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Abstract
A novel variational problem for approximating the distance function (to a domain
boundary) is proposed. It is shown that this problem can be efficiently solved by
ADMM. A review of several other variational and PDE-based methods for dis-
tance function estimation is presented. Advantages of the proposed distance function
estimation method are demonstrated by numerical experiments. Applications of the
method to the problems of surface curvature estimation and computing the skeleton
of a binary image are shown.

Keywords Distance function · Variational methods · Distance transform ·
Skeleton · Curvature

1 Introduction

Fast and accurate estimation of the distance to a surface (the distance to a curve in 2D)
is important for a number of applications including redistancing or reinitialization for
level-set methods [17], wall distance models in turbulence modeling [23, 29], hetero-
geneous material modeling in computational mechanics [6], medial axis transform
and meshing [31], FEM extensions [2, 16], robot navigation and mapping [9], and
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various computer graphics studies [10, 34, 35]. In particular, variational and PDE-
based methods for distance function estimation are currently a subject of intensive
research [3, 4, 11, 22, 24].

In this paper, we propose a variational method for accurate distance function esti-
mation. The core of our approach consists of formulating a new variational problem,
whose solution is the distance function and solving this variational problem numer-
ically by ADMM [19]. We review several other variational and PDE-based methods
for distance function estimation, such as the recent geodesics-in-heat method [11,
12]. We show how to discretize the variational problem by the finite element method,
and by using finite difference. In particular, we present the Matlab code for imple-
menting our method (as well as the other variational methods) for computing the
distance transform of a 2D binary image. We compare the results obtained by our
approach with those of the other methods, and also show how our method can be
used for estimating surface curvatures and approximating the skeleton of a 2D binary
image.

2 Distance function computation

2.1 Distance function properties

Consider a domain � ⊂ R
m bounded by ∂� oriented by its inner normal n. Denoted

by |q|, the magnitude of vector q = (q1, . . . , qm)T , |q| =
√

q2
1 + · · · + q2

m. Let d(x)

be the signed distance function from ∂�. The distance function satisfies the eikonal
equation

|∇d| = 1 in � (1)

and boundary conditions

d = 0, ∂d/∂n = 1, and ∂ kd/∂nk = 0, k = 2, 3, . . . on ∂�. (2)

Typically, (1) is used with the first (Dirichlet) boundary condition in (2).

2.2 Screened Poisson distance function approximations

A simple PDE-based approach to estimate d(x) consists of considering a Dirichlet
boundary value problem for a screened Poisson equation

w(x) − t�w(x) = 0 in �, w = 1 on ∂�, (3)
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where t is a small positive parameter. As shown in [30, Theorem 2.3],

lim
t→0

√
t ln[1/w(x)] = d(x). (4)

Thus,
√

t ln[1/w(x)] approximates d(x) and the parameter t controls the approxi-
mation accuracy. This approximation of the distance function was used in [28] for
detecting skeletal structures in grayscale images.

A simple heuristic behind (4) can be found, for example, in [20] and uses
the Hopf-Cole transformation [13]. It is easy to check that substituting w(x) =
exp

{−v(x)/
√

t
}

in (3) yields |∇v|2 = 1 + √
t�v, which for small t can be

considered as a regularized version of eikonal (1).
The geodesics-in-heat method [11, 12], a highly popular distance function approx-

imation, is a close relative of the above approach extended to non-flat geometry. The
method is based on the observation that w(x) and v(x) have the same level sets and
construct a distance function approximation u(x) as the solution of the following
minimization problem

∫

�

|∇u − m|2dx → min, u = 0 on ∂�, (5)

where m = ∇w/|∇w| and w(x) is the solution to (3).
Practical implementation of the geodesics-in-heat method includes numerical

solutions to the screened Poisson (3) and the Poisson equation corresponding to the
variational problem (5).

It is also interesting that (3) combined with either (4) or (5) can serve as a warm
start to iterative methods for computing the distance function.

Although both the methods, (4) and (5), are based on screened Poisson (3), to
distinguish them we refer to the former as the screened Poisson method and to the
latter as the heat method. In Section 4, we deal with approximate distance trans-
forms for 2D binary images and provide the reader with simple MATLAB-based
implementations of both methods.

2.3 Proposed distance function approximation

We now turn to the description of our approach. A key observation is given by the
following proposition.

Proposition 1 The distance function d(x) delivers the solution to the following
energy minimization problem

∫

�

φ dx −→ max, where max
�

|∇φ| ≤ 1 and φ = 0 on ∂�. (6)

Numerical Algorithms (2020) 84:983–996 985



Proof Indeed, in order to maximize
∫
�

φ dx, the function φ(x) has to grow as fast
as possible and its gradient magnitude |∇φ| achieves at each point x its maximal
allowed value. Thus, the solution to (6) satisfies

|∇φ| = 1 in � and φ = 0 on ∂�

and, therefore, is the distance function d(x).

The constrained energy minimization problem (6) can be reformulated as the
following unconstrained minimization problem

F(φ) + G(∇φ) → min, (7)

where

F(φ) = −
∫

�

φ dx, φ = 0 on ∂�, G(q) =
{

0 if ‖q‖L∞ ≤ 1
+∞ otherwise

We solve (7) numerically by ADMM. The corresponding augmented Lagrangian
has the form

L(φ, q, σ ) =
∫

�

(
−φ + G(q) + σ · (∇φ − q) + r

2
|∇φ − q|2

)
dx, (8)

where σ is the vector of Lagrange multipliers and r > 0 is a regularization parameter.
Now ADMM for (8) yields the following iterative process:

1: repeat

2: Minimize (8) w.r.t. by solving 1 div 1 div in ,

1 0 on ;

3: Perform the projection 1 1 , where

4:
if 1

otherwise
;

5: Update the Lagrange multipliers by 1 1 1 ;

6: until convergence

The iterative approach presented here shares a lot of similarities with the numerical
method proposed in [15], where ADMM is used to numerically compute the solution
to a p-Poisson problem −�pu = 1. The limit as p → ∞ of the solution to this p-
Poisson problem, with vanishing Dirichlet boundary condition, is d(x), the distance
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to the boundary function [5]. The main difference with the approach proposed here
lies in the second step of minimizing (8) by ADMM, where a simple projection can
now be used instead of numerically computing the root of a polynomial.

3 Numerical experiments: distance to a polygonal mesh using FEM
and application to curvature computation

We consider first the problem of computing the distance function to ∂�, a surface
(curve in 2D), represented by a triangle mesh (a polygonal chain in 2D).

As described in Section 2, we use ADMM to minimize (7). This gives an iter-
ative process, where the first step involves solving a Poisson problem of the form:
−�φ = f . This Poisson problem is discretized and solved by the finite elements
method. The computational domain bounded by ∂� is represented by a triangle mesh
in 2D or a tetrahedral mesh in 3D. Linear basis functions are used at each node of
the triangulation. The solution to the Poisson problem is obtained from numerically
solving a linear system A� = b, where the sparse matrix A, corresponding to a dis-
cretization of the Laplacian, is the same for each iteration of ADMM and can thus be
prefactored (for example with the Cholesky decomposition).

3.1 Distance computation

Figure 1 illustrates the result obtained by our approach on a 2D polygonal domain
with complex geometry. The left image visualizes the exact distance obtained by
computing the minimum distance to any boundary segment. The middle image
presents the distance computed by solving (7). The right image demonstrates how the
relative residual error

‖φk+1 − φk‖2/‖φk‖2

decreases with each iteration when solving (7) by ADMM. One can observe that (7)
solved numerically by ADMM demonstrates a good convergence and is capable to
deliver an accurate approximation of the distance function.

Fig. 1 Left: The exact distance computed as the min distance to the boundary segments. Middle: Distance
to the boundary obtained from solving (7) by ADMM. Right: Relative residual error over a few ADMM
iterations

Numerical Algorithms (2020) 84:983–996 987



Fig. 2 Exact and approximate distance for two tetrahedral meshes, Armadillo and Fertility. Filled contour
plots on a planar slice of the domain � are shown. Left: The exact distance computed as the min distance
to the boundary triangles. Middle: Distance to the boundary obtained from solving (7) by ADMM. Right:
Relative residual error over a few ADMM iterations

As seen in Fig. 2, a similar performance of (7) with ADMM is achieved for 3D
models. In this figure, we visually compare on a planar slice of � the function
obtained by numerically solving (7) and the exact distance, which is obtained by
computing at a given node of the tetrahedral mesh the minimal distance to the set of
triangles corresponding to the input surface ∂�.

3.2 Comparison to other approaches

In Figs. 3 and 4, we compare the distance function estimation results achieved by
solving (7) with those obtained by using the heat method (3) and (5). The results are
shown on a planar slice of the domains.

As seen in Fig. 3, the distance function approximation obtained from minimizing
(7) delivers the best result. This is also confirmed by Fig. 4, where the point-wise
relative error w.r.t. the exact distance

|u(x) − d(x)|/d(x)

is visualized on a planar slice of the domain. Here u(x) is the distance function
approximation obtained by either (7) with ADMM, or the heat method (3) and (5).

One can notice that (7) delivers the best approximation. Some small regions
with relatively high errors are likely due to the numerical solution of the ADMM
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Fig. 3 Left: Distance function approximation by the heat method [11]. Middle: Our new variational prob-
lem (7) solved numerically by ADMM. Right: The exact distance to the boundary. Results are visualized
on a planar slice of the domain

sub-problems by the finite element method. Mesh refinement and mesh moving
techniques can be used to improve the results.

3.3 Application to surface curvature estimation

We can further use the computed distance to approximate the curvature of the
boundary surface ∂�. Surface curvature estimation is important for many computer
graphics and geometric modeling applications [8] and remains a subject of intensive
research [21, 27] (see also references therein). It turns out that the distance func-
tion from a surface contains full information about the surface curvatures. Namely,
the eigenvalues of the Hessian H of the distance function d at a boundary point y

are {κ1, κ2, 0} and the corresponding eigenvectors are {t1, t2, n}, where t1, t2 are the
principal curvature directions at y and n the outward normal to the surface at y. See,
for example, [18, Section 14.6].

Fig. 4 Point-wise relative error w.r.t. the exact distance for the distance approximation obtained by the
heat method [11] (two left images) and our variational problem (7) solved numerically by ADMM (two
right images) visualized on a planar slice of the domain
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Given an approximation of the distance, computed by numerically solving (7),
and sampled on a tetrahedral mesh, we first approximate the gradient of the distance
function ∇d at each node of the tetrahedral mesh as the normalized weighted average
of the gradients in each incident tetrahedron (the volume of the tetrahedron is used
as the weight). By repeating this procedure for each component of ∇d , we obtain
an expression of the Hessian of the distance function at each node of the tetrahedral
mesh. We then compute the non zero eigenvalues of the Hessian at each boundary
node (nodes of the tetrahedral mesh that are on the surface boundary).

Figure 5 illustrates results obtained by this approach for computing the mean
curvature, H = (κ1 + κ2)/2 of some surfaces.

4 Approximate distance transforms for 2D binary images
and skeleton computation

4.1 Approximate distance transforms for 2D binary images

Constructing exact and approximate distances from boundaries of objects is also
important for a number of image processing applications [14], where it is usually
called the distance transform. In particular, shape skeletonization, which itself has
numerous applications in image processing and computer graphics [26], can be used
as a quality indicator for distance function approximations.

In this section, we focus on computing approximate distance functions for the
boundaries of objects represented by 2D binary images. Since the most popular
way to encode 2D images consists of representing them using grids of numbers
(pixels), we deal with finite difference approximations. We present MATLAB-based
implementations of the screened Poisson method (3) and (4), heat method (5)
of Crane, Weischedel, and Wardetzky [11, 12], and our method (7). We demon-
strate that typically our method produces a more accurate approximation of the
distance function. Finally, we present a simple way to extract skeletons of binary
shapes.

Fig. 5 Mean curvature for the bunny and the fertility models, computed from the eigenvalues of the
Hessian of the distance function
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MATLAB allows for a very simple implementation of the screened Poisson
based and heat distance function approximations discussed in Section 2.2. Since
in this section we use them in our numerical experiments and comparison, we
present their implementations below. First, our MATLAB implementation of (3)
and (4) for approximating the distance to the shape of a binary image looks as
follows:

1 f u n c t i o n U = s c r e e n e d P o i s s o n d i s t ( I , t )

2 [ row , c o l ] = f i n d ( I 0 ) ;

3 v = ( 1 : l e n g t h ( row ) ) ’ ;

4 G = z e r o s ( s i z e ( I ) ) ;

5 f o r i = 1 : l e n g t h ( row )

6 G( row ( i ) , c o l ( i ) ) = v ( i ) ;

7 end

8 D = de l s q (G) ;

9 N = sum (G ( : ) 0) ;

10 r h s = ones (N, 1 ) ; % r i g h t hand s i d e = 1

11 u = s q r t ( t ) l og (1 ( t D+speye (N) ) r h s ) ;

12 U = G;

13 U(G 0) = u (G(G 0) ) ;

14 end

Next, our MATLAB implementation of the heat method [11, 12] solving (3) and
minimizing (5) reads as follows:

1 f u n c t i o n U = h e a t d i s t ( I , t )

2 [ row , c o l ] = f i n d ( I 0 ) ;

3 v = ( 1 : l e n g t h ( row ) ) ’ ;

4 G = z e r o s ( s i z e ( I ) ) ;

5 f o r i = 1 : l e n g t h ( row )

6 G( row ( i ) , c o l ( i ) ) = v ( i ) ;

7 end

8 D = de l s q (G) ;

9 N = sum (G ( : ) 0) ;

10 r h s = ones (N, 1 ) ; % r i g h t hand s i d e = 1

11 u = ( t D+speye (N) ) r h s ; % s o l v i n g s c r e e n e d Po i s s on

12 U = G;

13 U(G 0) = u (G(G 0) ) ;

14 [Ux , Uy] = g r a d i e n t (U) ;

15 g = s q r t (Ux . Ux+Uy . Uy) ;

16 Ux = Ux . / g ;

17 Uy = Uy . / g ;

18 d iv = d i v e r g e n c e (Ux , Uy) ;

19 w = D d iv (G 0) ; % s o l v i n g Po i s s on e q u a t i o n

20 U(G 0) = w(G(G 0) ) ;

21 end
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Finally, a simple implementation of the ADMM-based minimization of (7) in
MATLAB, relying on its built-in functions, is shown below

1 f u n c t i o n U = o u r d i s t ( I , n i t e r , r )

2 [ row , c o l ] = f i n d ( I 0 ) ;

3 v = ( 1 : l e n g t h ( row ) ) ’ ;

4 G = z e r o s ( s i z e ( I ) ) ;

5 f o r i = 1 : l e n g t h ( row )

6 G( row ( i ) , c o l ( i ) ) = v ( i ) ;

7 end

8

9 D = de l s q (G) ; % 5 p o i n t n e g a t i v e L ap l a c i a n

10 N = sum (G ( : ) 0) ; % Number o f i n t e r i o r p o i n t s

11 f1 = ones (N, 1 ) . / r ;

12 sigma = z e r o s ( s i z e ( I , 1 ) , s i z e ( I , 2 ) , 2 ) ; % m u l t i p l i e r s

13 [ d I ( : , : , 1 ) , d I ( : , : , 2 ) ] = g r a d i e n t ( I ) ;

14

15 f o r i = 1 : n i t e r

16 q = dI sigma . / r ;

17 gu = repmat ( s q r t ( q ( : , : , 1 ) . ˆ 2 + q ( : , : , 2 ) . ˆ 2 ) , [ 1 1 2 ] ) ;

18 x i = q ;

19 x i ( gu 1) = q ( gu 1) . / gu ( gu 1) ;

20 sigma = sigma + r . ( x i d I ) ;

21 x i2 = x i + ( 1 . 0 / r ) . s igma ;

22 % so l v e d e l t a u = d iv ( x i + sigma / r ) + f / r

23 d iv = d i v e r g e n c e ( x i 2 ( : , : , 1 ) , x i 2 ( : , : , 2 ) ) ;

24 r h s = d iv (G 0) + f1 ;

25 u = D rh s ;

26 U = G;

27 U(G 0) = f u l l ( u (G(G 0) ) ) ;

28 [ d I ( : , : , 1 ) , d I ( : , : , 2 ) ] = g r a d i e n t (U) ;

29 end

30 end

In the numerical experiments presented below, we compare these three methods
(the screened Poisson (3) and (4), the heat method (3) and (5), and the proposed
approach (7)) for computing the distance to the boundary of binary shapes. We set
t = 0.6 for both the screened Poisson and heat methods, as choosing a smaller value
may lead to instabilities. We set r = 10 and use 50 iterations for our method.

In our experiments, we use two simple geometric shapes (mushroom and keyhole)
and four more complex shapes from the Kimia-99 dataset [25]. Figure 6 illustrates the
results obtained by these methods on the test shapes. The bottom three rows show the
point-wise absolute error of the screened Poisson, the heat method, and our approach,
respectively, compared with the exact distance. Quantitative results are provided in
Table 1, where the RMS and maximum error for each of the test shapes is provided.

The heat method (5) demonstrates a better stability than the screened Poisson one
(3) and (4). In particular, the latter collapses for some images tested above if we
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Fig. 6 Distance estimation on test images. First row (from top to bottom): input binary images. Sec-
ond row: the exact distance from the boundary. Third row: absolute error for the screened Poisson
based distance function approximations (4). Fourth row: absolute error for the heat distance function
approximations (5). Fifth row: absolute error for the proposed distance function approximations (7)

set t = 0.5, while the heat method demonstrates slightly better performance. On
the other hand, our method (7) can also benefit from a more accurate selection of
the regularization parameter r . For example, setting r = 7 makes our method the
absolute RMS and maximum error winner for all the images considered above.

Table 1 RMS and maximum errors for the images in Fig. 6

RMS error Maximum error

Varadhan Heat Ours Varadhan Heat Ours

Mushroom 0.35 0.26 0.16 1.72 1.84 0.79

Keyhole 0.26 0.22 0.14 1.63 1.25 0.69

Hand 0.25 0.26 0.16 1.67 1.86 0.96

Cat 0.17 0.19 0.14 1.21 1.77 1.37

Donkey 0.17 0.18 0.12 1.50 1.63 0.99

Fish 0.10 0.12 0.07 1.02 1.40 1.01

Bold font is used to indicate the best results
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4.2 2D binary image skeletonization

The proposed approach for distance estimation can be used to compute skeletons of
binary images. The skeleton, or medial axis, is an important shape descriptor, which
was introduced more than fifty years ago [7] and which remain a topic of active
research, see, for example, [1, 26, 32, 33]. The skeleton of a 2D shape can be defined
as the locus of centers of inner bitangent circles. Alternatively, given the distance
function to the boundary of a shape, the skeleton can be defined as the set of inner
distance function singularities. In this study, we use a smooth distance function for
constructing an approximate skeleton of a binary image.

Since the magnitude of the gradient of the distance function is equal to one every-
where except at the distance function singularities, it is natural to expect that the
points where the gradient of a smooth distance function is small form a thick/fuzzy
version of the skeleton. Once such a thick/fuzzy skeleton is extracted, one can
get a one-pixel-wide skeleton by applying MATLAB’s bwmorph function to the
thick/fuzzy skeleton.

In Fig. 7, we demonstrate how this gradient-of-smooth-distance-function approach
works and compare it with the standard thinning-based binary image skeletoniza-
tion procedure consisting of applying bwmorph to the whole binary image. Given
a binary image, we start from using (7) for computing a smooth distance function
u(x). Then, the fuzzy-skeleton function and its normalized version

S(x) =
√

u(x)(1 − |∇u(x)|2) and Sn(x) = S(x)/ max
x

[S(x)] (9)

are evaluated. Here, the factor
√

u(x) is used to suppress image skeletal structures
appearing due to small perturbations of the image boundary. As demonstrated by the

Fig. 7 Using the distance approximation (7) for skeleton extraction. Top row: our distance function
approximation (7) is used to compute a gradient-based function Sn(x) defined by (9). Middle row: the
skeletons obtained by applying simple thresholding and thinning to Sn(x). Bottom row: the skeletons
obtained by thining the original binary images with bwmorph
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top row images of Fig. 7, Sn(x) delivers a good detection of skeletal structures of
the binary images. Applying simple thresholding and thinning by bwmorph yields
one-pixel-wide skeletons (the middle row of Fig. 7), which are of higher quality than
those generated by thinning the original binary images with bwmorph (the bottom
row).

5 Conclusion

In this paper, we have proposed a new variational problem for the distance-from-
surface function (7) and showed how it can be efficiently solved using ADMM. We
have presented the results of our numerical experiments when the problem is dis-
cretized by FEM or finite differences. We have demonstrated advantages of (7) over
the heat method [11] and shown that our approach can be used for surface curvature
estimation and skeletonization of 2D binary images.
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