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Abstract
In this paper, a finite element analysis to approximate the solution of an obstacle
problem for a static shallow shell confined in a half space is presented. To begin
with, we establish, by relying on the properties of enriching operators, an estimate
for the approximate bilinear form associated with the problem under consideration.
Then, we conduct an error analysis and we prove the convergence of the proposed
numerical scheme.

Keywords Shallow shell · Enriching operator · Nonconforming finite element
method · Obstacle problems · Elliptic variational inequalities

1 Introduction

The study of unilateral contact problems in elasticity arises in many applicative fields
such as structural mechanics and civil engineering. Obstacle problems have lately
been studied in, for instance, [20, 21, 23, 24, 36, 40].

The numerical analysis of obstacle problems has been arising the interest of many
scientists since the late 1990s. In this direction, a very direct and mathematically ele-
gant approach is the one making use of enriching operators, the properties of which
were studied by S. C. Brenner and her collaborators in the seminal papers [1–3, 5].
These general theoretical results were then used to study finite element methods for
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obstacle problems, which can be found in [7] and [6]. Nonconforming finite element
methods for obstacle problem were also studied in [11].

In this paper, we study the displacement of a static shallow shell lying over a
planar obstacle from the numerical point of view, using a suitable finite element
method. Shallow shells theory, which is extensively described, for instance, in the
books [16] and [44], is widely used in engineering (see, e.g., the papers [31, 41–43,
46]). According to this theory, the problem under examination is modelled in terms
of a fourth-order differential operator (cf., e.g., [16]). The theory of finite element
methods for fourth-order problems governed by variational inequalities has been
investigated, for instance, in the references [8, 25, 30, 32].

Our mathematical model of an obstacle problem for a linearly elastic shallow shell
in the static case is inspired by that of Léger and Miara (cf. [34] and [35]). To our
best knowledge, there is no reference on the study of numerical analysis of obstacle
problems for linearly elastic shallow shells.

In this paper, we extend the method proposed in [7] and [6] to derive error esti-
mates for the solution to the obstacle problem under for linearly elastic shallow shells
under consideration. The fact that the unknown is a vector field is the main difficulty
to cope with in order for proving that the residual of the difference between the exact
solution and the approximate solution approaches zero as the mesh size approaches
zero.

In order to derive the sought convergence, it was necessary to improve and gen-
eralize a number of preparatory results for enriching operators (cf., e.g., [1–3, 5]),
and another number of preparatory results related to the convergence analysis of the
scheme (cf., e.g., [7]).

The paper is divided into five sections (including this one). In Section 2, we
present some background and notation. In Section 3, we establish some properties
of the enriching operator associated with the variational formulation of the problem
under consideration and an estimate for Morley’s triangle, used to approximate the
transverse component of the displacement. In Section 4, following [7] and [6], we
introduce an intermediary problem and we prove some technical preparatory lem-
mas. Finally, in Section 5, the error estimate is derived as a result of an application
of the previous results.

2 Background and notation

For an overview about the classical notions of differential geometry used in this
paper, see, e.g., [17] or [18] while, for an overview about the classical notions of
functional analysis used in this paper, see, e.g., [19]. Latin indices, except h, take
their values in the set {1, 2, 3} while Greek indices, except ν and ε, take their values
in the set {1, 2}. The notation δαβ designates the Kronecker symbol. Given an open
subset Ω of Rn, where n ≥ 1, we denote the usual Lebesgue and Sobolev spaces by
L2(Ω), H 1(Ω), H 1

0 (Ω), H 2(Ω), or H 2
0 (Ω); the notation D(Ω) designates the space

of all functions that are infinitely differentiable over Ω and have compact supports in
Ω; the notation Pk(Ω) designates the space of all polynomials of degree ≤ k defined
over Ω; and the notation Pk designates the space of all polynomials of degree ≤ k

Numerical Algorithms (2020) 85:623–652624



defined over Rn. The Euclidean norm of any point x ∈ Ω is denoted by |x|. In what
follows, the compact notation ‖·‖m,p,Ω , where m ≥ 1 is an integer and p ≥ 1, desig-
nates the norm of the Sobolev space Wm,p(Ω). The special notation ‖ · ‖m,Ω , where
m ≥ 1 is an integer, denotes the norm of the space Hm(Ω). If m = 0, then

‖ · ‖0,Ω := ‖ · ‖L2(Ω)

and, more generically,

‖ · ‖0,p,Ω := ‖ · ‖Lp(Ω) for all p ≥ 1.

The special notation | · |m,Ω , where m ≥ 1 is an integer, denotes the standard
semi-norm of the space Hm(Ω).

Let ω ⊂ R
2 be a convex polygonal domain, namely a non-empty bounded open

connected subset of R2 with Lipschitz continuous boundary γ := ∂ω and such that
ω is all on the same side of γ . Let y = (yα) denote a generic point in ω and let
∂α := ∂/∂yα and ∂αβ := ∂2/∂yα∂yβ .

Referring to [22] (see also Section 3.1 of [16] and see also [44]), we recall the
rigorous definition of a linearly elastic shallow shell (from now on shallow shell). We
assume that for each ε > 0, we are given a function θε ∈ C3(ω). We can then define
the middle surface of the corresponding shallow shell having thinness equal to 2ε as
follows:

ω̂ε := {(y, θε(y)); y ∈ ω}.
A rigorous criterion for defining a shallow shell is provided by the existence of a

function θ ∈ C3(ω), independent of ε, such that

θε(y) = εθ(y) for all y ∈ ω. (1)

This means that, up to an additive constant, the mapping θε : ω → R, measuring
the deviation of the middle surface of the reference configuration of the shell from a
plane, should be of the same order as the thinness of the shell. The shallow shells here
considered are made of a homogeneous and isotropic material, they are clamped on
their lateral boundary, and they are subjected to both applied body forces and applied
surface forces. The elastic behavior of the shallow shell is then described by means
of its two Lamé constants λ ≥ 0 and μ > 0 (cf., e.g., [15]).

In what follows, ν denotes the outer unit normal vector field to the boundary γ

and ∂ν denotes the outer unit normal derivative operator along γ .
The function space over which the problem is posed is the following:

V (ω) := {η = (ηi) ∈ H 1(ω) × H 1(ω) × H 2(ω); ηi = ∂νη3 = 0 on γ }.
We equip the space V (ω) with the norm ‖ · ‖V (ω) defined as follows:

‖ξ‖V (ω) := ‖ξ1‖1,ω + ‖ξ2‖1,ω + ‖ξ3‖2,ω for all ξ ∈ V (ω).

The corresponding semi-norm | · |V (ω) is defined by

|η|V (ω) := |η1|1,ω + |η2|1,ω + |η3|2,ω for all η ∈ V (ω).

The obstacle problem studied in [34] and [35] is modelled by a set of variational equa-
tions and a set of variational inequalities and, besides, its solution is aKirchhoff-Love field
(see, for instance, Section 3.4 of [16]). As a result, we can “separate” the transverse
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component of the displacement vector field from the tangential components of the
displacement vector field. We thus define the space associated with the tangential
components by

V H (ω) := {ηH = (ηα) ∈ H 1(ω) × H 1(ω); ηα = 0 on γ },
and the space associated with the transverse component by

V3(ω) := H 2
0 (ω).

Observe that

V (ω) = V H (ω) × V3(ω).

The “physical” obstacle is here represented by the plane x3 = 0 and, in what
follows, we assume that θ > 0 in ω. This implies θε > 0 in ω, i.e., the middle surface
of the considered shallow shell is assumed to be above the obstacle and not in contact
with the obstacle.

In what follows, we state the scaled two-dimensional limit problem, which slightly
differs from the one obtained in [34] and [35] as a result of a rigorous asymptotic
analysis, where only the transverse component of the displacement is subjected to the
geometrical constraint associated with the obstacle. More specifically, the transverse
component of the displacement field belongs to the following non-empty, closed, and
convex set of the space V3(ω) (see [34]):

K3(ω) := {η3 ∈ V3(ω); θ + η3 ≥ 0 almost everywhere in ω}. (2)

By virtue of the Rellich-Kondrachov theorem, the compact embedding
H 2(ω) ↪→↪→ C0(ω) holds (the symbol “↪→↪→” denotes a compact embedding and
the space C0(ω) is equipped with the sup-norm). Hence, by virtue of the fact that
θ ∈ C3(ω), the set K3(ω) defined in (2) also takes the following form:

K3(ω) = {η3 ∈ V3(ω); θ + η3 ≥ 0 in ω}. (3)

Let

Ω := ω × ]−1, 1[ ,

and let x = (xi) denote a generic point in the set Ω . With each point x = (xi) ∈ Ω ,
we associate the point xε = (xε

i ) defined by

xε
α := xα = yα and xε

3 := εx3,

so that ∂ε
α = ∂α and ∂ε

3 = 1

ε
∂3.

We assume that the shallow shell under consideration is subjected to applied body
forces whose density per unit volume is defined by means of its covariant components
f ε

i ∈ L2(ω × (−ε, ε)) and applied surface forces whose density per unit area is
defined by means of its covariant components g

+,ε
i ∈ L2(ω × {ε}). Applied surface

forces associated with the lower face of the reference configuration of the shallow
shell are not to be considered since the obstacle is assumed to be rigid.
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We also assume that there exist functions fi ∈ L2(Ω) and g+
i ∈ L2(ω × {1})

independent of ε such that the following assumptions on the data hold:

f ε
α (xε) = ε2fα(x) at each x = (xi) ∈ Ω,

f ε
3 (xε) = ε3f3(x) at each x = (xi) ∈ Ω,

g+,ε
α (xε) = ε3g+

α (x) at each x = (xi) ∈ ω × {1},
g

+,ε
3 (xε) = ε4g+

3 (x) at each x = (xi) ∈ ω × {1}.
We are now ready to state the scaled limit problem P(ω), which slightly differs

from the one found in [34] and [35].

Problem P(ω) Find ζ = (ζH , ζ3) ∈ V H (ω) × K3(ω) satisfying the following
variational inequalities

−
∫

ω

mαβ(ζ3)∂αβ(η3 − ζ3)dy +
∫

ω

nθ
αβ(ζ )∂αθ∂β(η3 − ζ3)dy

≥
∫

ω

p3(η3 − ζ3)dy −
∫

ω

sα∂α(η3 − ζ3)dy

for all η3 ∈ K3(ω),

and the following variational equations∫
ω

nθ
αβ(ζ )∂βηαdy =

∫
ω

pαηαdy for all ηH = (ηα) ∈ V H (ω),

where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ ≥ 0, μ > 0 are the Lamé constants,

mαβ(ζ3) := − 4λμ

3(λ + 2μ)
�ζ3δαβ − 4

3
μ∂αβζ3,

eθ
αβ(ζ ) := 1

2
(∂αζβ + ∂βζα) + 1

2
(∂αθ∂βζ3 + ∂βθ∂αζ3),

nθ
αβ(ζ ) := 4λμ

λ + 2μ
eθ
σσ (ζ )δαβ + 4μeθ

αβ(ζ ),

pi := ∫ 1
−1 fidx3 + g+

i ,

sα := ∫ 1
−1 x3fαdx3 + g+

α . �

Likewise, since θε ∈ C3(ω), we define the non-empty closed convex set Kε
3 (ω) by

Kε
3 (ω) := {η3 ∈ V3(ω); θε + η3 ≥ 0 in ω}. (4)

The next step consists in de-scaling Problem P(ω). More specifically, the solution
(ζH , ζ3) is de-scaled as follows (cf. [16])

ζ ε
H = ε2ζH in ω,

ζ ε
3 = εζ3 in ω.

Thanks to (1), if ζ3 ∈ K3(ω), then ζ ε
3 ∈ Kε

3 (ω). The de-scaled problem Pε(ω)

can be thus stated and constitutes the point of departure of our numerical analysis.
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Problem Pε(ω) Find ζ ε = (ζ ε
H , ζ ε

3 ) ∈ V H (ω) × Kε
3 (ω) satisfying the following

variational inequalities:

−
∫

ω

mε
αβ(ζ ε

3 )∂αβ(η3 − ζ ε
3 )dy +

∫
ω

n
θ,ε
αβ (ζ ε)(∂αθε)∂β(η3 − ζ ε

3 )dy

≥
∫

ω

pε
3(η3 − ζ ε

3 )dy −
∫

ω

sε
α∂α(η3 − ζ ε

3 )dy

for all η3 ∈ Kε
3 (ω), (5)

and the following variational equations:∫
ω

n
θ,ε
αβ (ζ ε)∂βηαdy =

∫
ω

pε
αηαdy for all ηH = (ηα) ∈ V H (ω), (6)

where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ ≥ 0, μ > 0 are the Lamé constants,

mε
αβ(ζ ε

3 ) := −ε3
{

4λμ

3(λ + 2μ)
�ζε

3 δαβ + 4

3
μ∂αβζ ε

3

}
,

e
θ,ε
αβ (ζ ε) := 1

2
(∂αζ ε

β + ∂βζ ε
α) + 1

2
(∂αθε∂βζ ε

3 + ∂βθε∂αζ ε
3 ),

n
θ,ε
αβ (ζ ε) := ε

{
4λμ

λ + 2μ
eθ,ε
σσ (ζ ε)δαβ + 4μe

θ,ε
αβ (ζ ε)

}
,

pε
i := ∫ ε

−ε
f ε

i dxε
3 + g

+,ε
i ,

sε
α := ∫ ε

−ε
xε

3f ε
α dxε

3 + εg+,ε
α .

(7)

�

Clearly, (5) and (6) can be combined into a single system of variational equations,
whose left-hand side is associated with the symmetric bilinear form b(·, ·) given by
(cf. Sections 3.5, 3.6 and 3.7 of [16])

b(ζ ε, η) = − ∫
ω

mε
αβ(ζ ε

3 )∂αβη3dy + ∫
ω

n
θ,ε
αβ (ζ ε)(∂αθε)∂βη3dy

+ ∫
ω

n
θ,ε
αβ (ζ ε)∂βηαdy.

(8)

A straightforward computation shows that

b(η, η) :=
∫

ω

4λμ

λ + 2μ

{
ε3

3
(�η3)

2 + ε(eθ,ε
σσ (η))2

}
dy

+4μ

{
ε3

3

∑
α,β

‖∂αβη3‖2
0,ω + ε

∑
α,β

‖eθ,ε
αβ (η)‖2

0,ω

}
,

for all η ∈ V (ω).
Likewise, we associate the sum of the right-hand sides of (5) and (6) with a linear

and continuous form � defined as follows:

�(η) :=
∫

ω

pε
i ηidy −

∫
ω

sε
α∂αη3dy for all η ∈ V (ω). (9)

The energy functional associated with the variational formulation in Prob-
lem Pε(ω) takes the following form:

J ε(η) = 1

2
b(η, η) − �(η), for all η ∈ V H (ω) × Kε

3 (ω).
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As a result, Problem Pε(ω) is equivalent to finding ζ ε = (ζ ε
H , ζ ε

3 ) ∈
V H (ω) × Kε

3 (ω) such that

J ε(ζ ε) = min{J ε(η); η ∈ V H (ω) × Kε
3 (ω)}.

The bilinear form b(·, ·) is continuous, i.e., there exists a constant M > 0 such that

b(ξ , η) ≤ M‖ξ‖V (ω)‖η‖V (ω) for all ξ , η ∈ V (ω).

By Theorem 3.6-1 of [16], such a bilinear form b(·, ·) is V (ω)-elliptic, i.e., there
exists a constant α > 0 such that

b(η, η) ≥ α‖η‖2
V (ω) for all η ∈ V (ω).

As a result, Problem Pε(ω) admits a unique solution ζ ε = (ζ ε
H , ζ ε

3 ) which belongs
to V H (ω) × Kε

3 (ω) and satisfying

b(ζ ε, η − ζ ε) ≥ �(η − ζ ε) for all η = (ηH , η3) ∈ V H (ω) × Kε
3 (ω) (10)

or, equivalently, there exists a unique ζ ε = (ζ ε
H , ζ ε

3 ) ∈ V H (ω) × Kε
3 (ω) such that

J ε(ζ ε) = min{J ε(η); η ∈ V H (ω) × Kε
3 (ω)}.

3 A finite element method for the obstacle problem

In this section, we present a suitable finite element method to approximate the solu-
tion to Problem Pε(ω). Following [14] and [4] (see also [12], [13], [29], and [37]), we
recall some basic terminology and definitions. In what follows, the letter h denotes
a quantity approaching zero. For brevity, the same notation C (with or without sub-
scripts) designates a positive constant independent of h, which can take different
values at different places. We denote by (Th)h>0 a family of triangulations of the
polygonal domain ω made of triangles and we let T denote any element of such a
family. Let us first recall, following [14] and [4], the rigorous definition of finite ele-
ment in R

n, where n ≥ 1 is an integer. A finite element in R
n is a triple (T , P,N )

where:

(i) T is a closed subset of Rn with non-empty interior and Lipschitz continuous
boundary,

(ii) P is a finite dimensional space of real-valued functions defined over T ,
(iii) N is is a finite set of linearly independent linear forms Ni , 1 ≤ i ≤ dim P ,

defined over the space P .

By definition, it is assumed that the set N is P -unisolvent in the following sense:
given any real scalars αi , 1 ≤ i ≤ dim P , there exists a unique function g ∈ P which
satisfies

Ni(g) = αi, 1 ≤ i ≤ dim P .

It is henceforth assumed that the degrees of freedom, Ni , lie in the dual space of a
function space larger than P like, for instance, a Sobolev space (see [4]). For brevity,
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we shall conform our terminology to the one of [14], calling the sole set T a finite
element. Define the diameter of any finite element T as follows:

hT = diam T := max
x,y∈T

|x − y|.

Let us also define

ρT := sup{diam B; B is a ball contained in T }.
A triangulation Th is said to be regular (cf., e.g., [14]) if:

(i) There exists a constant σ > 0, independent of h, such that

for all T ∈ Th,
hT

ρT

≤ σ .

(ii) The quantity h := max{hT > 0; T ∈ Th} approaches zero.

A triangulation Th is said to satisfy an inverse assumption (cf., e.g., [14]) if there
exists a constant κ > 0 such that

for all T ∈ Th,
h

hT

≤ κ .

There is of course an ambiguity in the meaning of h, which was first regarded as
a parameter associated with the considered family of triangulations, and which next
denotes a geometrical entity. Nevertheless, in this paper, we have conformed to this
standard notation (see [14]). In the rest of this section, the parameter h is assumed to
be fixed and we also assume that the triangulation Th under consideration is regular
and satisfies the aforementioned inverse assumption. Let Vh be the set of all of the
nodal points of Th, let p denote any point of Vh and let Eh be the set of open edges
of Th, in the sense that

any edge e ∈ Eh is isomorphic to the open interval (0, 1).

The forthcoming finite element analysis will be carried out using triangles of type
(1) (see Figure 2.2.1 of [14]) to approximate the tangential components of the dis-
placement vector field and Morley’s triangles (see [39] and also [14]) to approximate
the transverse component of the displacement vector field. In this case, the set Vh

consists of all the vertices and all the midpoints of the triangulation Th. Let V1,h and
V2,h be two finite dimensional spaces such that V1,h × V2,h ⊂ V H (ω) and let (see,
e.g., [14] and [6])

V3,h := {η ∈ L2(ω); ηT ∈ P2(T ), η is continuous at the vertices,

∂νη continuous at the midpoint of the edges}
be the finite dimensional space associated with Morley’s triangle. Define

V h := V1,h × V2,h × V3,h.

We henceforth denote by ηT the restriction of any function η ∈ L2(ω) to the finite
element T . We denote by Ṽ3,h the subspace of V3,h for which η(ak) = 0, for all the
vertices ak ∈ γ and ∂νη(bk) = 0, for all the edges midpoints bk such that bk ∈ γ .
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Define the space
Ṽ h := V1,h × V2,h × Ṽ3,h.

Since Ṽ3,h is not contained in C0(ω) (see, e.g., [33] and [29]), we have

Ṽ3,h �⊂ V3(ω).

Define the space

H 2(ω, Th) := {η ∈ L2(ω); ηT ∈ H 2(T ) for all T ∈ Th}
and introduce the semi-norm

η ∈ H 2(ω, Th) 	→ ‖η‖h :=
⎛
⎝∑

T ∈Th

|η|22,T

⎞
⎠

1/2

,

which becomes a norm over the space Ṽ3,h (cf. [6]). As a result, the mapping

ηh ∈ Ṽ h 	→ ‖ηh‖ := ‖η1,h‖1,ω + ‖η2,h‖1,ω + ‖η3,h‖h,

is a norm over the space Ṽ h.
Define the space

V3(ω) + Ṽ3,h := {ξ3 = η3 + η3,h; η3 ∈ V3(ω) and η3,h ∈ Ṽ3,h}.
Following [7] and [14], we define the approximate bilinear form bh(·, ·), associ-

ated with the bilinear form b defined in (8), as follows:

bh :
(
V H (ω) × (V3(ω) + Ṽ3,h)

)
×
(
V H (ω) × (V3(ω) + Ṽ3,h)

)
→ R

is such that bh|V (ω)×V (ω) = b, i.e.,

bh(ξ , η) = b(ξ , η) for all ξ , η ∈ V (ω)

and such that

bh(ξh, ηh) = −
∑
T ∈Th

∫
T

mε
αβ(ξ3,h)∂αβη3,hdy +

∑
T ∈Th

∫
T

n
θ,ε
αβ (ξh)(∂αθε)∂βη3,hdy

+
∑
T ∈Th

∫
T

n
θ,ε
αβ (ξh)∂βηα,hdy, for all ξh, ηh ∈ Ṽ h.

Therefore, the bilinear form bh(·, ·) is continuous over Ṽ h, i.e., there exists
M > 0, independent of h, such that

bh(ξ , η) ≤ M‖ξ‖‖η‖ for all ξ , η ∈ Ṽ h.

Besides, in view of Theorem 3.4-1 of [16] and the theory presented in [14], the
bilinear form bh(·, ·) is Ṽ h-elliptic, namely, there exists α > 0, independent of h,
such that

bh(η, η) ≥ α‖η‖2 for all η ∈ Ṽ h.

Let us now define the V h interpolation operator Πh : C0(ω)×C0(ω)×H 2(ω) →
V h as follows

Πhξ := (
Π1,hξ1, Π2,hξ2, Π3,hξ3

)
for all ξ ∈ C0(ω) × C0(ω) × H 2(ω),

Numerical Algorithms (2020) 85:623–652 631



where Πi,h is the standard Vi,h interpolation operator (cf., e.g., [14] and [4]). It thus
results that the interpolation operator Πh satisfies the following properties

(Πj,hξj )(p) = ξj (p) for all integers 1 ≤ j ≤ 3 and all vertices p ∈ Vh,∫
e

∂νe (Π3,hξ3)ds =
∫

e

∂νeξ3ds for all e ∈ Eh,

where νe is outer unit normal vector to the edge e. Define the space

H (ω) := H 2(ω) × H 2(ω) × H 3(ω)

and equip it with the norm

‖ξ‖ω := ‖ξ1‖2,ω + ‖ξ2‖2,ω + ‖ξ3‖3,ω for all ξ ∈ H (ω).

An application of Theorem 3.2.1 of [14] (see also Theorem 4.4.20 of [4]) yields

‖ξ − Πhξ‖ ≤ Ch‖ξ‖ω, (11)

for all ξ ∈ H (ω) ∩ V (ω).
In order to provide the required estimates for the convergence of the numerical

scheme, we make use of enriching operators. Enriching operators were first intro-
duced in [2] (see also [1], [3], and [5]) and they play a key role in the study of obstacle
problems for clamped plates (see [7] and [6]). Following Example 2.2 of [7], we
recall that any enriching operator associated with conforming finite elements coin-
cides with the canonical injection. We are going to connect Morley’s triangle to the
Hsieh-Clough-Tocher macro-element (from now onwards HCT macro-element), that
we sketch below for sake of clarity, via an ad hoc enriching operator (for a complete
overview on the properties of these finite elements and the meaning of the graphi-
cal symbols used for representing the various degrees of freedom, see Figures 6.1.3
and 6.2.3 of [14]).

The relation between the elements in Figs. 1 and 2 is due to the disposition of
the vertices at which the pointwise evaluation of the shape functions occurs. Let us
denote W3,h the finite element space associated with the HCT macro-element and let
us observe that, by the unisolvence of the HCT macro-element (cf. Theorem 6.1.2
of [14]), the elements of W3,h are completely determined by their values at the ver-
tices, the values of their first derivatives at the vertices and the values of their normal

Fig. 1 Morley’s triangle. Figure 6.2.3 of [14]

Numerical Algorithms (2020) 85:623–652632



Fig. 2 HCT macro-element. Figure 6.1.3 of [14]

derivatives at the midpoints of the sides of the triangular element. The reason why
we have to make use of a nonconforming finite element to carry out the numerical
analysis of the considered obstacle problem is due to the fact that it is not natural
to assume the transverse component of the solution, i.e., the one which is affected
by the geometrical constraint associated with the obstacle, to be more regular than
H 3(ω) (see, for instance, [26] and [27], [9], [10], [28], and [7]).

Let us thus define the enriching operator Eh : V3,h → W3,h by (cf. formula (3.2)
of [5])

[N(Ehη)] = 1

|Tp|
∑

T ∈Tp

(NηT ), (12)

where p ∈ Vh is any nodal point of the triangulation Th, N is any degree of freedom
of the HCT macro-element associated with the nodal point p and Tp is the set of
triangles in Th sharing the nodal point p.

Next, following [3], we organize the proof of the already well-known properties
of enriching operators in a series of lemmas (Lemmas 1–4).

Let us recall the definition of jump of the normal derivative across the edge e. Let
η ∈ H 2(ω) and let e ∈ Eh such that e ⊂ ω. The jump of the normal derivative of η

across the edge e is defined as follows

�∂νη� := ∂η+
∂νe

∣∣∣∣
e

− ∂η−
∂νe

∣∣∣∣
e

, (13)

where T+ and T− are elements of Th that share the edge e, η± is the restriction of η

to T± and νe points from T+ to T− (see Fig. 3 below).
If e ⊂ γ , then we define the jump in this fashion:

�∂νη� := − ∂η

∂νe

∣∣∣∣
e

. (14)

The proof of the next lemma relies on standard inverse estimates (cf., e.g., [14])
and inverse trace inequalities (cf. formula (10.3.9) of [4]).

Lemma 1 There exists a positive constant C such that

‖η − Ehη‖0,ω ≤ Ch2‖η‖h for all η ∈ V3,h, (15)

|Ehη|2,ω ≤ C‖η‖h, for all η ∈ V3,h. (16)
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Fig. 3 Configuration associated with the jump of the normal derivative across the edge e

Proof Let us fix an arbitrary T ∈ Th and let N denote the set of degrees of freedom
of the HCT macro-element T (cf. Fig. 2). For any η ∈ V3,h, we have that (η−Ehη)|Ki

is an element of P3(Ki), for all 1 ≤ i ≤ 3, where Ki is a sub-triangle of the HCT
macro-element T (cf. Fig. 2). Using the same argument as in Theorem 3.1.5 of [14],
we infer the existence of a positive constant C for which

‖ξ‖2
0,T ≤ Ch2(1+|N |) ∑

N∈N
|N(ξ)|2, (17)

for all ξ ∈ C1(T ) such that ξ |Ki
∈ P3(Ki), for all 1 ≤ i ≤ 3, where Ki is a

sub-triangle of the HCT macro-element T (cf. Fig. 2) and |N | denotes the order
of differentiation of the corresponding degree of freedom. In view of Remark 3.1.3
of [14], it results that the diameter of T is of order O(h) and, therefore, |e| = O(h)

as well. By (12) and the continuity of η at the vertices of the triangulation, it results

N(η) = N(Ehη) if |N | = 0.

Therefore, letting ξ = η − Ehη in (17) yields

‖η − Ehη‖2
0,T ≤ Ch4

∑
N∈N
|N |=1

|N(η − Ehη)|2. (18)

Let us observe that if N is associated with the degree of freedom corresponding
to the outer unit normal derivative at the midpoint of a side of the boundary γ then
N(η − Ehη) = 0.

Let N denote the degree of freedom corresponding to the evaluation of the outer
unit normal derivative at the midpoint me of an edge e ⊂ ω and let νe denote one
of the outer unit normal vectors to the edge e. By virtue of (12), a standard inverse
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estimate (Theorem 3.2.6 of [14] with q = ∞, m = l = 2 and r = 2) and an inverse
trace inequality, we obtain

|N(η − Ehη)|2 = ∣∣∂νe (η − Ehη) (me)
∣∣2

= [
∂νeη(me) − ∂νeEhη(me)

]2

=
[

1

2
∂νeη+(me) − 1

2
∂νeη−(me)

]2

≤ |e|
4

‖�∂νeη�‖0,e ≤ C
∑

T ′∈Tp

|η|22,T ′ . (19)

Let N be the degree of freedom associated with the evaluation of any first-order
derivative at any vertex p ∈ Vh. An arithmetic-geometric mean inequality yields

|N(η − Ehη)|2 ≤ |∇(η − Ehη)(p)|2
≤ C

∑
T ′,T ′′∈Tp

T ′and T ′′share an edge

|∇ηT ′(p) − ∇ηT ′′(p)|2. (20)

An application of the mean value theorem (cf., e.g., Theorem 7.2-1 of [19]) like
on page 915 of [2], standard inverse estimates (Theorem 3.2.6 of [14] with r = m =
l = 2 and q = ∞), an inverse trace inequality, and the regularity of the triangulation
gives

|∇ηT ′(p) − ∇ηT ′′(p)|2 ≤ C|∂νeηT ′(p) − ∂νeηT ′′(p)|2
+C|∂τeηT ′(p) − ∂τeηT ′′(p)|2

≤ C|e|−1‖�∂νη�‖2
0,e

+C|e|2(|ηT ′ |22,∞,T ′ + |ηT ′′ |22,∞,T ′′)

≤ C
∑

T ′∈Te

|η|22,T ′ , (21)

where Te is the set of triangles sharing the edge e. Combining (18)–(21), we obtain

‖η − Ehη‖2
0,T ≤ Ch4

∑
T ′∈TT

|η|22,T ′ . (22)

Estimate (15) follows by summing up (22) over all the triangles of Th. Esti-
mate (16) follows by standard inverse estimates (Theorem 3.2.6 of [14] with m = 2,
l = 0, p = r = 2) and (22): Indeed,

|Ehη|22,ω ≤ C
∑
T ∈Th

|η − Ehη|22,T +
∑
T ∈Th

|η|22,T

≤
∑
T ∈Th

[
h−4‖η − Ehη‖2

0,T + |η|22,T

]
≤ C‖η‖2

h.

This completes the proof.

By virtue of an interpolation estimate (see, for instance, Theorem 3.1.5 of [14]
with m = q = p = k = 2), which holds by the fact that Morley’s triangle is almost
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affine (cf., e.g., [33]), and the standard trace theorem for Sobolev spaces defined over
domains, we deduce that, for all T ∈ Th,

‖∇(η − Π3,hη)‖0,∂T ≤ Ch|η|3,T , (23)

where η ∈ H 3(T ) ∩ V3(ω). By (12), we deduce that Ehη = η at the internal nodes
of the triangulation (see also formula (6.11) of [3]). As a result,

Π3,hEhη = η for all η ∈ V3,h.

The next preliminary result is inspired by Lemma 2 of [5], which is itself based on
the unisolvence of the HCT macro-element (see, for instance, Theorem 6.1.2 of [14])
and Bramble-Hilbert lemma (cf., e.g., Theorem 4.1.3 of [14]). For convenience, we
provide a complete proof.

Lemma 2 There exists a positive constant C solely depending on the regularity of
the triangulation Th such that

2∑
m=0

h2m|η − EhΠ3,hη|2m,T ≤ Ch6|η|23,ST
, (24)

for all T ∈ Th and all η ∈ H 3(ST ) ∩ H 2(ω), where ST is the polygon formed by all
the triangles of Th sharing a vertex with T (cf. Fig. 4 below).

Proof Let T ∈ Th be an arbitrary element. Then, we observe that (see Lemma 2
of [5]) the expression (EhΠ3,hη)|T is completely determined by η|ST

and that the
mapping

η|ST
	→ (η − EhΠ3,hη)|T ,

is bounded from H 3(ST ) into H 2(T ).

Fig. 4 The polygon ST made of all the triangles of TT . Figure 9 of [1]
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Moreover, (12) and the unisolvence of the HCT macro-element give

q − EhΠ3,hq = 0 for all q ∈ P2(T ). (25)

Thanks to (25), we can apply the Bramble-Hilbert lemma and infer the validity
of (24). The proof is thus complete.

We now modify the definition of the enriching operator Eh in order to incorporate
the boundary conditions. As a result, we obtain the corresponding enriching operator
Ẽh : Ṽ3,h → W̃3,h, where Ṽ3,h denotes the subspace of V3,h whose degrees of free-
dom vanish along γ and W̃3,h := W3,h ∩ H 2

0 (ω), i.e., the subspace of W3,h whose
degrees of freedom vanish along γ (cf. Example 6.1 of [3] and [6]). Observe that
Ehη ∈ H 2(ω) by the properties of the HCT macro-element. We now define Ẽh as
follows, in such a way that Ẽhη ∈ H 2

0 (ω) for all η ∈ Ṽ3,h:

(i) The degrees of freedom of Ehη and Ẽhη coincide in ω,
(ii) The degrees of freedom of Ẽhη vanish on γ .

In the next lemma, we prove the first properties of the modified enriching operator
Ẽh. The proof resorts to standard inverse estimates (cf., e.g., [14]), an inverse trace
inequality (cf. formula (10.3.9) of [4]) and Lemma 1.

Lemma 3 For each η ∈ Ṽ3,h, there exists a positive constant C such that

‖η − Ẽhη‖0,ω ≤ Ch2‖η‖h, (26)

‖Ẽhη‖2,ω ≤ C‖η‖h. (27)

Proof Let us fix an arbitrary element η ∈ Ṽ3,h and let N be any degree of freedom
associated with the HCT macro-element. Let us observe that if N is not related to
any nodal point of γ , then, by property (i) in the definition of Ẽh, we obtain

N(Ehη − Ẽhη) = 0.

On the other hand, for all T ∈ Th, if |N | = 0 and N is related to a nodal point of γ ,
then, by property (ii) in the definition of Ẽh and the fact that η ∈ Ṽ3,h, it follows that

N(Ehη − Ẽhη) = N(Ehη) = 0.

Let me be the midpoint of an edge e ⊂ γ . By (14) and standard inverse estimates
(Theorem 3.2.6 of [14] with m = l = 0, q = ∞ and r = 2), we obtain

|∂νe (Ehη − Ẽhη)(me)|2 = |∂νeη(me)|2 ≤ C

|e| ‖�∂νη�‖2
0,e ≤ C

∑
T ′∈Te

|η|22,T ′ , (28)

where the latter inequality holds true by virtue of an inverse trace inequality and the
regularity of the triangulation Th.

Let p be a vertex on γ . Then, p is the endpoint of an edge e∗ ⊂ γ . Let T ∗ be
an element of Th such that e∗ ⊂ T ∗. By (20), (21), an arithmetic-geometric mean
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inequality, standard inverse estimates (Theorem 3.2.6 of [14] with m = l = r = 2
and q = ∞), and the regularity of the triangulation, we get

|∇(Ehη − Ẽhη)(p)|2 = |∇(Ehη)(p)|2
≤ C(|∇(Ehη − ηT ∗)(p)|2 + |∇ηT ∗(p)|2)
≤ C

∑
T ′∈TT

|η|22,T ′,
(29)

where Ep is the set of edges of Eh sharing p as a common vertex.
In conclusion, for all T ∈ Th, a combination of (22), (28), and (29) yields

‖η − Ẽhη‖2
0,T ≤ Ch4

∑
T ′∈TT

|η|22,T ′ , (30)

which implies the inequality (26) after a summation over all the elements of Th.
Using the Poincaré-Friedrichs inequality, an arithmetic-geometric mean inequal-

ity, (26) and standard inverse estimates (Theorem 3.2.6 of [14] with m = 2, l = 0,
q = r = 2), we infer the validity of (27). Indeed,

‖Ẽhη‖2
2,ω ≤ C|Ẽhη|22,ω ≤

∑
T ∈Th

[
|η − Ẽhη|22,T + |η|22,T

]

≤
∑
T ∈Th

[
h−4‖η − Ẽhη‖2

0,T + |η|22,T

]
≤ C‖η‖2

h,

which completes the proof.

By property (i) in the definition of Ẽh, we can easily observe that the following
holds (cf. [5]):

Π3,hẼhη = η for all η ∈ Ṽ3,h.

The next step consists in incorporating the boundary conditions into the above
estimates.

Lemma 4 There exists a positive constant C solely depending on the regularity of
the triangulation Th such that

2∑
m=0

h2m|η − ẼhΠ3,hη|2m,T ≤ Ch6|η|23,ST
, (31)

for all T ∈ Th and all η ∈ H 3(ST ) ∩ V3(ω).

Proof Let us fix an arbitrary element η ∈ Ṽ3,h and let N be any degree of freedom
associated with an internal vertex of the triangulation made of HCT macro-element.
Like in Lemma 3, we have

N(Ehη − Ẽhη) = 0.
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Let e ∈ Eh be an edge contained in γ and let me be the midpoint of e, at which
the normal derivative of η is evaluated. By virtue of (14), (23), (28), and a standard
inverse estimate (Theorem 3.1.5 of [14] with m = q = k = p = 2), we obtain

|∂νe (EhΠ3,hη − ẼhΠ3,hη)(me)|2 = |∂νe (EhΠ3,hη)(me)|2
= |∂νe (Π3,hη)(me)|2
≤ C|e|−1‖�∂νΠ3,hη�‖2

0,e

≤ Ch2
∑

T ′∈Te

|η|23,T ′ , (32)

for all η ∈ H 3(ST ) ∩ V3(ω).
Similarly, for any vertex p ∈ γ , we have, by (29), standard interpolation estimates

(Theorem 3.1.5 of [14]) and an inverse trace inequality (formula (10.3.9) of [4])

|∇(EhΠ3,hη − ẼhΠ3,hη)(p)|2 ≤
∑

T ∈Tp

|∂τe (EhΠ3,hηT )(p)|2

+
∑

T ∈Tp

|∂νe (EhΠ3,hηT )(p)|2

≤ C
∑

T ∈Tp

|∂τe (Π3,hηT − ηT )(p)|2

+C
∑
e∈Ep

|e|−1‖�∂νΠ3,hη�‖2
0,e

≤ C
∑

T ∈Tp

|Π3,hηT − ηT |22,T

+C
∑
e∈Ep

|e|−1‖�∂ν(Π3,hη − η)�‖2
0,e

≤ Ch2
∑

T ∈Tp

|η|23,T . (33)

Summing over all the triangles of Th, we obtain the following estimate

2∑
m=0

h2m|η − EhΠ3,hη|2m,T ≤ Ch4 ∑
N∈N
|N |=1

|N(η − EhΠ3,hη)|2

+
2∑

m=1
h2m|η − EhΠ3,hη|2m,T ≤ Ch6|η|23,ST

,

(34)

where the first inequality holds by (18) and the latter inequality holds by (32)
and (33). This completes the proof.
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As a consequence of Lemmas 1–4 and standard inverse estimates (Theorem 3.2.6
of [14] with m = 1, l = 0, q = r = 2), we obtain the following estimates for the
enriching operator Ẽh (cf. Corollary 1 of [5]):

‖η − Ẽhη‖0,ω + h

⎛
⎝∑

T ∈Th

|η − Ẽhη|21,T

⎞
⎠

1/2

+ h2|Ẽhη|2,ω

≤ Ch2‖η‖h for all η ∈ Ṽ3,h, (35)
2∑

m=0

hm|η − ẼhΠ3,hη|m,ω ≤ Ch3|η|3,ω for all η ∈ H 3(ω) ∩ V3(ω). (36)

Define the space
W̃h := V1,h × V2,h × W̃3,h,

and let us define the enriching operator Ẽh : Ṽ h → W̃h as follows:

Ẽhξ := (ξ1, ξ2, Ẽhξ3) for all ξ ∈ Ṽ h. (37)

A direct application of (35) and (36) to (37) yields

‖η − Ẽhη‖0,ω + h

( ∑
T ∈Th

|η − Ẽhη|21,T

)1/2

+ h2|Ẽhη|2,ω

≤ Ch2‖η‖ for all η ∈ Ṽ h.

(38)

Next, we prove a crucial estimate for bh(·, ·) in the case where the transverse com-
ponent of the displacement is approximated via Morley’s triangles. The assumption
that the solution ζ ε to Problem Pε(ω) is “more regular” is of paramount importance.

By virtue of the results proved in [9], [10], [27], and [28] and in order to make our
analysis more general, we will derive the sought error estimate under the constraint
that the transverse component of the solution of Problem Pε(ω) cannot be more
regular than H 3(ω).

In order to derive error estimate, we will have to assume that the solution of
Problem Pε(ω) is more regular (cf., e.g., [14]); in particular, we will assume that

ζ ε ∈ H (ω) ∩ V (ω).

The augmented regularity result for the tangential components is studied, for
instance, in Section 8.7 of Chapter 2 of [38], while the augmented regularity result
for the transverse component is given for solutions of some fourth-order variational
inequalities on pages 323–327 of [30], and is also recalled in [45].

To prove the next result we follow Appendix B of [7] and Lemma 4.2 of [6]. As a con-
sequence of the trace properties (cf., e.g., Theorem 6.6-5 of [19]), we can take into
account the average along any edge e ∈ Eh of a function f ∈ H 1(ω) and denote it by f ,
viz.,

f := 1

|e|
∫

e

f ds ∈ R.

Lemma 5 There exists a positive constant C such that the following estimate holds

|bh(ζ
ε, η − Ẽhη)| ≤ Ch‖ζ ε‖ω‖η‖ for all η ∈ Ṽ h, (39)
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where ζ ε ∈ H (ω) ∩ V (ω) is the solution to Problem Pε(ω).

Proof Observe that if η3 ∈ Ṽ3,h then ∇η3 is continuous at the midpoints of the edges
e ∈ Eh and vanishes at the midpoints of the edges along γ . Indeed, after fixing an
edge e ∈ Eh, consider the restrictions η3|T+ and η3|T− to the edge e, where T± are,
again, the elements of Th that share the edge e. Then, (η3|T+ − η3|T−) ∈ P2(R

2) and
(η3|T+ −η3|T−) vanishes at the endpoints of the edge e. As a result, by the mean value
theorem and the properties of quadratic polynomials, we deduce that the tangential
derivative along the edge e ∂τe (η3|T+ −η3|T−) vanishes at the midpoint of e. By virtue
of the decomposition of the gradient in terms of tangential and normal derivatives
we get the continuity of the gradient at the midpoint of any edge e ∈ Eh. The other
property follows from the boundary conditions.

Combining the definition and the properties of Ẽh, Green’s formula, the midpoint
rule, the Cauchy-Schwarz inequality, inverse trace inequalities (formulas (10.3.8)
and (10.3.9) of [4]), the Poincaré-Friedrichs inequality (Theorems 6.5-2 and 6.8-1
of [19]), and (38), we obtain

bh(ζ ε, η − Ẽhη) = −
∑

T ∈Th

∫
T

mε
αβ(ζ ε

3 )∂αβ(η3 − Ẽhη3)dy

+
∑

T ∈Th

∫
T

(∂αθε)n
θ,ε
αβ (ζ ε)∂β(η3 − Ẽhη3)dy

=
∑

T ∈Th

∫
T

∂α(mε
αβ(ζ ε

3 ))∂β(η3 − Ẽhη3)dy

−
∑

T ∈Th

∫
∂T

mε
αβ(ζ ε

3 )∂β(η3 − Ẽhη3)ναds

+
∑

T ∈Th

∫
T

(∂αθε)n
θ,ε
αβ (ζ ε)∂β(η3 − Ẽhη3)dy

=
∑

T ∈Th

∫
T

[
∂α(mε

αβ(ζ ε
3 )) + (∂αθε)n

θ,ε
αβ (ζ ε)

]
∂β(η3 − Ẽhη3)dy

−
∑
e∈Eh

∫
e

(
mε

αβ(ζ ε
3 ) − mε

αβ(ζ ε
3 )
)

�∂β(η3 − Ẽhη3)να�ds

≤
∑

T ∈Th

(
‖∂αmε

αβ(ζ ε
3 ) + (∂αθε)n

θ,ε
αβ (ζ ε)‖0,T ‖∂β(η3 − Ẽhη3)‖0,T

)

+
⎛
⎝∑

e∈Eh

|e|−1‖mε
αβ(ζ ε

3 ) − mε
αβ(ζ ε

3 )‖0,e

⎞
⎠

1/2

×
⎛
⎝∑

e∈Eh

|e|‖�∂β(η3 − Ẽhη3)να�‖0,e

⎞
⎠

1/2

≤ C‖ζ ε‖ω

⎛
⎝∑

T ∈Th

|η3 − Ẽhη3|21,T

⎞
⎠

1/2

≤ Ch‖ζ ε‖ω‖η‖,
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where, in analogy with (13) and (14), we have

�∂β(η3 − Ẽhη3)να� := (∂β(η3 − Ẽhη3)να,+) + (∂β(η3 − Ẽhη3)να,−),

which completes the proof.

Let us observe that, by virtue of the definition of Ẽh (cf. (37)), the variational
equations (6) do not give any contribution in the previous proof .

Having extended the properties of the enriching operator to our problem, we now
prove, following [7], a series of preparatory lemmas. Let us recall that, for all h > 0,
the symbol Vh designates the set of all of the nodal points of the triangulation Th.

Let us define the functional Jh and the set Kε
3,h as follows:

Jh(ηh) := 1

2
bh(ηh, ηh) − �(ηh) for all ηh ∈ V h, (40)

Kε
3,h := {η3,h ∈ Ṽ3,h; θε(p) + η3,h(p) ≥ 0 for all p ∈ Vh}, (41)

and let us then state the approximate problem Pε
h corresponding to Problem Pε(ω).

Problem Pε
h Find ζ ε

h ∈ Ṽ h such that the transverse component ζ ε
3,h belongs to Kε

3,h

and such that

Jh(ζ
ε
h) = inf

ηh∈Ṽ h

η3,h∈Kε
3,h

Jh(ηh). (42)

�

Since the bilinear form bh(·, ·) is symmetric and continuous over the space Ṽ h and
it is Ṽ h-elliptic, we infer that Problem Pε

h has a unique solution ζ ε
h, which satisfies

the variational inequalities

bh(ζ
ε
h, ηh − ζ h) ≥ �(ηh − ζ ε

h), (43)

for all ηh ∈ Ṽ h such that η3,h ∈ Kε
3,h.

Lemma 6 Let ζ ε and ζ ε
h respectively denote the solutions to Problem Pε(ω) and

Problem Pε
h. There exist two constants C1 > 0 and C2 > 0 such that

‖ζ ε −ζ ε
h‖2 ≤ C1‖ζ ε −Πhζ

ε‖2 +C2
[
bh(ζ

ε, Πhζ
ε − ζ ε

h) − �(Πhζ
ε − ζ ε

h)
]

. (44)

Proof Observe that Πhζ
ε belongs to the space Ṽ h. By the continuity and the

Ṽ h-ellipticity of bh(·, ·) and Young’s inequality (see [47]), we get

α‖Πhζ ε − ζ ε
h‖2 ≤ bh(Πhζ ε − ζ ε

h, Πhζ ε − ζ ε
h)

≤ M‖Πhζ ε − ζ ε‖‖Πhζ ε − ζ ε
h‖ + bh(ζ ε,Πhζ ε − ζ ε

h) − �(Πhζ ε − ζ ε
h)

≤ M

2

[
M

α
‖Πhζ ε − ζ ε‖2 + α

M
‖Πhζ ε − ζ ε

h‖2
]

+bh(ζ ε,Πhζ ε − ζ ε
h) − �(Πhζ ε − ζ ε

h).

Letting C1 := M2/α2 and C2 := α−1, we obtain inequality (44).
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4 An intermediary problem

In what follows, we shall estimate the term [bh(ζ
ε, Πhζ

ε − ζ ε
h) − �(Πhζ

ε − ζ ε
h)]

in order to apply the interpolation estimate (11). To this aim, we introduce an inter-
mediary problem, since it is not easy to directly connect Kε

3 (ω) to Kε
3,h. Define the

set

K̃ε
3,h(ω) := {η3 ∈ H 2

0 (ω); θε(p) + η3(p) ≥ 0 for all p ∈ Vh} (45)

and define

V h(ω) := H 1
0 (ω) × H 1

0 (ω) × K̃ε
3,h(ω)

as to define the functional J : V h(ω) → R by

J (η) := 1

2
b(η, η) − �(η). (46)

Let us state the intermediary problem Pε
h(ω) establishing the connection between

Problem Pε(ω) and Problem Pε
h.

Problem Pε
h(ω) Find ζ̃

ε

h ∈ V h(ω) such that the transverse component ζ̃ ε
3,h belongs

to K̃ε
3,h(ω) and such that

J (ζ̃
ε

h) = inf
η∈V h(ω)

η3∈K̃ε
3,h(ω)

J (η). (47)

�

Using properties (i) and (ii) of the enriching operator Ẽh, we immediately obtain
that

Ẽhη3,h ∈ K̃ε
3,h(ω) for all η3,h ∈ Kε

3,h.

Using the symmetry and the continuity and the V (ω)-ellipticity of the bilinear
form b(·, ·), we infer that Problem Pε

h(ω) admits one and only one solution ζ̃
ε

h

satisfying the following variational inequalities:

b(ζ̃
ε

h, η − ζ̃
ε

h) ≥ �(η − ζ̃
ε

h) for all η ∈ V h(ω). (48)

The aim of the next lemma, whose formulation is inspired by Lemma 3.1 of [7], is
to prove that the uniform boundedness of the family (ζ̃

ε

h)h>0, where ζ̃
ε

h denotes the
solution to Problem Pε

h(ω). The argument resorts on Cauchy-Schwarz’s inequality,
Poincaré-Friedrichs’s inequality (Theorems 6.5-2 and 6.8-1 of [19]), and Young’s
inequality (see [47]).

Lemma 7 There exists a constant C > 0 such that

‖ζ̃ ε

h‖V (ω) ≤ C for all h > 0. (49)

Proof Fix h > 0. Since Kε
3 (ω) ⊂ K̃ε

3,h(ω), we infer that J (ζ̃
ε

h) ≤ J (ζ ε), where

ζ̃
ε

h and ζ ε are respectively the solutions to Problem Pε
h(ω) and Problem Pε(ω).
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Using Cauchy-Schwarz’s inequality, Poincaré-Friedrichs’s inequality, and Young’s
inequality, we obtain

α

2
‖ζ̃ ε

h‖2
V (ω) ≤ 1

2
b(ζ̃

ε

h, ζ̃
ε

h) = J (ζ̃
ε

h) + �(ζ̃
ε

h) ≤ J (ζ̃
ε

h) + C�|ζ̃ ε

h|V (ω)

≤ J (ζ̃
ε

h) + 1

α
C2

� + α

4
|ζ̃ ε

h|2V (ω),

which in turn implies that

‖ζ̃ ε

h‖2
V (ω) ≤ 4

α

(
J (ζ̃

ε

h) + C2
�

α

)
,

from which the estimate (49) immediately follows.

The purpose of the following lemmas, whose formulations are respectively
inspired by those of Lemmas 3.2-3.4 of [7], is to estimate the distance between ζ̃

ε

h

and ζ ε ∈ V H (ω) × Kε
3 (ω). In what follows, the symbol ⇀ denotes weak conver-

gences as h → 0. Strong convergences in the space C0(ω) are meant with respect to
the sup-norm.

Lemma 8 The following convergences take place

ζ̃
ε

h ⇀ ζ ε in V (ω), (50)

ζ̃ ε
3,h → ζ ε

3 in C0(ω). (51)

Proof The uniform boundedness of (ζ̃
ε

h)h>0 proved in Lemma 7 yields the existence
of an element ζ ∗ ∈ V (ω) such that, up to passing to a subsequence, still denoted
(ζ̃

ε

h)h>0

ζ̃
ε

h ⇀ ζ ∗ in V (ω).

The functional J is clearly sequentially weakly lower semi-continuous. Hence,

J (ζ ∗) ≤ lim inf
h→0

J (ζ̃
ε

h) ≤ J (ζ ε),

where the latter inequality is derived in Lemma 7. By the Rellich-Kondrachov
theorem, we infer that ζ ∗

3 ∈ C0(ω) and that

ζ̃ ε
3,h → ζ ∗

3 in C0(ω).

It remains to prove ζ ∗ = ζ ε. To this end, by the uniqueness of the solution to
Problem Pε(ω), it suffices to show that ζ ∗

3 ∈ Kε
3 (ω). Since ζ̃ ε

3,h ∈ K̃ε
3,h(ω), then

θε(p) + ζ̃ ε
3,h(p) ≥ 0 for all p ∈ Vh.

Besides, the following density with respect to the Euclidean norm
⋃
h>0

Vh = ω,
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yields, in conjunction with the previous inequality, that

θ(q) + ζ ∗
3 (q) = lim

k→∞
qk∈Vhk

(
θ(qk) + ζ ∗

3 (qk)
) = lim

k→∞
qk∈Vhk

lim
h→0

(
θ(qk) + ζ̃3,h(qk)

)
≥ 0,

for all q ∈ ω. We have thus shown that ζ ∗
3 ∈ Kε

3 (ω). The convergences (50) and (51)
immediately follow.

Let us denote C the contact zone for Problem Pε(ω), i.e.,

C := {y ∈ ω; θε(y) + ζ ε
3 (y) = 0}.

The set C is compact in ω. Since the transverse component of ζ ε, solution to
Problem Pε(ω), belongs to the space H 2

0 (ω) and since θε > 0 in ω, it follows that
C ∩ γ = ∅. For any ρ > 0, define the set

Cρ := {y ∈ ω; dist(y, C ) ≤ ρ},
where dist(y, C ) denotes the distance of any point y ∈ ω from the set C , i.e.,

dist(y, C ) := min
x∈C

|y − x|.

The set Cρ is compact and such that, for sufficiently small ρ, Cρ ∩ γ = ∅.
Moreover, we can choose ρ sufficiently small so that C2ρ ∩ γ = ∅.

Lemma 9 There exist positive numbers h0 and β1 such that

θε(y) + ζ̃ ε
3,h(y) ≥ β1 if y ∈ ω and dist(y, C ) ≥ ρ,

for all h ≤ h0.

Proof Since (θε + ζ ε
3 ) > 0 outside the contact zone, then it is a fortiori > 0 in the

compact set {y ∈ ω; dist(y, C ) ≥ ρ}. By virtue of (51), we immediately infer that

(θε + ζ̃ ε
3,h) → (θε + ζ ε

3 ) in C0(ω).

As a result, there exists h0 > 0 such that

θε + ζ̃ ε
3,h > 0 in {y ∈ ω; dist(y, C ) ≥ ρ},

and there thus exists β1 > 0 such that

θε + ζ̃ ε
3,h ≥ β1 in {y ∈ ω; dist(y, C ) ≥ ρ},

for all h ≤ h0.

Following the ideas of [7], we introduce the nodal interpolation operator for the
conforming P1 finite element associated with the triangulation Th and we denote it
by Ih. By definition of Ih, it follows that ζ̃ ε

3,h and Ihζ̃
ε
3,h agree at the vertices of the

conforming P1 finite elements. By the linearity of Ih we get

Ihθ
ε + Ihζ̃

ε
3,h ≥ 0 in ω, (52)
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since, again by the properties of Ih, the functions Ihθ
ε and Ihζ̃

ε
3,h are affine over

ω. By standard interpolation estimates (Theorem 3.1.5 of [14] with m = 0, p = 2,
q = ∞, and k = 1), we infer

‖η − Ihη‖0,∞,ω ≤ Ch|η|2,ω for all η ∈ H 2(ω). (53)

An application of (53) and (49) yields

‖ζ̃ ε
3,h − Ihζ̃

ε
3,h‖0,∞,ω ≤ Ch. (54)

Since θε ∈ C3(ω), we deduce, by Taylor’s theorem with integral remainder that
there exists a positive constant C such that

sup
y∈ω

|θε − Ihθ
ε| ≤ Ch2, (55)

and such an estimate a fortiori holds for the norm ‖ · ‖L∞(ω).
Define

δh := ‖(ζ̃ ε
3,h − Ihζ̃

ε
3,h) + (θε − Ihθ

ε)‖0,∞,ω.

In view of (54) and (55), it is straightforward to verify that there exists a positive
constant C such that

δh ≤ Ch. (56)

The proof of the next result is obtained by Lemmas 7–9.

Lemma 10 There exists a positive constant C such that

|ζ ε − ζ̃
ε

h|V (ω) ≤ Ch. (57)

Proof Let h0 and β1 be as in Lemma 9 and let us assume, without loss of generality,
that h ≤ h0. By the property (52) of the nodal interpolation operator Ih, we have

θε + ζ̃ ε
3,h ≥ θε + ζ̃ ε

3,h − Ihθ
ε − Ihζ̃

ε
3,h ≥ −δh in Cρ .

By virtue of (56), it is also licit to assume δh < β. Let f be a continuous function
defined over ω as follows

f = 1 in Cρ, (58)

f = 0 in ω \ C2ρ . (59)

Let � denote a mollifier whose support is a subset of C2ρ . Define the function
ϕ ∈ D(ω) by

ϕ := � ∗ f .

It follows that

0 ≤ ϕ ≤ 1 in ω, (60)

ϕ = 1 in Cρ, (61)

ϕ = 0 in ω \ C2ρ . (62)

We claim that the function ζ̂ ε
3,h := ζ̃ ε

3,h + δhϕ belongs to the set Kε
3 (ω). It is

straightforward to verify that ζ̂ ε
3,h = ∂ν ζ̂

ε
3,h = 0 on γ . It thus remains to show that

(θε + ζ̂ ε
3,h) ≥ 0 in ω. To this aim, we will distinguish three cases:
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Case 1 (x ∈ ω \ C2ρ) In this case, by virtue of (62), we get ζ̃ ε
3,h = ζ̂ ε

3,h and the
conclusion immediately follows by Lemma 9.

Case 2 (x ∈ C2ρ \ Cρ) In this case, by virtue of (60) and Lemma 9, we get

θε + ζ̂ ε
3,h = θε + ζ̃ ε

3,h + δhϕ ≥ β1 > 0.

Case 3 (x ∈ Cρ) In this case, by virtue of (61), we get

θε + ζ̂ ε
3,h = θε + ζ̃ ε

3,h + δh ≥ 0.

In conclusion, we have shown that ζ̂ ε
3,h belongs to the set Kε

3 (ω). An application
of (49) gives

J
(
(ζ̃ ε

1,h, ζ̃ ε
2,h, ζ̂ ε

3,h)
)

= 1

2
b
(
ζ̃

ε

h + (0, 0, δhϕ), ζ̃
ε

h + (0, 0, δhϕ)
)

− �
(
ζ̃

ε

h + (0, 0, δhϕ)
)

=
[

1

2
b(ζ̃

ε

h, ζ̃
ε

h) − �(ζ̃
ε

h)

]
+ b

(
ζ̃

ε

h, (0, 0, δhϕ)
)

+1

2
b ((0, 0, δhϕ), (0, 0, δhϕ)) − � ((0, 0, δhϕ))

= J (ζ̃
ε

h) + b
(
ζ̃

ε

h, (0, 0, δhϕ)
)

− � ((0, 0, δhϕ))

+1

2
b ((0, 0, δhϕ), (0, 0, δhϕ)) ≤ J (ζ̃

ε

h) + Cδh.

By the V (ω)-ellipticity of b(·, ·) (cf. Theorem 3.6-1 of [16]), the intermediary
inequality (48), and the fact that ζ̃ ε

3,h is in Kε
3 (ω) (see Lemma 10), we obtain

α

2
‖ζ ε − ζ̃

ε

h‖V (ω) ≤ 1

2
b(ζ ε − ζ̃

ε

h, ζ
ε − ζ̃

ε

h)

= 1

2
b(ζ ε, ζ ε) − b(ζ̃

ε

h, ζ
ε − ζ̃

ε

h) − 1

2
b(ζ̃

ε

h, ζ̃
ε

h)

≤ 1

2
b(ζ ε, ζ ε) − �(ζ ε − ζ̃

ε

h) − 1

2
b(ζ̃

ε

h, ζ̃
ε

h)

= J (ζ ε) − J (ζ̃
ε

h) ≤ J
(
(ζ̃ ε

1,h, ζ̃
ε
2,h, ζ̂

ε
3,h)

)
− J (ζ̃

ε

h)

≤ Cδh.

The conclusion immediately follows by (56).

5 Convergence analysis

The next lemma, inspired by Lemma 4.2 of [7], provides an estimate for the term
[bh(ζ

ε, Πhζ
ε−ζ ε

h)−�(Πhζ
ε−ζ ε

h)], which thus allows us to complete the error anal-
ysis. The proof relies on Lemma 5, Lemma 10, and standard interpolation estimates
(see, e.g., [14]).
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Lemma 11 There exists a positive constant C such that

bh(ζ
ε, Πhζ

ε − ζ ε
h) − �(Πhζ

ε − ζ ε
h) ≤ C

√
h
(√

h + ‖Πhζ
ε − ζ ε

h‖
)

. (63)

Proof Observe that we can write

bh(ζ ε, Πhζ ε − ζ ε
h) = bh(ζ ε, ẼhΠhζ ε − Ẽhζ ε

h) + bh(ζ ε, Πhζ ε − ζ ε
h − Ẽh(Πhζ ε − ζ ε

h))

= b(ζ ε, Ẽh(Πhζ ε − ζ ε
h)) + bh(ζ ε,Πhζ ε − ζ ε

h − Ẽh(Πhζ ε − ζ ε
h))

≤ b(ζ ε, Ẽh(Πhζ ε − ζ ε
h)) + Ch‖ζ ε‖ω‖Πhζ ε − ζ ε

h‖,
where the latter inequality holds by (39). We have thus shown that there exists a

constant C > 0 such that

bh(ζ
ε, Πhζ

ε − ζ ε
h) ≤ b(ζ ε, Ẽh(Πhζ

ε − ζ ε
h)) + Ch‖ζ ε‖ω‖Πhζ

ε − ζ ε
h‖. (64)

Let us now estimate the term b(ζ ε, Ẽh(Πhζ
ε − ζ ε

h)). We first notice that we can
write it in the more suitable equivalent form

b(ζ ε, Ẽh(Πhζ
ε − ζ ε

h)) = b(ζ̃
ε

h, Ẽh(Πhζ
ε − ζ ε

h)) + b(ζ ε − ζ̃
ε

h, Ẽh(Πhζ
ε − ζ ε

h)).
(65)

Using (38), (57), the continuity of b(·, ·), and the Poincaré-Friedrichs inequality
(Theorems 6.5-2 and 6.8-1 of [19]), we can estimate the second term in the right-hand
side of (65) as follows

b(ζ ε − ζ̃
ε

h, Ẽh(Πhζ ε − ζ ε
h)) ≤ C|ζ ε − ζ̃

ε

h|V (ω)|Ẽh(Πhζ ε − ζ ε
h)|V (ω) ≤ C

√
h‖Πhζ ε − ζ ε

h‖.

As a result, we obtain

b(ζ ε − ζ̃
ε

h, Ẽh(Πhζ
ε − ζ ε

h)) ≤ C
√

h‖Πhζ
ε − ζ ε

h‖. (66)

Regarding the first term in the right-hand side of (65), we observe that (48) yields

b(ζ̃
ε

h, Ẽh(Πhζ
ε − ζ ε

h)) = b(ζ̃
ε

h, ζ̃
ε

h − Ẽhζ
ε
h) + b(ζ̃

ε

h, ẼhΠhζ
ε − ζ ε

h)

≤ �(ζ̃
ε

h − Ẽhζ
ε
h) + b(ζ̃

ε

h, ẼhΠhζ
ε − ζ̃

ε

h).
(67)

We note that

b(ζ̃
ε

h, ẼhΠhζ
ε − ζ̃

ε

h) = b(ζ̃
ε

h − ζ ε, ẼhΠhζ
ε − ζ̃

ε

h) + b(ζ ε, ẼhΠhζ
ε − ζ ε)

+b(ζ ε, ζ ε − ζ̃
ε

h). (68)

We estimate the sum of the first two terms of the right-hand side of (68) as follows

|b(ζ̃
ε

h − ζ ε, ẼhΠhζ
ε − ζ̃

ε

h) + b(ζ ε, ẼhΠhζ
ε − ζ ε)|

≤ C|ζ ε − ζ̃
ε

h|V (ω)|(ζ̃ ε

h − ζ ε) + (ζ ε − ẼhΠhζ
ε)|V (ω)

+C‖ζ ε‖ω|ζ ε − ẼhΠhζ
ε|V (ω)

≤ C
(
|ζ ε − ζ̃

ε

h|2V (ω) + |ζ ε − ζ̃
ε

h|V (ω)|ζ ε − ẼhΠhζ
ε|V (ω)

+‖ζ ε‖ω|ζ ε − ẼhΠhζ
ε|V (ω)

)
≤ Ch, (69)
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where the latter inequality is obtained by virtue of (36) (for the transverse component
only), the Poincaré-Friedrichs inequality (Theorems 6.5-2 and 6.8-1 of [19]), and
standard interpolation estimates (Theorem 3.1.5 of [14] with m = k = 1 and p =
q = 2). Let us assume, without loss of generality, that h is sufficiently small so that
the definition of ζ̂ ε

3,h is justified (see Lemma 10).
An application of (10), (36) (for the transverse component only), and standard

interpolation estimates (Theorem 3.1.5 of [14] with m = 0, k = 1, and p = q = 2)
yields

b(ζ ε, ζ ε − ζ̃
ε

h) = b
(
ζ ε, ζ ε − (ζ̃ ε

1,h, ζ̃
ε
2,h, ζ̂

ε
3,h)

)
+ b

(
ζ ε, (0, 0, δhϕ)

)

≤ �
(
ζ ε − (ζ̃ ε

1,h, ζ̃
ε
2,h, ζ̂

ε
3,h)

)
+ δhb

(
ζ ε, (0, 0, ϕ)

)

= �(ẼhΠhζ
ε − ζ̃

ε

h) + �(ζ ε − ẼhΠhζ
ε)

−δh

[
� ((0, 0, ϕ)) − b

(
ζ ε, (0, 0, ϕ)

)]
≤ �(ẼhΠhζ

ε − ζ̃
ε

h) + Ch‖ζ ε‖ω

−δh

[
� ((0, 0, ϕ)) − b

(
ζ ε, (0, 0, ϕ)

)]
≤ �(ẼhΠhζ

ε − ζ̃
ε

h) + Ch.

In conclusion, we have shown that there exists a constant C > 0 such that

b(ζ ε, ζ ε − ζ̃
ε

h) ≤ �(ẼhΠhζ
ε − ζ̃

ε

h) + Ch. (70)

An application of (64)–(70), Hölder’s inequality, and (38) yields

bh(ζ ε,Πhζ ε − ζ ε
h) − �(Πhζ ε − ζ ε

h) ≤ b
(
ζ ε, Ẽh(Πhζ ε − ζ ε

h)
)

+Ch‖ζ ε‖ω‖Πhζ ε − ζ ε
h‖ − �(Πhζ ε − ζ ε

h)

= b
(
ζ̃

ε

h, Ẽh(Πhζ ε − ζ ε
h)
)

+ b
(
ζ ε − ζ̃

ε

h, Ẽh(Πhζ ε − ζ ε
h)
)

+Ch‖Πhζ ε − ζ ε
h‖ − �(Πhζ ε − ζ ε

h)

≤ b
(
ζ̃

ε

h, Ẽh(Πhζ ε − ζ ε
h)
)

+ C
√

h‖Πhζ ε − ζ ε
h‖ − �(Πhζ ε − ζ ε

h)

≤ �(ζ̃
ε

h − Ẽhζ ε
h) + b

(
ζ̃

ε

h, ẼhΠhζ ε − ζ̃
ε

h

)
+ C

√
h‖Πhζ ε − ζ ε

h‖ − �(Πhζ ε − ζ ε
h)

=
[
b
(
ζ̃

ε

h − ζ ε, ẼhΠhζ ε − ζ̃
ε

h

)
+ b

(
ζ ε, ẼhΠhζ ε − ζ ε

)]

+b(ζ ε, ζ ε − ζ̃
ε

h) + �(ζ̃
ε

h − Ẽhζ ε
h)

+C
√

h‖Πhζ ε − ζ ε
h‖ − �(Πhζ ε − ζ ε

h)

≤ Ch + C
√

h‖Πhζ ε − ζ ε
h‖ + b(ζ ε, ζ ε − ζ̃

ε

h)

+�(ζ̃
ε

h − Ẽhζ ε
h) − �(Πhζ ε − ζ ε

h)

≤ Ch + C
√

h‖Πhζ ε − ζ ε
h‖ − �(Πhζ ε − ζ ε

h) + �(Ẽh(Πhζ ε − ζ ε
h))

≤ Ch + C
√

h‖Πhζ ε − ζ ε
h‖.

To sum up, we have shown that there exists C > 0 such that

bh(ζ
ε, Πhζ

ε − ζ ε
h) − �(Πhζ

ε − ζ ε
h) ≤ C

√
h(

√
h + ‖Πhζ

ε − ζ ε
h‖),
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which completes the proof.

We are now in a position to recover the error estimate in terms of the norm ‖ · ‖,
whose definition is recalled here below:

‖ηh‖ := ‖η1,h‖1,ω + ‖η2,h‖1,ω + ‖η3,h‖h for all ηh ∈ Ṽ h.

The proof of the error estimate, which constitutes the main result of this paper,
resorts to Lemma 6, Lemma 11, and Young’s inequality (cf. [47]).

Theorem 1 There exists a positive constant C such that

‖ζ ε − ζ ε
h‖ ≤ C

√
h. (71)

Proof An application of Lemma 6, Lemma 11, (11), and Young’s inequality yields

‖ζ ε − ζ ε
h‖2 ≤ C1‖Πhζ

ε − ζ ε‖2 + C2
[
b(ζ ε, Πhζ

ε − ζ ε
h) − �(Πhζ

ε − ζ ε
h)
]

≤ C1‖Πhζ
ε − ζ ε‖2 + C

√
h(

√
h + ‖Πhζ

ε − ζ ε
h‖)

≤ Ch + C
√

h(
√

h + ‖Πhζ
ε − ζ ε‖ + ‖ζ ε − ζ ε

h‖)
≤ C

(
h + √

h‖ζ ε − ζ ε
h‖
)

≤ C

(
h + Ch

2
+ 1

2C
‖ζ ε − ζ ε

h‖2
)

≤ Ch + 1

2
‖ζ ε − ζ ε

h‖2.

In conclusion, we obtain
‖ζ ε − ζ ε

h‖2 ≤ Ch,

and (71) is thus proved.
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