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Abstract
In this paper, a stable collocation method for solving the nonlinear fractional delay
differential equations is proposed by constructing a new set of multiscale orthonormal
bases of W 1

2,0. Error estimations of approximate solutions are given and the highest

convergence order can reach four in the sense of the norm of W 1
2,0. To overcome the

nonlinear condition, we make use of Newton’s method to transform the nonlinear
equation into a sequence of linear equations. For the linear equations, a rigorous
theory is given for obtaining their ε-approximate solutions by solving a system of
equations or searching the minimum value. Stability analysis is also obtained. Some
examples are discussed to illustrate the efficiency of the proposed method.

Keywords Nonlinear fractional delay differential equations · ε-Approximate
solutions · Newton’s iterative formula

1 Introduction

Nowadays, fractional differential equations have been a hot topic in the field of dif-
ferential equations for their widespread applications in many science fields [1, 2].
Among them, fractional delay differential equations begin to arouse attentions of
many researchers. These equations have also many applications in various areas such
as control theory, biology, and economy [3, 4]. Since some models have a great deal
to do with past condition, the insertion of a time delay makes these models more real-
istic. Therefore, the development of theory and numerical algorithms about fractional
delay differential equations is of importance. For example, Hu and Zhao [5] give
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the condition of asymptotical stability of nonlinear fractional system with distributed
time delay by utilizing the function monotonous properties and the stability theorem
of the fractional linear system. Pimenov et al. [6] use a BDF difference scheme based
on approximations of Clenshaw and Curtis type to get the numerical solution of the
following equation:

D
β
Cy(t) = f [t, y(t), y(t − τ)], 0 ≤ t ≤ L, 0 < β ≤ 1,

y(t) = φ(t), − τ ≤ t ≤ 0.
(1)

For (1), Moghaddam and Mostaghim [4] use the fractional finite difference method
to obtain its numerical solutions. Saeed et al. [7] draw on the steps method and
Chebyshev wavelet method to solve the nonlinear fractional delay differential
equation:

Dα
Cy(x) = h(x)+f [y(x), y (x), y(px−τ), y (px − τ)], 0≤x ≤ b, 1<α≤2,

y(x) = φ(x), − b ≤ x ≤ 0,
(2)

and get their approximate solutions. However, to our best knowledge, there are few
articles about the study of fractional delay differential equations especially with
regard to nonlinear fractional delay differential equations.

Newton’s iterative method is a very powerful tool to solve the nonlinear prob-
lems. Many researchers have been studying and generalizing Newton’s iterative
method and they use it to solve nonlinear problems. Deuflhard [8] in his monograph
constructs adaptive Newton algorithms for some specific nonlinear problems. Kras-
nosel’skii et al. [9] in their monograph study the Newton-Kantorovich’s method, give
a modified Newton-Kantorovich’s method and solve the problem of the choice of
initial approximations. Xu et al. [10] use quasi-Newton’s method to linearize a non-
linear operator equation, and so on. Theoretical analysis shows that the convergence
order of Newton’s iterative formula is order 2.

Motivated greatly by the abovementioned excellent works, in this paper, we deal
with the nonlinear fractional delay differential (2) in the condition p = 1, that is the
following equation:

Dα
Cy(x) = g(x) + f [x, y(x), y (x), y(x − τ), y (x−τ)], 0 ≤ x ≤ 1, 1<α≤2,

y(x) = y0(x), − τ ≤ x ≤ 0,
(3)

where f has continuous second order partial derivative, g(x) ∈ C[0, 1] and y0(x) ∈
C2[−τ, 0] which are known functions. τ > 0 is a constant delay. The fractional
derivative is in the sense of Caputo and y(x) ∈ C1[−τ, 1] is the unknown function.

In this article, we develop a stable and effective collocation method to solve (3).
The collocation method is one of the most efficient methods for obtaining accurate
numerical solutions of differential equations including variable coefficients and non-
linear differential equations [11–14]. The stability of collocation methods has always
been an important topic. At present, the definition of its stability is that when there
are many collocation nodes, the resulting equations are not ill conditioned and the
results are still valid. For a stable collocation method, we can improve the accu-
racy by increasing the number of approximation terms. Accordingly, it is particularly
important to establish a high-precision and stable collocation method.
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The choice of bases of a space is important for a collocation method. Approximate
solutions with different accuracy can be derived by using different bases for the same
equation. For obtaining higher accuracy solution of the nonlinear fractional differen-
tial equation, we construct a new set of multiscale orthonormal bases of W 1

2,0, give
error estimations of approximate solutions, and prove in Section 3 that the highest
convergence order can reach four in the sense of W 1

2,0.
Noting that the problem of initial value selection of the Newton’s iterative method

has been well solved in [9], so in this paper we transform (3) into a list of lin-
ear equations by using Newton’s iterative method. Then a new stable collocation
method is proposed to solve these equations. Compared with [15], the final numerical
experiments show that our method is better in dealing with this kind of equations.

The remainder of this paper is organized as follows: In Section 2, some rele-
vant definitions and properties of the fractional calculus and the space W 1

2 and W 1
2,0

are introduced. In Section 3, we construct a set of multiscale orthonormal bases of
W 1

2,0 and give an error estimation of the approximate solution. In Section 4, we con-
struct the ε−approximate solution method and apply this method to solve the linear
fractional delay differential equation. In Section 5, we analyze the stability of the
ε−approximate solution method. In Section 6, we make use of Newton’s method to
transform the nonlinear equation into a sequence of linear equations. In Section 7,
we give the algorithm implementation of Newton’s iterative formula for solving the
nonlinear fractional delay differential equation. In Section 8, three numerical exam-
ples are given to clarify the effectiveness of the algorithm. In the last section, the
conclusions are prensented.

2 Preliminaries and notations

In this section, some preliminary results about the fractional calculus operators and
reproducing kernel spaces are recalled [16–18].

Definition 2.1 The Riemann-Liouville (R-L) fractional integral operator Jα
0 is given

by

Jα
0 u(x) = 1 x

0
(x − s)α−1u(s)ds, α > 0,

where = ∞
0 xα−1e−xdx.

Definition 2.2 The Caputo fractional differential operator Dα
C is given by

Dα
Cu(x) = 1

− α)

x

0
(x − s)n−α−1u(n)(s)ds, n − 1 < α < n, n α .

Theorem 2.1 Let u(x) be the exact solution of (3), then Dα
Cu(x) ∈ C[0, 1].

Proof By the assumption, one has

|Dα
Cu(x)| = |J 2−α

0 u (x)| < ∞.
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Since integrability of a function is equivalent to its absolute integrability, one has

x1−α

2 − α)

x

0
|u (s)|ds ≤ 1

2 − α)

x

0
(x − s)1−α|u (s)|ds < ∞.

Taking x = 1, we obtain u (x) ∈ L1[0, 1]. Thus, u(x) and u (x) are absolutely
continuous on [0,1]. Hence, Dα

Cu = g(x) + f [x, u(x), u (x), u(x − τ), u (x − τ)] ∈
C[0, 1].

Definition 2.3 Assume that n is a positive integer, then we denote

ACn[0, 1] = {u(x)|u(n−1)(x) is absolute continuous in [0, 1] }.

W 1
2 = W 1

2 [0, 1] = {u(x)|u(x) ∈ AC[0, 1], u ∈ L2[0, 1]}.
The inner product (·, ·)1 and the norm 1 of W 1

2 are given by

(u, v)1=u(0)v(0) +
1

0
u (x)v (x)dx, u(x) 1 = (u(x), u(x))1 , ∀u, v ∈ W 1

2 .

It is easy to see that W 1
2 ⊂ C[0, 1]. Similar to [17], we can prove that W 1

2 is not
only a Hilbert space, but also a reproducing kernel space with the reproducing kernel

r(x, y) = 1 + x, x ≤ y,

1 + y, x > y.

Definition 2.4 The inner product space W 1
2,0 is defined as W 1

2,0 W 1
2,0[0, 1] =

{u(x) ∈ W 1
2 |u(0) = 0} with the inner product

(u, v)1 =
1

0
u (x)v (x)dx, ∀u, v ∈ W 1

2,0.

Lemma 2.1

u(x) C ≤ √
2 u(x) 1, ∀u(x) ∈ W 1

2 ,

where u(x) C max
x∈[0,1]

|u(x)|.

Proof For any u(x) ∈ W 1
2 , we have

|u(x)| = | (u(y), r(x, y))1 u(x) 1 r(x, y) 1 u(x) 1 · r(x, x)

u(x) 1
√
1 + x ≤ √

2 u(x) 1.

Thus u(x) C ≤ √
2 u(x) 1.

The following definition will be used in Section 6.
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Definition 2.5 The inner product space Wα
2 is defined as Wα

2 Wα
2 [0, 1] =

{Jα
0 u(s)|u(s) ∈ W 1

2,0[0, 1]}. And the inner product and the norm of Wα
2 are given by

(u, v)α = (Dα
Cu(s), Dα

Cv(s))1

=
1

0
(Dα

Cu) (s)(Dα
Cv) (s)ds, u(x) α = (u(x), u(x))α ,

where u, v ∈ Wα
2 .

Remark 2.1 Similar to [19], one can prove that Wα
2 is not only a Hilbert space, but

also a reproducing kernel space.

3 Construction of themultiscale orthonormal bases ofW1
2,0 and error

estimations

In this section, we construct the multiscale orthonormal bases of W 1
2,0 by the famous

Legendre multiwavelets, and give error estimations of approximate solutions.
Define the cubic Legendre scaling functions in the interval [0, 1] [20],

η0(x) = 1,

η1(x) = √
3(2x − 1),

η2(x) = √
5(6x2 − 6x + 1),

η3(x) = √
7(20x3 − 30x2 + 12x − 1),

and then cubic Legendre multiwavelets are given as

φ0(x) =
⎧⎨
⎩

k1(x) = − 15
17 (224x

3 − 216x2 + 56x − 3), x ∈ [0, 1
2 ),

k2(x) = 15
17 (224x

3 − 456x2 + 296x − 61), x ∈ [ 12 , 1],

φ1(x) =
⎧⎨
⎩

k3(x) = 1
21 (1680x

3 − 1320x2 + 270x − 11), x ∈ [0, 1
2 ),

k4(x) = 1
21 (1680x

3 − 3720x2 + 2670x − 619), x ∈ [ 12 , 1],

φ2(x) =
⎧⎨
⎩

k5(x) = − 35
17 (256x

3 − 174x2 + 30x − 1), x ∈ [0, 1
2 ),

k6(x) = 35
17 (256x

3 − 594x2 + 450x − 111), x ∈ [ 12 , 1],

φ3(x) =
⎧⎨
⎩

k7(x) = 5
42 (420x

3 − 246x2 + 36x − 1), x ∈ [0, 1
2 ),

k8(x) = 5
42 (420x

3 − 1014x2 + 804x − 209), x ∈ [ 12 , 1],
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φ0
ik(x) = √

2
i−1

φ0(2i−1x − k) = √
2
i−1

⎧⎪⎪⎨
⎪⎪⎩

k1(2i−1x − k), x ∈ [ k

2i−1 ,
k+ 1

2
2i−1 ),

k2(2i−1x − k), x ∈ [ k+ 1
2

2i−1 , k+1
2i−1 ],

0, else,

φ1
ik(x) = √

2
i−1

φ1(2i−1x − k) = √
2
i−1

⎧⎪⎪⎨
⎪⎪⎩

k3(2i−1x − k), x ∈ [ k

2i−1 ,
k+ 1

2
2i−1 ),

k4(2i−1x − k), x ∈ [ k+ 1
2

2i−1 , k+1
2i−1 ],

0, else,

φ2
ik(x) = √

2
i−1

φ2(2i−1x − k) = √
2
i−1

⎧⎪⎪⎨
⎪⎪⎩

k5(2i−1x − k), x ∈ [ k

2i−1 ,
k+ 1

2
2i−1 ),

k6(2i−1x − k), x ∈ [ k+ 1
2

2i−1 , k+1
2i−1 ],

0, else,

φ3
ik(x) = √

2
i−1

φ3(2i−1x − k) = √
2
i−1

⎧⎪⎪⎨
⎪⎪⎩

k7(2i−1x − k), x ∈ [ k

2i−1 ,
k+ 1

2
2i−1 ),

k8(2i−1x − k), x ∈ [ k+ 1
2

2i−1 , k+1
2i−1 ],

0, else,

where i = 1, 2, · · · , k = 0, 1, 2, · · · , 2i−1 − 1.
Denote

{ϕi(x)}∞i=1 {η0(x), η1(x), η2(x), η3(x), φ0(x), φ1(x), φ2(x), φ3(x), φ0
20(x),

φ0
21(x), φ1

20(x), φ1
21(x), φ2

20(x),

φ2
21(x), φ3

20(x), φ3
21(x), φ0

30(x), · · · }.

Lemma 3.1 {ϕi(x)}∞i=1 is a set of multiscale orthonormal bases of L
2[0, 1].

Proof For the proof one can refer to [21].

Theorem 3.1 {ψi(x)}∞i=1 {J 1
0 ϕi(x)}∞i=1 = {J 1

0 η0(x), J 1
0 η1(x), J 1

0 η2(x), J 1
0 η3(x),

J 1
0 φ0(x), J 1

0 φ1(x), J 1
0 φ2(x), J 1

0 φ3(x), J 1
0 φ0

20(x), J 1
0 φ0

21(x), J 1
0 φ1

20(x), J 1
0 φ1

21(x),
J 1
0 φ2

20(x), J 1
0 φ2

21(x), J 1
0 φ3

20(x), J 1
0 φ3

21(x), J 1
0 φ0

30(x), · · · } is a set of orthonormal
bases of W 1

2,0[0, 1].
Proof Firstly, we show that {ψi(x)}∞i=1 is orthonormal in W 1

2,0.

(ψi(x), ψj (x))1 = (J 1
0 ϕi(x), J 1

0 ϕj (x))1 = (ϕi(x), ϕj (x))L2 = δij ,

where δij = 1, i = j

0, i = j
. So {ψi(x)}∞i=1 is orthonormal in W 1

2,0.

Next, we prove that {ψi(x)}∞i=1 is complete in W 1
2,0. Let ξ(x) ∈ W 1

2,0 and
(ξ(x), ψi(x))1 = 0, i = 1, 2, · · · . That is,

(ξ(x), ψi(x))1=(ξ(x), J 1
0 ϕi(x))1=(ξ (x), ϕi(x))L2 =

1

0
ξ (x) · ϕi(x)dx =0. (4)

By Lemma 3.1, {ϕi(x)}∞i=1 is a set of multiscale orthonormal bases of L2[0, 1], and
we obtain ξ (x) = 0. Noting that ξ(x) ∈ W 1

2,0, we have ξ(0) = 0. So ξ(x) =
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ξ(0) + x

0 ξ (t)dt = 0. Thus, {ψi(x)}∞i=1 is complete in W 1
2,0 and {ψi(x)}∞i=1 is a set

of orthonormal bases of W 1
2,0.

Remark 3.1 Noting that

J 1
0 φm

ik(x) =
1

0
φm

ik(x)dx =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, x ∈ [0, k

2i−1 ),

2
i−1
2

x
k

2i−1
φm(2i−1t − k)dt, x ∈ [ k

2i−1 ,
k+1
2i−1 ],

2
i−1
2

k+1
2i−1
k

2i−1
φm(2i−1t − k)dt, x ∈ ( k+1

2i−1 , 1],

=

⎧⎪⎨
⎪⎩
0, x ∈ [0, k

2i−1 ),

2− i−1
2

2i−1x−k

0 φm(t)dt, x ∈ [ k

2i−1 ,
k+1
2i−1 ],

2− i−1
2

1
0 φm(t)dt, x ∈ ( k+1

2i−1 , 1],

=

⎧⎪⎨
⎪⎩
0, x ∈ [0, k

2i−1 ),

2− i−1
2 (J 1

0 φm)(2i−1x − k), x ∈ [ k

2i−1 ,
k+1
2i−1 ],

0, x ∈ ( k+1
2i−1 , 1],

= 2− i−1
2 (J 1

0 φm)(2i−1x − k),

and we can see that J 1
0 φm(x), m = 0, 1, 2, 3 is multiwavelets in W 1

2,0.

Definition 3.1 Let μ(x) ∈ L2[0, 1]. If μ(x) satisfies the following conditions

1

0
μ(x) · xjdx = 0, j = 0, 1, 2, · · · , r;

1

0
μ(x) · xr+1dx = 0,

we call the Vanishing Moment of μ(x) is r + 1.

Property 3.1 The Vanishing Moment of φi(x) is i + 4, i = 0, 1, 2, 3.

Proof By specific calculation, we can reach that

1

0
φi(x) · xjdx = 0, i = 0, 1, 2, 3; j = 0, 1, · · · , i + 3,

and 1
0 φi(x) · xi+4dx = 0, i = 0, 1, 2, 3. So the conclusion holds.

Remark 3.2 According to Property 3.1, we obtain that the Vanishing Moment of
{φi(x)}3i=0 is at least 4.

Property 3.2 For any v(x) ∈ W 1
2,0[0, 1] and N ∈ N+, we have

v(x) −
N

i=1

aiψi(x) 2
1 =

∞

i=N+1

a2i ,

where ai = (v(x), ψi(x))1.
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Proof According to Theorem 3.1, {ψi(x)}∞i=1 is a set of orthonormal bases of
W 1

2,0[0, 1]. Hence,
v(x) =

∞

i=1

aiψi(x),

where ai = (v(x), ψi(x))1. Thus,

v(x) −
N

i=1

aiψi(x) 2
1

∞

i=1

aiψi(x) −
N

i=1

aiψi(x) 2
1

∞

i=N+1

aiψi(x) 2
1 =

∞

i=N+1

a2i .

Let y(x) and yJ (x) be an exact solution and an approximate solution of (3),
respectively. Denote

y(x) =
3

i=0

aiJ
1
0 ηi(x) +

∞

i=1

3

l=0

2i−1−1

k=0

cl
ikJ

1
0 φl

ik(x),

yJ (x) =
3

i=0

aiJ
1
0 ηi(x) +

J

i=1

3

l=0

2i−1−1

k=0

cl
ikJ

1
0 φl

ik(x),

where ai = (y(x), J 1
0 ηi(x))1, cl

ik = (y(x), J 1
0 φl

ik(x))1.

Lemma 3.2 Let y(x) ∈ W 1
2,0, | y(j)(x) |≤ M, ∀ x ∈ [0, 1], for some j ∈

{2, 3, 4, 5}. Then |cl
ik| ≤ 2−(i−1)(j−1/2)AM, l = 0, 1, 2, 3 where A is a constant.

Proof Without loss of generality, we first consider |c0ik|.

|c0ik| = y(x), J 1
0 φ0

ik(x)
1

=
1

0
y (x)φ0

ik(x)dx =
k+1
2i−1

k

2i−1

y (x)φ0
ik(x)dx .

Expand y (x) at x = k

2i−1 :

y (x) = y
k

2i−1
+ y

k

2i−1
x − k

2i−1
+ · · ·

+ y(j)(ξ)

(j − 1)! x − k

2i−1

j−1

, ξ ∈ k

2i−1
,
k + 1

2i−1
.

Thus, we have

c0ik ≤ y
k

2i−1

k+1
2i−1

k

2i−1

φ0
ik(x)dx + y

k

2i−1

k+1
2i−1

k

2i−1

x − k

2i−1
φ0

ik(x)dx

+ · · · +
k+1
2i−1

k

2i−1

y(j)(ξ)

(j − 1)! x − k

2i−1

j−1

φ0
ik(x)dx .
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The first integral of the above inequality

k+1
2i−1

k

2i−1

φ0
ik(x)dx = √

2
i−1

k+1
2i−1

k

2i−1

φ0(2i−1x − k)dx t = 2i−1x − k
√
2
i−1

×
1

0
φ0(t)

1

2

i−1

dt = 1√
2

i−1 1

0
φ0(t)dt = 0,

by using Property 3.1.
Similarly, one can obtain that

k+1
2i−1

k

2i−1

x − k

2i−1
φ0

ik(x)dx = 0,
k+1
2i−1

k

2i−1

x − k

2i−1

2

φ0
ik(x)dx

= 0,
k+1
2i−1

k

2i−1

x − k

2i−1

3

φ0
ik(x)dx = 0.

while

k+1
2i−1

k

2i−1

y(j)(ξ)

(j − 1)! x − k

2i−1

j−1

φ0
ik(x)dx ≤ M

(j − 1)!
k+1
2i−1

k

2i−1

x − k

2i−1

j−1

φ0
ik(x) dx

= M

(j − 1)!
√
2
i−1

k+1
2i−1

k

2i−1

x − k

2i−1

j−1

φ0(2i−1x − k) dx

= M

(j − 1)!
√
2
i−1 1

0

t

2i−1

j−1

φ0(t)
1

2

i−1

dt (t = 2i−1x − k)

= M

(j − 1)!
1

2(i−1)(j−1/2)

1

0
tj−1 φ0(t) dt

≤2−(i−1)(j−1/2)AM,

where A = max
l=0,1,2,3

1
(j−1)!

1
0 tj−1 φl(t) dt . one has

|c0ik| ≤ 2−(i−1)(j−1/2)AM .

In the same way, one can derive that |cl
ik| ≤ 2−(i−1)(j−1/2)AM, l = 1, 2, 3. So

the conclusion holds.

Theorem 3.2 Assume y(x) ∈ W 1
2,0, |y(j)(x)| ≤ M, ∀ x ∈ [0, 1], for some j ∈

{2, 3, 4, 5}. Then y(x) − yJ (x) 1≤ C · 2−(j−1)J where C is a constant.
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Proof Using Property 3.2 and Lemma 3.2, we can derive

y(x) − yJ (x) 1 =
∞

i=J+1

3

l=0

2i−1−1

k=0

cl
ikJ

1
0 φl

ik(x)

1

=
∞

i=J+1

3

l=0

2i−1−1

k=0

(cl
ik)

2

≤ AM

∞

i=J+1

3

l=0

2i−1−1

k=0

(2−(i−1)(j−1/2))2

= AM

∞

i=J+1

2−2(i−1)(j−1) · 4 ≤ C · 2−(j−1)J ,

where C = AM 4
1−2−2(j−1) .

4 Linear fractional delay differential equations

In this section, we construct the ε-approximate solution method for solving (3) with
f being linear, i.e.,

Dα
Cy(x) = h(x) + a(x)y(x) + b(x)y (x) + c(x)y(x − τ) + d(x)y (x − τ), 0 ≤ x ≤ 1, 1 < α ≤ 2,

y(x) = y0(x), − τ ≤ x ≤ 0,
(5)

and analyze the convergence order of the ε-approximate solutions.
a(x), b(x), c(x), d(x), h(x) ∈ W 1

2 [0, 1], y0(x) ∈ C2[−τ, 0] are known functions
and y(x) is an unknown function. τ > 0 is a constant delay. Similar to Theorem 2.1,
we can prove Dα

Cy(x) ∈ C[0, 1]. Here, we further assume Dα
Cy(x) ∈ W 1

2 .
Let

ζ(x) = y0(x), − τ ≤ x ≤ 0,
y0(0) + xy0(0), 0 ≤ x ≤ 1,

and
v(x) = y(x) − ζ(x).

Then (5) is equivalently transformed into

Dα
Cv = g(x) + a(x)v(x) + b(x)v (x) + c(x)v(x − τ) + d(x)v (x − τ), 0 ≤ x ≤ 1,

v(x) = 0, − τ ≤ x ≤ 0,
(6)

where

g(x) = h(x) + a(x)ζ(x) + b(x)ζ (x) + c(x)ζ(x − τ) + d(x)ζ (x − τ).

Introducing the symbols −τDα
C and Jα−τ , we have −τDα

C = Dα
C, J α−τ = Jα

0
due to the fact that −τDα

Cv(x) = 1
2−α)

x

−τ
(x − t)1−αv (t)dt = 1

2−α)

x

0 (x −
t)1−αv (t)dt = Dα

Cv(x) and Jα−τ v(x) = 1 x

−τ
(x − t)α−1v(t)dt = 1 x

0 (x −
t)α−1v(t)dt = Jα

0 v(x). So we use the denotation Dα
C and Jα

0 below.
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Let ω(x) = −τD
α
Cv(x) = Dα

Cv(x). Thus, (6) is transformed into

ω(x) = g(x) + a(x)J α
0 ω(x) + b(x)J α−1

0 ω(x) + c(x)J α
0 ω(x − τ) + d(x)J α−1

0 ω(x − τ), 0 ≤ x ≤ 1,
ω(x) = 0, − τ ≤ x ≤ 0.

And v(x) = Jα−τ
−τD

α
Cv(x) = Jα−τω(x) = Jα

0 ω(x).
Defining an operator L : W 1

2,0 → W 1
2,0,

L(ω(x)) ω(x) − a(x)J α
0 ω(x) − b(x)J α−1

0 ω(x) − c(x)J α
0 ω(x − τ) − d(x)J α−1

0 ω(x − τ), (7)

then (6) is equivalent to
L(ω(x)) = g(x). (8)

Therefore, the solution y(x) of (5) can be obtained by

y(x) = v(x) + ζ(x) = Jα
0 ω(x) + ζ(x). (9)

We need the following Lemmas for our aims.

Lemma 4.1 (J α
0 ω(x))x ∈ L1[0, 1] for any ω(x) ∈ W 1

2,0[0, 1] with α > 0.

Proof It is easy to see that

Jα
0 ω(x) = 1 x

0
(x − t)α−1ω(t)dt = 1 x

0
sα−1ω(x − s)ds.

So we can derive

(J α
0 ω)x = 1 x

0
sα−1ω (x − s)ds = 1 x

0
(x − t)α−1ω (t)dt .

Thus,
1

0
(J α

0 ω)t dt ≤ 1 1

0

t

0
(t − s)α−1ω (s)ds dt

≤ 1 1

0

t

0
(t − s)α−1 ω (s) dsdt

= 1 1

0

1

s

(t − s)α−1 ω (s) dtds

= 1

+ 1)

1

0
ω (s) (1 − s)αds

≤ 1

+ 1)

1

0
ω (s) ds < ∞.

This implies (J α
0 ω(x))x ∈ L1[0, 1].

Lemma 4.2 Let α > 0. Then

Jα
0 ω ∈ W 1

2,0 and Jα
0 ω 1 ≤ M̃α ω 1,
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hold for any ω(x) ∈ W 1
2,0 where M̃α = 1

α2 2(α)
.

Proof We can find that
x

0
(J α

0 ω)tdt = 1 x

0

t

0
(t − s)α−1ω (s)dsdt

= 1 x

0

x

s

(t − s)α−1ω (s)dtds

= 1 x

0
ω (s)

x

s

(t − s)α−1dt ds

= 1

+ 1)

x

0
ω (s)(x − s)αds,

hold for any ω(x) ∈ W 1
2,0. On the other hand, we obtain

Jα
0 ω(x) = 1 x

0
ω(t)(x − t)α−1dt = 1

+ 1)

x

0
ω (t)(x − t)αdt,

by using the integration by parts. Hence, we have Jα
0 ω(x) = x

0 (J α
0 ω)tdt and

Jα
0 ω(x) ∈ AC[0, 1].
Moreover, we have
1

0
(J α

0 ω(x))x
2 dx = 1

2(α)

1

0

x

0
(x − t)α−1ω (t)dt

2

dx

≤ 1
2(α)

1

0

x

0
(x − t)α−1dt ·

x

0
(x − t)α−1ω 2(t)dt dx

= 1
2(α)

1

0

xα

α

x

0
(x − t)α−1ω 2(t)dt dx

≤ 1
2(α)

1

0

x

0
(x − t)α−1ω 2(t)dtdx

= 1
2(α)

1

0

1

t

(x − t)α−1ω 2(t)dxdt

= 1

α2 2(α)

1

0
ω 2(t)(1 − t)αdt

≤ 1

α2 2(α)

1

0
ω 2(t)dt .

Let M̃α = 1
α2 2(α)

. Then

1

0
(J α

0 ω(x))x
2 dx ≤ M̃α

1

0
ω 2(t)dt = M̃α ω 2

1 < ∞,

holds. So (J α
0 ω(x))x ∈ L2[0, 1]. Noting that Jα

0 ω(0) = 0, we have Jα
0 ω(x) ∈ W 1

2,0
and

Jα
0 ω 1 ≤ M̃α ω 1.
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Lemma 4.3 Let a(x) ∈ W 1
2 [0, 1], ω(x) ∈ W 1

2,0[0, 1], α > 0. Then

a(x)J α
0 ω(x) 2

1 ≤ 4 a(x) 2
1

1
2(α + 1)

+ M̃α ω 2
1,

holds.

Proof Using Lemmas 2.1 and 4.2, we have

a(x)J α
0 ω(x) 2

1 = a(x)J α
0 ω(x), a(x)J α

0 ω(x) 1

=
1

0
a(x)J α

0 ω(x)
2
dx

=
1

0
a (x)J α

0 ω(x) + a(x)(J α
0 ω(x))

2 dx

≤ 2
1

0
a (x)J α

0 ω(x)
2 dx + 2

1

0
a(x)(J α

0 ω(x))
2 dx

≤ 2 Jα
0 ω(x) 2

C

1

0
a 2(x)dx + 2 a(x) 2

C

1

0
(J α

0 ω(x))
2 dx

≤ 2 a(x) 2
1

2(α)

x

0
(x − t)α−1ω(t)dt

2

C

+ 4 a(x) 2
1M̃α ω 2

1

≤ 2 a(x) 2
1

2(α)
ω(x) 2

C

x

0
(x − t)α−1dt

2

+ 4 a(x) 2
1M̃α ω 2

1

= 2 a(x) 2
1

2(α + 1)
ω(x) 2

Cx2α + 4 a(x) 2
1M̃α ω 2

1

≤ 4 a(x) 2
1

2(α + 1)
ω(x) 2

1 + 4 a(x) 2
1M̃α ω 2

1

= 4 a(x) 2
1

1
2(α + 1)

+ M̃α ω 2
1.

So the conclusion holds.

Theorem 4.1 The operator L defined by (7) is a bounded linear operator from W 1
2,0

to W 1
2,0.

Proof Obviously, L is a linear operator. Noting that a(x), b(x), c(x), d(x) ∈
W 1

2 [0, 1], thus we know a(x), b(x), c(x), d(x) ∈ AC[0, 1]. Denote M1 =
max a(x) 1, b(x) 1, c(x) 1, d(x) 1}.

Let ω(x) ∈ W 1
2,0[0, 1], according to Lemma 4.2 and 4.3, and we have Jα

0 ω ∈
W 1

2,0, and there exists an M̃α such that

Jα
0 ω 1 ≤ M̃α ω 1,
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a(x)J α
0 ω(x) 2

1 ≤ 4 a(x) 2
1

1
2(α + 1)

+ M̃α ω 2
1 ≤ 4M2

1
1

2(α + 1)
+ M̃α ω 2

1,

c(x)J α
0 ω(x − τ) 2

1 ≤ 4 c(x) 2
1

1
2(α + 1)

+ M̃α ω 2
1 ≤ 4M2

1
1

2(α + 1)
+ M̃α ω 2

1.

Similarly, there exists an M̃α−1 such that

b(x)J α−1
0 ω(x) 2

1 ≤ 4 b(x) 2
1

1
2(α)

+ M̃α−1 ω 2
1 ≤ 4M2

1
1
2(α)

+ M̃α−1 ω 2
1,

d(x)J α−1
0 ω(x − τ) 2

1 ≤ 4 d(x) 2
1

1
2(α)

+ M̃α−1 ω 2
1 ≤ 4M2

1
1
2(α)

+ M̃α−1 ω 2
1.

Therefore,

L(ω(x)) 1 ω(x) − a(x)J α
0 ω(x) − b(x)J α−1

0 ω(x) − c(x)J α
0 ω(x − τ) − d(x)J α−1

0 ω(x − τ) 1

ω(x) 1 + 4M1 ω 1
1

2(α + 1)
+ M̃α + 4M1 ω 1

1
2(α)

+ M̃α−1

= 1 + 4M1
1

2(α + 1)
+ M̃α + 4M1

1
2(α)

+ M̃α−1 ω(x) 1,

which implies L is a bounded linear operator from W 1
2,0 to W 1

2,0.

Theorem 4.2 Suppose there exists a unique solution of the equation defined by (8),
then L is a bijection from W 1

2,0 to L(W 1
2,0) and L−1 : L(W 1

2,0) → W 1
2,0 does not only

exist but is also bounded.

Remark 4.1 It is easy to see that L is a bijection from W 1
2,0 to L(W 1

2,0). For the latter

part of the conclusion, we can define an operator J : W 1
2,0 → W 1

2,0, J (ω(x)) =
Jα
0 ω(x), ω(x) ∈ W 1

2,0. One can prove that the operator J is compact. Since the sum

of finite compact operators is still compact and {(I −J )ω(x)|ω(x) ∈ W 1
2,0} is closed,

one can obtain that L−1 : L(W 1
2,0) → W 1

2,0 is bounded by the Inverse Operator
Theorem in the Banach spaces.

Definition 4.1 y(x) is called an ε−approximate solution of (8) if L(y) − g 1< ε

for any given ε > 0.

Theorem 4.3 For any ε > 0, there exists a positive integer N such that for every
fixed n ≥ N , ω∗

n(x) = n
i=0 c∗

i ψi(x) is an ε−approximate solution of (8), where
{c∗

i }ni=0 satisfies

g(x) −
n

i=0

c∗
i fi(x) 1 = min

ci∈R
g(x) −

n

i=0

cifi(x) 1 (10)
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and

fi(x) = L(ψi(x)), i = 0, 1, 2, 3, · · · .

Proof Suppose ω(x) is the exact solution of (8). By Theorem 3.1, there exists a
positive integer N such that for any n > N , there exists ωn(x) = n

i=0 ciψi(x) such
that

ω(x) − ωn(x) 1 ω(x) −
n

i=0

ciψi(x) 1 <
ε

L
.

So we can derive

L(ω(x)) − L(ωn(x)) 1 L ω(x) − ωn(x) 1 < ε.

Noting that L(ω(x)) = g(x), we have g(x) − L(ωn(x)) 1 g(x) −
n
i=0 cifi(x) 1 < ε. Thus, we obtain

g(x) − L(ω∗
n(x)) 1 g(x) − L

n

i=0

c∗
i ψi(x) 1 g(x) −

n

i=0

c∗
i fi(x) 1

= min
ci∈R

g(x) −
n

i=0

cifi(x) 1 < ε.

That is, ω∗
n(x) is an ε−approximate solution of (8).

Next, we find the ε−approximate solution of (8). Denote

S(c1, c2, · · · , cn) g(x) −
n

i=0

cifi(x) 2
1. (11)

According to the norm definition, we have

S(c1, c2, · · · , cn) = (g(x) −
n

i=0

cifi (x), g(x) −
n

j=0

cj fj (x))1

= (g(x), g(x))1 − 2(g(x),

n

i=0

cifi (x))1 +
⎛
⎝ n

i=0

cifi (x),

n

j=0

cj fj (x)

⎞
⎠

1

= (g(x), g(x))1 − 2
n

i=0

ci (g(x), fi (x))1 +
n

i=0

n

j=0

cicj (fi (x), fj (x))1. (12)

For obtaining the minimum of the S(c1, c2, · · · , cn), we solve the normal equa-
tions of (12)

∂S

∂ck

= −2(g(x), fk(x))1 + 2
n

i=0

ci(fi(x), fk(x))1 = 0, k = 0, 1, · · · , n. (13)

Theorem 4.4 The system of normal (13) has a unique solution.
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Proof The system of normal (13) can be rewritten as:

⎛
⎜⎜⎜⎝

(f0(x), f0(x))1 (f0(x), f1(x))1 · · · (f0(x), fn(x))1
(f1(x), f0(x))1 (f1(x), f1(x))1 · · · (f1(x), fn(x))1

...
...

...
...

(fn(x), f0(x))1 (fn(x), f1(x))1 · · · (fn(x), fn(x))1

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

c0
c1
...
cn

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

(g(x), f0(x))1
(g(x), f1(x))1

...
(g(x), fn(x))1

⎞
⎟⎟⎟⎠

Denote

G =

⎛
⎜⎜⎜⎝

(f0(x), f0(x))1 (f0(x), f1(x))1 · · · (f0(x), fn(x))1
(f1(x), f0(x))1 (f1(x), f1(x))1 · · · (f1(x), fn(x))1

...
...

...
...

(fn(x), f0(x))1 (fn(x), f1(x))1 · · · (fn(x), fn(x))1

⎞
⎟⎟⎟⎠ ,

then G is a Gram matrix. So G is a nonsingular matrix if and only if
f0(x), f1(x), · · · , fn(x) are linearly independent.

We prove that f0(x), f1(x), · · · , fn(x) are linearly independent. Let

l0f0(x) + l1f1(x) + · · · + lnfn(x) ≡ 0.

We derive n
i=0 liL(ψi(x)) ≡ 0, or L(

n
i=0 liψi(x)) ≡ 0. Since L is injective, thus

n
i=0 liψi(x) ≡ 0. Noting that {ψi(x)}ni=0 are linearly independent, we obtain li =

0, i = 0, 1, · · · , n. Therefore, f0(x), f1(x), · · · , fn(x) are linearly independent, G
is nonsingular, and the system of normal (13) has a unique solution.

Remark 4.2 The unique solution of normal (13) is denoted as (c∗
0, c

∗
1, · · · , c∗

n). Sim-
ilar to [22], we can prove S(c1, c2, · · · , cn) ≥ S(c∗

0, c
∗
1, · · · , c∗

n). Thus, (10) has a
unique solution determined by (13). The desired approximate solution y∗(x) of (5)
can be obtained by (9).

Theorem 4.5 Assume that ω∗
n(x)= 3

i=0 aiJ
1
0 ηi(x)+ n

i=1
3
l=0

2i−1−1
k=0 cl

ikJ
1
0φl

ik(x)

obtained by Theorem 6 is an ε-approximate solution of Eq.(8), ω(x) is the exact
solution of Eq.(8) and |ω(j)(x)| ≤ M, ∀ x ∈ [0, 1], for some j ∈ {2, 3, 4, 5}. Then

ω(x) − ω∗
n(x) 1≤ C · 2−(j−1)n, where C is a constant.

Proof According to Theorem 3.2, one has ω(x) − ωn(x) 1≤ C̄ · 2−(j−1)n where
C̄ is a constant. Thus, one can derive that

ω(x) − ω∗
n(x) 1 L−1 L(ω(x)) − L(ω∗

n(x)) 1 L−1 g(x) − L(ω∗
n(x)) 1

L−1 g(x) − L(ωn(x)) 1 L−1 L(ω(x)) − L(ωn(x)) 1

L−1 L ω(x) − ωn(x) 1 ≤ C̄ L−1 L 2−(j−1)n = C · 2−(j−1)n,

where C = C̄ L−1 L .
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5 Stability analysis

In this section, we consider the stability of our proposed method.
Assume λ is a eigenvalue of the matrixGwhich is defined in the proof of Theorem

4.4, that is, there exists an X = [x0, x1, · · · , xn]T ∈ R
n+1, X = 0, such that

GX = λX. Hence, ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

λx0 = n
j=0(f0, fj )1 · xj ,

...
λxi = n

j=0(fi, fj )1 · xj ,

...
λxn = n

j=0(fn, fj )1 · xj .

So we derive that

λxi =
n

j=0

(fi, fj )1 · xj =
n

j=0

(L(ψi(x)), L(ψj (x)))1 · xj

= (L(ψi(x)),

n

j=0

L(ψj (x)))1 · xj = (L(ψi(x)),

n

j=0

L(ψj (x)) · xj )1,

λx2
i = (L(ψi(x)) · xi,

n

j=0

L(ψj (x)) · xj )1,

and

λ

n

i=0

x2
i =

n

i=0

xiL(ψi(x) ,

n

j=0

xjL(ψj (x)))1.

Thus, we have

λ X 2
Rn+1 = L

n

i=0

xiψi(x)

2

1

,

or

λ = L
n
i=0 xiψi(x)

2
1

X 2
Rn+1

= L

n

i=0

xi

X Rn+1
ψi(x)

2

1

= L

n

i=0

yiψi(x)

2

1

yi

xi

X Rn+1

= L(u) 2
1 u

n

i=0

yiψi(x) .
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Noting that {ψi(x)}∞i=0 is a set of orthonormal bases of W 1
2,0, we have

u 2
1 =

n

i=0

yiψi(x)

2

1

=
n

i=0

yiψi(x) 2
1 =

n

i=0

|yi |2 ψi(x) 2
1 =

n

i=0

|yi |2 = 1.

Hence, we can obtain that

λ = L(u)
2
1 L 2 u 2

1 L 2.

Thus, the largest eigenvalue λmax of G satisfies λmax L 2.
On the other hand, we prove that the least eigenvalue ofG satisfies λmin ≥ 1

L−1 2 .

Otherwise, there exists {un}, un 1 = 1 such that L(un) 1 < 1
L−1 .

Denote ωn = L(un). Hence, ωn 1 < 1
L−1 and un = L−1(ωn). So we can derive

1 un 1 L−1(ωn) 1 L−1 ωn 1 < L−1 1

L−1
= 1.

It is a contradiction. So we obtain λmin ≥ 1
L−1 2 .

Therefore, we have

1 ≤ Cond(G)2 = λmax

λmin

≤ L 2

1
L−1 2

= ( L L−1 )2.

That is, Cond(G)2 ≤ ( L L−1 )2, which implies that the spectral condition
number [23] of the matrix G is bounded, and the algorithm is stable.

6 Nonlinear fractional delay differential equations

In this section, we solve (3) when f is nonlinear. In order to obtain high-accuracy
approximate solutions, we employ F-derivative and Newton’s iterative formula.

Similar to the linear case, we denote

ζ(x) = y0(x), − τ ≤ x ≤ 0,
y0(0) + xy0(0), 0 ≤ x ≤ 1,

and

z(x) = y(x) − ζ(x).

Then, (3) can be written as

Dα
Cz(x) = g(x) + f [x, (z + ζ )(x), (z + ζ ) (x), (z + ζ )(x − τ), (z + ζ ) (x − τ)], 0 ≤ x ≤ 1, 1 < α ≤ 2,

z(x) = 0, − τ ≤ x ≤ 0.

Hence, there is no harm in supposing that the equation to be solved is

Dα
Cu(x)=g(x)+f [x, u(x), u (x), u(x−τ), u (x − τ)], 0 ≤ x ≤ 1, 1 < α ≤ 2,

u(x) = 0, − τ ≤ x ≤ 0.
(14)
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Let u be the exact solution of the above equation and assume that Dα
Cu(x) = ω(x).

At the beginning of Section 4, we have proved that u(x) = Jα
0 ω(x) and ω ∈ W 1

2,0.
So u(x) ∈ Wα

2 .
Define an operator F : Wα

2 [0, 1] → W 1
2 [0, 1],

F(u) = Dα
Cu − f [x, u(x), u (x), u(x − τ), u (x − τ)] − g(x), (15)

(14) is equivalent to the following equation

F(u) = 0, 0 ≤ x ≤ 1, 1 < α ≤ 2,
u(x) = 0, − τ ≤ x ≤ 0.

(16)

Lemma 6.1 Take any h ∈ Wα
2 , then h 1 ≤ M̃α h α holds, where M̃α = 1

α2 2(α)
.

Proof From the definition ofWα
2 , h = Jα

0 h1 with h1 ∈ W 1
2,0. By Lemma 4.2, h 1 =

Jα
0 h1 1 ≤ M̃α h1 1 = M̃α h α .

Theorem 6.1 Suppose that F is defined by (15), then

F (u)h = Dα
Ch − ∂

∂u
h + ∂

∂u
h + ∂

∂u(x − τ)
h(x − τ)

+ ∂

∂u (x − τ)
h (x − τ)]f [x, u(x), u (x), u(x−τ), u (x−τ) , (17)

where F (u) refers to the Fréchet derivative [10].

Proof Let F(u) = Dα
Cu − g(x) − f [x, u(x), u (x), u(x − τ), u (x − τ)] F1(u) −

F2(u), here F1(u) = Dα
Cu − g(x), F2(u) = f [x, u(x), u (x), u(x − τ), u (x − τ)].

According to the definition of F-derivative and property of Caputo derivatives, we
have

lim
h α→0

1

h α

Dα
C(u + h) − g(x) − [Dα

C(u) − g(x)] − Dα
Ch 1 = 0.

So we can conclude that F1(u)h = Dα
Ch, that is F1(u) = Dα

C . On the other hand,

f [x, y, z, p, q] = f [x, y0, z0, p0, q0] + ∂

∂y
(y−y0) + ∂

∂z
(z − z0) + ∂

∂p
(p − p0)

+ ∂

∂q
(q − q0) f [x, y0, z0, p0, q0] + O(h2).

Substituting u(x)+h(x), u (x)+h (x), u(x−τ)+h(x−τ), u (x−τ)+h (x−τ) for
y, z, p, q and u(x), u (x), u(x−τ), u (x−τ) for y0, z0, p0, q0 in the above equation,
we get

f [x, u(x) + h(x), u (x) + h (x), u(x − τ) + h(x − τ), u (x − τ) + h (x − τ)]
= f [x, u(x), u (x), u(x − τ), u (x − τ)]
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+[ ∂

∂u
h(x) + ∂

∂u
h (x) + ∂

∂u(x − τ)
h(x − τ)

+ ∂

∂u (x − τ)
h (x − τ)]f [x, u(x), u (x), u(x − τ), u (x − τ)]

+O(h2).

Therefore, ∃M > 0,

1

h α

f [x, (u + h)(x), (u + h) (x), (u + h)(x − τ), (u + h) (x − τ)]
−f [x, u(x), u (x), u(x − τ), u (x − τ)]
−[ ∂

∂u
h(x) + ∂

∂u
h (x) + ∂

∂u(x − τ)
h(x − τ)

+ ∂

∂u (x − τ)
h (x − τ)]f [x, u(x), u (x), u(x − τ), u (x − τ) 1

≤ M h 2
1/ h α ≤ MM̃α h 2

α/ h α ≤ MM̃α h α → 0, ( h α → 0),
where Lemma 6.1 is used. Thus,

F2(u)h = ∂

∂u
h(x) + ∂

∂u
h (x) + ∂

∂u(x − τ)
h(x − τ)

+ ∂

∂u (x − τ)
h (x − τ)]f [x, u(x), u (x), u(x − τ), u (x − τ) .

Since F (u)h = F1(u)h + F2(u)h, then the conclusion holds.

Remark 6.1 An inequality used here is h2 1 ≤ 2
√
2 h 2

1. In fact, according to the
definition of the norm 1 of W 1

2 and Lemma 2.1, we can obtain

h2 2
1 =

1

0
(2h · h )2dx = 4

1

0
h2 · (h )2dx

≤ 4 h 2
C

1

0
(h )2dx = 4 h 2

C h 2
1

≤ 4(
√
2 h 1)

2 h 2
1 = 8 h 4

1.

Squaring on both sides of the inequality, and the inequality h2 1 ≤ 2
√
2 h 2

1 holds.

The Newton’s iterative formula for solving F(u) = 0 defined by (16) is

uk+1 = uk − [F (uk)]−1F(uk), k = 0, 1, 2, · · · , (18)

with initial selection u0 = 0, here F (u) is defined by (17). Equation (18) can be
transformed into

F (uk)(uk+1 − uk) + F(uk) = 0, k = 0, 1, 2, · · · ,

which are linear fractional delay differential (5), so we can solve them by the
ε−approximate solution method constructed in Section 4.
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Remark 6.2 One can refer to [9] about the method of selecting a initial value and the
convergence of Newton’s iterative formula.

7 Algorithm implementation of Newton’s iterative formula

In this section, we will concretely show algorithm implementation of Newton’s
iterative formula.

Assume

uk+1 =
n

i=0

ck+1,iJ
α
0 ψi(x),

uk =
n

i=0

ck,iJ
α
0 ψi(x), (19)

uk+1 − uk =
n

i=0

dk,iJ
α
0 ψi(x), (20)

where {ck,i}, {dk,i} are unknown. It is not difficult to see that
ck+1,i = ck,i + dk,i (i = 0, 1, 2, · · · , n), (21)

uk+1 = uk +
n

i=0

dk,iJ
α
0 ψi(x), (22)

F(uk) =
n

i=0

ck,iψi(x)−f [x, uk(x), uk(x), uk(x−τ), uk(x−τ)]−g(x). (23)

Using (17) and (20), we have F (uk)(uk+1 − uk)

= Dα
C(uk+1 − uk) − ∂

∂uk

(uk+1 − uk) + ∂

∂uk

(uk+1 − uk)

+ ∂

∂uk(x − τ)
(uk+1 − uk)(x − τ)

+ ∂

∂uk(x − τ)
(uk+1 − uk) (x − τ) f [x, uk, uk, uk(x − τ), uk(x − τ)]

=
n

i=0

dk,iψi(x) − ∂

∂uk

n

i=0

dk,iJ
α
0 ψi(x) + ∂

∂uk

n

i=0

dk,iJ
α−1
0 ψi(x)

+ ∂

∂uk(x − τ)

n

i=0

dk,iJ
α
0 ψi(x − τ)

+ ∂

∂uk(x−τ)

n

i=0

dk,iJ
α−1
0 ψi(x−τ) f [x, uk, uk, uk(x−τ), uk(x−τ)]. (24)

Denote

R(x) F (uk)(uk+1 − uk) + F(uk)
2
1, k = 0, 1, 2, · · · . (25)
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Fig. 1 The relative error curve with n = 65, 257, 513 when the exact solution is x2.3 for Example 8.1
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Fig. 2 The relative error curve with n = 65, 257, 513 when the exact solution is x4.1 for Example 8.1
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Table 1 The comparison of infinity-norm of the relative errors at discrete points and estimates of the
convergence order on the interval [0,1] between the exact solutions x2.3 and x4.1 for Example 8.1

n x2.3 ECO x4.1 ECO

17 0.0001744 1.36584 × 10−6

33 0.0000513 1.7648 1.18324 × 10−7 3.52898

65 0.0000142 1.85935 9.00737 × 10−9 3.71549

129 3.9095 × 10−6 1.85585 6.77928 × 10−10 3.73190

257 1.0975 × 10−6 1.83273 5.27700 × 10−11 3.68334

513 3.1161 × 10−7 1.81643 4.21943 × 10−12 3.66446

Substituting the above equations (19), (23), and (24) into the (25), we solve the
following equations to obtain {dk,i}:

∂R

∂dk,i

= 0, i = 0, 1, 2, · · · , n. (26)

To sum up, the algorithm is as follows:

Step 1 Homogenize the equation as (14).
Step 2 Input {ψi(x)}, and compute {Jβ

0 ψi(x)}, for any β > 0.
Step 3 Input α. Input the number of approximate items n. Set c0,i = 0.
Step 4 Begin the iterative procedure. From k = 0, do

(1) Compute uk by (19).
(2) Compute the F(uk), F (uk)(uk+1 − uk) according to (23) and (24).
(3) Compute R(x) by (25), solve the equations (26), and obtain the {dk,i}.
(4) Compute ck+1,i = ck,i + dk,i (i = 0, 1, 2, · · · , n).
(5) If uk+1 − uk C ≥ ε, go to (1); or else go to Step 5.

Step 5 Output the last approximate solution uk+1 = n
i=0 ck+1,iJ

α
0 ψi(x).

Using the software Mathematica, we can get the approximate solution uk+1(x).
We don’t need too much iterations to reach desired approximate solutions because of
high efficiency of Newton’s iterative method.

Remark 7.1 The algorithm can be extended to the case of m−1 < α ≤ m (m ∈ N+)

for the fractional delay differential (3).

8 Numerical examples

In this section, the algorithm presented above is applied to solve linear and nonlinear
fractional delay differential equations. Three examples are considered to illustrate the
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Fig. 3 The relative error curve with n = 65, 129, 257 after 1, 2, 3, and 4 iterations when the exact solution
is x2.3 for Example 8.2
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Fig. 4 The relative error curve with n = 65, 129, 257 after 1, 2, 3, and 4 iterations when the exact solution
is x4.3 for Example 8.2
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Table 2 The comparison of infinity-norm of the relative errors at discrete points and estimates of the
convergence order on the interval [0,1] between the exact solutions x2.3 and x4.3 for Example 8.2

n x2.3 ECO x4.3 ECO

9 0.001229870 0.000017226

17 0.000355909 1.78893 1.23037 × 10−6 3.80745

33 0.000105201 1.75837 9.30212 × 10−8 3.72539

65 0.000029364 1.84102 6.26881 × 10−9 3.89129

129 8.15525 × 10−6 1.84825 4.12792 × 10−10 3.92471

257 2.29599 × 10−6 1.82861 2.79184 × 10−11 3.88613

efficiency of the suggested algorithm. The relative error here is defined asRn = u−un

u C

with the exact solution u and an approximate solution un obtained by Theorem 4.3.
Basing on the numerical results, we adopt the formula log2[Rn/R2n−1] to estimate
the convergence order.

Example 8.1 Consider the linear fractional differential equation with delay

D1.5
C y(x) = xy(x) + x−1

5 y (x) − y(x − 0.2) + x
5y (x − 0.2) + g(x), x ∈ [0, 1],

y(x) = 0, − 0.2 ≤ x ≤ 0,

where g(x) is chosen such that the exact solution is x2.3 or x4.1. When the exact solu-
tion is x2.3, we solve the equation with n = 65, 257, 513, respectively, and obtain
the corresponding approximate solutions. The relative errors between the exact solu-
tion and the approximate solutions are displayed in Fig. 1. When the exact solution
of this example is chosen to be x4.1 which is of higher smoothness, the relative errors
are displayed in Fig. 2. One can see that the relative errors are decreased with the
increase of n. The results show that the error is decreased fast when the smoothness
of solution is increased. In Table 1, we provide some numerical results illustrating
the fact that the convergence order can be improved when smoothness of the solution
is improved. Even if the solution of the equation is less smooth, the computing error
is still acceptable for the engineering. Therefore, the algorithm is stable, reliable, and
adaptive.

Example 8.2 Let us consider the nonlinear fractional differential equation with delay

D1.5
C y(x) = (x + 1)y(x) + x−1

2 y(x)y(x − 0.1) + g(x), x ∈ [0, 1],
y(x) = 0, − 0.1 ≤ x ≤ 0,

where g(x) is chosen such that the exact solution of this example is x2.3 or x4.3.
The relative errors between the exact solution and the approximate solutions with
different times of iteration are displayed in Figs. 3 and 4 with n = 65, 129, 257 in

Numerical Algorithms (2020) 85:1123–1153 1149



Fig. 5 The relative error curve
with n = 65, 257, 513, 1025 for
Example 8.3
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Table 3 The comparison of
infinity-norm of the absolute
errors at discrete points with the
backward difference method on
the interval [0,1] for Example
8.3

Step h Difference method n Present method

1/10 0.0491843 9 0.0002360

1/20 0.0276172 17 0.0000604

1/40 0.0146507 33 0.0000150

1/80 0.00756493 65 3.80892 × 10−6

1/160 0.00385284 129 4.4984 × 10−7

1/320 0.00194804 257 2.4383 × 10−7

1/640 0.000980855 513 6.1313 × 10−8

both cases, respectively. The semi-log plots in error are displayed in Figs. 3 and 4.
In Table 2, we compare the infinity-norm of relative errors at the discrete points and
estimates of convergence order for both solution cases. The results show that our
method is still valid, stable, and adaptive when solving nonlinear problems.

Example 8.3 Consider the linear fractional differential equation with delay [15]

D0.5
C y(x) = y(x − 1) − y(x) + 2x − 1 + 3)

5/2) x
3/2, x ∈ [0, 1],

y(x) = x2, − 1 ≤ x ≤ 0.

The exact solution of this example is x2. The relative errors between the exact
solution and the approximate solutions are displayed in Fig. 5 with n =
65, 257, 513, 1025, respectively. One can see that the relative errors are decreased
with the increase of n . We compare the infinity-norm of absolute errors at the dis-
crete points with that from Ref. [15] in Table 3. The numerical results show that
our method has higher accuracy in this example and the computing errors may be
acceptable for engineering.

9 Conclusion

In this paper, we construct a new stable collocation method for solving a kind of non-
linear fractional delay differential equations. More suitable multiscale orthonormal
bases of W 1

2,0 are constructed, error estimations of approximate solutions are given,

and the highest convergence order can reach four in the sense of the norm of W 1
2 .

Newton’s iterative formula is used to linearize the nonlinear equation, and for the
obtained linear equations we develop an ε-approximate solution method based on
multiscale orthonormal bases to solve them. A concrete algorithm implementation is
given. Numerical examples show that compared with [15], the presented method is
more accurate in dealing with this kind of equations.
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