as
the error estimators work in accordance with theory, producing three different step
size sequences one order of magnitude apart, see Figs. 5 and 6.

We finally tried stiff computation, where the method operates in part outside
standard asymptotic assumptions. Thus we solved the van der Pol equation for
μ = 103 and t ∈ [0, 1000] with the BDF2 method. Here, too, the controllers work as
expected, with the best performance obtained with the BDF2/AM2 combination and
the H211PI controller, see Figs. 7 and 8.

To also run a “large-scale” problem in moderately stiff computation, we ran a
fourth problem, the 1D Brusselator reaction–diffusion equation,

ut = A + u2v − (B + 1)u + a · uxx

vt = −u2v + Bu + a · vxx,

with A = 1, B = 3, a = 0.02, and boundary conditions u(t, 0) = u(t, 1) = 1 and
v(t, 0) = v(t, 1) = 3, together with initial conditions v(0, x) = 3 and

u(0, x) = 1 + 2 exp(−100(x − 0.4)2).

555Numerical Algorithms (2021) 86:537–563

Fig. 5 The AB2(2) method, using polynomial extrapolation as error estimation, is combined with the ele-
mentary controller (upper panels) and the compensated exponential forgetting controller with gain 2/3
(lower panels), running in EPUS mode with TOL = 10−5, 10−7, 10−9. Linear problem (left), Lotka–
Volterra (center), and van der Pol problem (right) all exhibit instabilities in the elementary controller in
this setting, causing ringing, in particular in the Lotka–Volterra problem. The instability is overcome by
the new controller, but is also less pronounced for sharp tolerances

556 Numerical Algorithms (2021) 86:537–563

Fig. 6 The AM2(4) method, using the fourth order AB4 as error estimator, is combined with the elemen-
tary controller (upper panels) and the compensated exponential forgetting controller with gain 2/3 (lower
panels), running in EPS mode with TOL = 10−4, 10−8, 10−12. Linear problem (left), Lotka–Volterra
(center), and van der Pol problem (right) show good behavior with the elementary controller, but tran-
sient performance improves for the compensated controller, in particular in the linear and Lotka–Volterra
problems

557Numerical Algorithms (2021) 86:537–563

0 200 400 600 800 1000

10-5

100

step sizes

0 200 400 600 800 1000

10-5

100

step sizes

0 200 400 600 800 1000

0.5

1

1.5

2

2.5

3

3.5

4
step ratios

0 200 400 600 800 1000

0.5

1

1.5

2

2.5

3

3.5

4
step ratios

Fig. 7 Stiff van der Pol equation is solved using the BDF2 method in EPS mode and H211PI control with
TOL = 10−6, 10−9. AM2 error estimation (left panels) is compared to 2nd order polynomial extrapolation
(right panels). Step sizes vary over seven orders of magnitude and scale correctly

This problem was solved using the method of lines with a standard equidistant FDM
space discretization of the diffusion term,

uxx ≈ uj−1 − 2uj + uj+1

Δx2
,

where we chose Δx = 1/(N + 1) with N = 60. This setup deviates somewhat from
the standard setup in the Bari test set, [15], the main differences being that we have
chosen an initial condition for u that is richer in Fourier components, and we use
N = 60 for somewhat higher resolution and increased stiffness, using a total of 120
equations. The problem was solved using the BDF2 method in EPS mode, with the
error estimated by AB3, BDF2 extrapolation and AM2 methods, respectively. The
absolute error was measured in the discreteL2 norm, and theH211PI controller was
used at two tolerances, TOL = 10−4 and TOL = 10−7, to verify order and tolerance
proportionality. Equidistant starting data were generated by the explicit Cash–Karp
5th order Runge–Kutta method, [4]. In this moderately stiff setup, the compensated
error control still works to exacting standards, with data for six runs presented in
Table 4, with the corresponding step size sequences in Figs. 9 and 10.

558 Numerical Algorithms (2021) 86:537–563

0 100 200 300 400 500 600 700 800 900 1000
0

5

10

15

20

25

30

35

40

Fig. 8 Stiff van der Pol equation is solved using the same BDF2 setup as in Fig. 7, comparing different
controllers. Step sizes are plotted on a linear scale for TOL = 10−6 to reveal transient behavior and
step size magnitude. Upper three curves use AM2 estimator together with the uncompensated elementary
controller (blue); with compensated exponential forgetting (black); and with H211PI (red). Lower three
curves use polynomial error estimator, and the same color coding. The AM2 estimator is twice as efficient,
while the compensated H211PI offers the best dynamic response and smoothness

7 Conclusions

We have demonstrated that the asymptotic local error model for multistep methods
has the form rn = ϕnh

q
n ·π̂(ρ̄n), where ρ̄n = {ρn−j }sj=1 and the step ratios are defined

by ρn−j = hn−j+1/hn−j , with tn+1 = tn + hn. The function π̂(ρ̄) accounts for step
size history, defining the dynamically compensated error

r̃n = rn ·
s∏

j=1

ρ
−δj

n−j ≈ ϕnh
q
n,

where the vector δ̄ = {δj }sj=1 is characteristic of each linear multistep method and
its error estimator. The multiplicative form of the compensator not only facilitates a
linear control analysis, but is also far simpler to implement.

Table 4 Total number of steps in Brusselator problem using BDF2 in EPS mode

559Numerical Algorithms (2021) 86:537–563

0

0.2

0.4

Brusselator solution

0

0.5

0

1

0.6

1.5

5

2

2.5

3

0.810

3.5

4

15
120

Fig. 9 Brusselator reaction–diffusion problem is solved using method of lines with adaptive BDF2 time
integration for x ∈ [0, 1] and t ∈ [0, 20]. The wave of the initial condition (left) becomes smoother with
time due to diffusion

It is also shown that the conventional elementary controller may suffer damaging
resonance phenomena, which are eliminated by instead controlling the compensated
error. Another common issue is that many existing multistep implementations only
allow the step size to be changed at fixed ratios, exciting transient behavior in the
step size control. To overcome anomalies, one needs to continually adjust the step
size and use a dynamic compensator.

Thus the implementation of multistep methods needs to be reconsidered. This
includes specifying a method together with a dedicated error estimator and its δj

coefficients, following a practice similar to that of Runge–Kutta methods, where
an “embedded form” is used. Due to the complexity of variable step size multistep
methods, we believe that this is a substantial task with a potential to improve current
software standards.

Moreover, with the dynamic compensator and a well selected controller, it is pos-
sible to achieve smooth step size sequences and tolerance proportionality in EPUS

mode. The implementation becomes tolerance convergent for Lipschitz problems.
The sharper the tolerance, the smoother is the step size sequence, cf. [22]. The adap-
tive numerical solution converges to the exact solution as TOL → 0. As ρ̄n → 1, the
adaptive method gradually starts behaving like a constant step size method, reducing
the need for the dynamic compensator.

Still, the choice of method order is not straightforward. At a given TOL, a higher
order method can complete the integration in fewer steps. But fewer steps also mean a
less regular step size sequence, possibly with a loss of tolerance proportionality. High

560 Numerical Algorithms (2021) 86:537–563

0 2 4 6 8 10 12 14 16 18 20

10-3

10-2

10-1

100
Step sizes with H211PI controller

BDF2AM2
BDF2AB3
BDF2extrapolation

Fig. 10 Brusselator problem is solved using BDF2 in EPS mode with dynamically compensated H211PI
control. Step sizes are plotted on a logarithmic scale for t ∈ [0, 20]. Upper three curves use TOL = 10−4

with AM2 estimator (blue); AB3 estimator (red) and BDF2 extrapolation (black). Lower three curves use
the same color coding, but with TOL = 10−7. Notice that the first period differs from subsequent periods;
compare Fig. 9. The AM2 estimator is again twice as efficient as the alternative error estimators as step
sizes are twice as large. Tolerance proportionality is evident for all combinations

order methods should therefore primarily be used when the accuracy requirement
is high. For a smooth step size sequence and a predictable adaptive behavior, one
typically needs several hundred steps to complete the integration, meaning that the
method order should primarily be chosen with respect to TOL, and less so with an aim
of minimizing total number of steps. It will still offer a good work/precision trade-off.

Although the new techniques are also demonstrated to work as expected in stiff
problems, further studies may be necessary for stiff computation, where the method
at least in part may operate outside asymptotic conditions.

Acknowledgements Open access funding provided by Lund University. This paper was written while CA
and GS were visiting the numerical analysis group at the Department of Applied Analysis of the Eötvös
Loránd University in Budapest. GS was generously supported by the Hungarian Academy of Sciences,
under the MTA Distuinguished Guest Fellowship Program in Hungary 2019. The organizational support
from Prof. István Faragó is also gratefully acknowledged. IF was supported by EFOP-3.6.3-VEKOP-16-
2017-00001: Talent Management in Autonomous Vehicle Control Technologies, funded by the Hungarian
Government and the European Social Fund. Project no. ED 18-1-2019-0030 (Application-specific highly
reliable ITsolutions) has been implemented with the support provided from the National Research, Devel-
opment and Innovation Fund of Hungary, financed under the Thematic Excellence Programme funding
scheme. The final reaction–diffusion test problem was suggested by Prof. Francesca Mazzia, who sup-
ported a visit by CA and GS to the Departments of Mathematics and Informatics, respectively, of the
University of Bari, Italy, during the fall of 2019. Finally, the suggestions by two referees were very helpful
in the revision of the paper and improved its significance.

561Numerical Algorithms (2021) 86:537–563

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
licence, and indicate if changes were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommonshorg/licenses/by/4.0/.

References

1. Arévalo, C., Söderlind, G.: Grid-independent construction of multistep methods. J. Comput. Math.
35, 672–692 (2017)

2. Arévalo, C., Jonsson-Glans, E., Olander, J., Selva Soto, M., Söderlind, G.: A Software Platform for
Adaptive High Order Multistep Methods. ACM Trans. Math. Softw. 46, 1–17 (2020). https://doi.org/
10.1145/3372159. (Software is publicly available for research purposes)

3. Butcher, J.C.: Numerical Methods for Ordinary Differential Equations. Wiley, Chichester (2008)
4. Cash, J.R., Karp, A.H.: A variable order Runge-Kutta method for initial value problems with rapidly

varying right-hand sides. ACM Trans. Math. Softw. 16, 201–222 (1990)
5. Crouzeix, M., Lisbona, F.J.: The convergence of variable-stepsize, variable formula, multistep

methods. SINUM 21, 512–534 (1984)
6. Gear, C.W.: Numerical Initial Value Problems in Ordinary Differential Equations. Prentice Hall,

Englewood Cliffs (1971)
7. Grigorieff, R.D.: Stability of multistep-methods on variable grids. Numer. Math. 42, 359–377 (1983)
8. Guglielmi, N., Zennaro, M.: On the zero-stability of variable stepsize multistep methods: the spectral

radius approach. Numer. Math. 88, 445–458 (2001)
9. Gustafsson, K., Lundh, M., Söderlind, G.: A PI stepsize control for the numerical solution of ordinary

differential equations. BIT Numer. Math. 28, 270–287 (1988)
10. Gustafsson, K.: Control theoretic techniques for stepsize selection in explicit Runge–Kutta methods.

ACM TOMS 17, 533–554 (1991)
11. Gustafsson, K.: Control theoretic techniques for stepsize selection in implicit Runge–Kutta methods.

ACM TOMS 20, 496–517 (1994)
12. Hairer, E., Nørsett, S.P., Wanner, G. Solvin Ordinary Differential Equations I: Nonstiff Problems, 2nd

edn. Springer, Berlin (1993)
13. Hairer, E., Wanner, G. Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic

Problems, 2nd edn. Springer, Berlin (1996)
14. Hairer, E., Söderlind, G.: Explicit, time reversible, adaptive step size control. SIAM J. Sci. Comp. 26,

1838–1851 (2005)
15. Mazzia, F., Magherini, C.: Test set for initial value problem solvers, release 2.4. Department of Mathe-

matics, University of Bari, Italy. https://archimede.dm.uniba.it/∼testset/testsetivpsolvers/ (2008)
16. Modin, K., Söderlind, G.: Geometric integration of Hamiltonian systems perturbed by Rayleigh

damping. BIT Numer. Math. 51, 977–1007 (2011)
17. Shampine, L., Gordon, M.: Computer Solution of Ordinary Differential Equations: The Initial Value

Problem. Freeman (1975)
18. Söderlind, G.: Automatic control and adaptive time-stepping. Num. Algorithms 31, 281–310 (2002)
19. Söderlind, G.: Digital filters in adaptive time-stepping. ACM Trans. Math. Software 29, 1–26 (2003)
20. Söderlind, G., Wang, L.: Adaptive time-stepping and computational stability. J. Comp. Methods Sci.

Eng. 185, 225–243 (2006)
21. Söderlind, G.: Time-step selection algorithms: adaptivity, control, and signal processing. Appl.

Numer. Math. 56, 488–502 (2006)
22. Söderlind, G., Fekete, I., Faragó, I.: On the zero-stability of multistep methods on smooth nonuniform

grids. BIT Numer. Math. 58, 1125–1143 (2018)
23. Stoffer, D.: Variable steps for reversible integration methods. Computing 55, 1–22 (1995)

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

562 Numerical Algorithms (2021) 86:537–563

http://creativecommonshorg/licenses/by/4.0/
https://doi.org/10.1145/3372159
https://doi.org/10.1145/3372159
https://archimede.dm.uniba.it/~testset/testsetivpsolvers/

Affiliations

Carmen Arévalo1 ·Gustaf Söderlind1 ·Yiannis Hadjimichael2 · Imre Fekete2,3

Carmen Arévalo
cbarevalo@gmail.com

Yiannis Hadjimichael
hadjimy@cs.elte.hu

Imre Fekete
feipaat@cs.elte.hu

1 Numerical Analysis, Center for Mathematical Sciences, Lund University, Box 118, Lund,
221 00, Sweden

2 MTA-ELTE Numerical Analysis and Large Networks Research Group, Pázmány P. s. 1/C,
Budapest, 1117, Hungary

3 Department of Applied Analysis and Computational Mathematics, Eötvös Loránd University,
Pázmány P. s. 1/C, Budapest, 1117, Hungary

563Numerical Algorithms (2021) 86:537–563

http://orcid.org/0000-0003-3559-960X
mailto: cbarevalo@gmail.com
mailto: hadjimy@cs.elte.hu
mailto: feipaat@cs.elte.hu

	Local error estimation and step size control in adaptive linear multistep methods
	Abstract
	Introduction
	Dynamic error models and control objectives
	Tools from linear control theory
	Control analysis of dynamic error models
	Local asymptotic error estimators
	Experimental results
	Conclusions
	References
	Affiliations

