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Abstract
In this work, we study the stability regions of linear multistep or multiderivative
multistep methods for initial value problems by using techniques that are straight-
forward to implement in modern computer algebra systems. In many applications,
one is interested in (i) checking whether a given subset of the complex plane (e.g., a
sector, disk, or parabola) is included in the stability region of the numerical method,
(ii) finding the largest subset of a certain shape contained in the stability region of
a given method, or (iii) finding the numerical method in a parametric family of mul-
tistep methods whose stability region contains the largest subset of a given shape.
First, we describe a simple procedure to exactly calculate the stability angle α in
the definition of A(α)-stability by representing the root locus curve of the multistep
method as an implicit algebraic curve. As an illustration, we consider two finite fam-
ilies of implicit multistep methods. We exactly compute the stability angles for the
k-step BDF methods (3 ≤ k ≤ 6) and discover that the values of tan(α) are surpris-
ingly simple algebraic numbers of degree 2, 2, 4, and 2, respectively. In contrast, the
corresponding values of tan(α) for the k-step second-derivative multistep methods
of Enright (3 ≤ k ≤ 7) are much more complicated; the smallest algebraic degree
here is 22. Next, we determine the exact value of the stability radius in the BDF fam-
ily for each 3 ≤ k ≤ 6, that is, the radius of the largest disk in the left half of the
complex plane, symmetric with respect to the real axis, touching the imaginary axis
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and lying in the stability region of the corresponding method. These radii turn out
to be algebraic numbers of degree 2, 3, 5, and 5, respectively. Finally, we demon-
strate how some Schur–Cohn-type theorems of recursive nature and not relying on
the root locus curve method can be used to exactly solve some optimization prob-
lems within infinite parametric families of multistep methods. As an example, we
choose a two-parameter family of implicit-explicit (IMEX) methods: we identify the
unique method having the largest stability angle in the family, then we find the unique
method in the same family whose stability region contains the largest parabola.

Keywords Multistep methods · Optimal subsets in the stability region · Exact
optimization · Stability angle · Stability radius

1 Introduction

In the stability theory of one-step or multistep methods for initial value problems, one
is often interested in various geometric properties of the stability region S ⊂ C of the
method. In this work, we study the shape of the stability region of linear multistep
methods (LMMs) or multiderivative multistep methods (also known as generalized
LMMs) as follows.

Suppose we are given

a) a stability region S or
b) a family of stability regions Sβ parametrized by some β ∈ R

d

and a family of subsets of C, denoted by F. Due to their relevance in applications, we
will consider the following three classes:

• F = F sect
α is the family of infinite sectors in the left half of C, with vertex at the

origin, symmetric about the negative real axis, and parametrized by the sector
angle α ∈ (0, π/2).

• F = F disk
r is the family of disks in the left half of C, symmetric with respect to

the real axis, touching the imaginary axis, and parametrized by the disk radius
r > 0.

• F = F
para
m is the family of parabolas in the left half of C, symmetric with respect

to the real axis, touching the imaginary axis, and parametrized by some m > 0.

Our goal is to find the set H ∈ F with the largest parameter (α, r , or m) such that

• H ⊂ S in case a;
• H ⊂ Sβopt for some stability region in the family in case b, but H �⊂ Sβ for

β �= βopt.

We will present some tools to handle these shape optimization questions and, as an
illustration, exactly solve some of them by using Mathematica version 11 in the BDF
(backward differentiation formula) and Enright families (as LMMs and multideriva-
tive multistep methods, respectively), and in an infinite family of IMEX methods
with d = 2 parameters.
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1.1 Motivation andmain results

When solving stiff ordinary differential equations, one desirable property of the
numerical method is A-stability: a method is A-stable if the closed left half-plane
{z ∈ C : Re(z) ≤ 0} belongs to S. Many useful methods are not A-stable, still,
S contains a sufficiently large infinite sector in the left half-plane with vertex at
the origin and symmetric about the negative real axis. This leads to the notion of
A(α)-stability: a method is A(α)-stable with some 0 < α < π/2 if

{z ∈ C \ {0} : |arg(−z)| ≤ α} ⊂ S, (1)

where the argument of a non-zero complex number satisfies −π < arg ≤ π . The
largest 0 < α < π/2 such that (1) holds is referred to as the stability angle of the
method [17]. Various other stability concepts—such as A(0)-stability, A0-stability,
◦
A-stability, stiff stability, or asymptotic A(α)-stability—have also been defined, and
theorems are devised to test whether a given multistep method is stable in one of
the above senses (see, for example, [3, 9, 11, 20–23, 26, 34, 40]). There are various
techniques to test A(α)-stability for a given α value. In [3], for example, the sec-
tor on the left-hand side of (1) is decomposed into an infinite union of disks, and a
bijection between each disk and the left half-plane is established via fractional linear
transformations to employ a Routh–Hurwitz-type criterion. Another way of studying
A(α)-stability is to consider the root locus curve (RLC) of the multistep method [17].
Based on the RLC and some theorems from complex analysis, [38] presents a crite-
rion for a LMM to be A(α)-stable for a given α; the stability angle is then obtained
as the solution of an optimization problem involving Chebyshev polynomials. The
procedure in [38] is formulated only for LMMs but not for multiderivative multistep
methods.

The first goal of the present work is to describe an elementary approach to exactly
determine the stability angle of a LMM or multiderivative multistep method: by
eliminating the complex exponential function from the RLC and using a tangency
condition, a system of polynomial equations in two variables is set up whose solution
yields the stability angle. This process is easily implemented in computer algebra
systems. As an illustration, we consider two finite families: the BDF methods [13,
17, 38] as LMMs and the second-derivative multistep methods of Enright [6, 10, 17].
With αBDF

k denoting the stability angle of the k-step BDF method for 3 ≤ k ≤ 6, we
show that tan

(
αBDF

k

)
is an unexpectedly simple algebraic number, having degree 2

for k ∈ {3, 4, 6} and degree 4 for k = 5 (see Table 1). For the k-step Enright methods
with 3 ≤ k ≤ 7, the corresponding constants tan

(
αEnr

k

)
(with approximate values

listed in Table 2) are much more complicated algebraic numbers of increasing degree
(starting with 22). As far as we know, exact values α ∈ (0, π/2) for the stability
angles of multistep methods were not presented earlier in the literature.

Remark 1.1 The k-step BDF methods for k ∈ {1, 2} are A-stable. For k ≥ 7 they are
not zero-stable [7, 8, 16], therefore not interesting from a practical point of view.
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Table 1 The exact stability angles αBDF
k = 180

π
arctan

(
cBDF
k

)
of the BDF methods expressed in degrees

k cBDF
k Approximate value of αBDF

k

3
329
√

7
5

27 86.032366860211647332◦

4
699
√

3
2

256 73.351670474578482110◦

5 1326107429
25

√
62

53860574450525125+1194498034900685
√

2033
51.839755836049910391◦

6 45503
10125

√
195

17.839777792245700101◦

Remark 1.2 In [38, Table 1], one finds some approximate values for the BDF stabil-
ity angles; however, some of these values are not correct. The k = 3 value is wrong
because the polynomial R3 is not computed properly (a factor 2 is missing, the cor-
rect form would have been R3(x) = −12(x − 1)2(4x − 1)). The approximate values
for k = 4 and k = 5 given in [38, Table 1] are correct (up to the given precision).
The value for k = 6 is again incorrect because an error was committed in the min-
imization process. If the optimization in [38, Section 3] is carried out exactly with
the correct Rj polynomials, we recover the stability angle values in our Table 1. The
errors in [38, Table 1] propagated in the literature (see, for example, [33, p. 242]).
As a consequence, some works that appeared in the current millennium also contain
the erroneous angles. In [17, Chapter V.2, (2.7)], the correct approximate values are
presented.

Remark 1.3 At the time of writing this document, we learned (through personal com-
munication) that [1] also contains the exact stability angles for the BDF methods with
3 ≤ k ≤ 6 steps: although they use a different technique to derive the results and the
arcsin function to express the final constants, the values given in [1] and our Table 1
are the same. Notice, however, that the stability angle for k = 5 given in [1] has a
slightly more complicated structure than the value in our Table 1.

Remark 1.4 The k-step Enright methods are A-stable again for k ∈ {1, 2} (see [17])
and unstable for k ≥ 8. More precisely, [11] proves that these methods are not A0-
stable for k ≥ 8; hence, they cannot be stiffly stable either (see [23, Theorem 3])

Table 2 Stability angles αEnr
k = 180

π
arctan

(
cEnr
k

)
of the Enright methods expressed in degrees

k Approximate value of cEnr
k Approximate value of αEnr

k

3 27.056933440109472532101963 87.8833627693413031369003498◦

4 7.1406622283653916403051061 82.0279713768712835947479188◦

5 3.2907685080317853840110455 73.0970020659749082763655203◦

6 1.7285146253131256601603521 59.9492702555400766770433070◦

7 0.7703217281441388675578954 37.6078417405752150238159031◦
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(cf. [22, 26]). However, in [17, Chapter V.3, p. 276, Exercise 2], the stiff instability
of the Enright formulae for k ≥ 8 is still mentioned as an open problem.

The stability radius of a multistep method is the largest number r > 0 such
that the inclusion

{z ∈ C : |z + r| ≤ r} ⊂ S
holds. The stability radius plays an important role when analyzing the boundedness
properties of multistep methods. For example, it has been proved [42, Theorem 3.1]
that this radius is the largest step-size coefficient for linear boundedness of a LMM
satisfying some natural assumptions.

Remark 1.5 For LMMs (and for more general methods as well), various other
step-size coefficients have been introduced in the context of linear or non-linear prob-
lems. These coefficients govern the largest allowable step-size guaranteeing certain
monotonicity or boundedness properties of the LMM, including the TVD and SSP
properties [15]. These properties are relevant, for example, in the time integration of
method-of-lines semi-discretizations of hyperbolic conservation laws [19, 35, 41].

Remark 1.6 In [31], the largest inscribed and smallest circumscribed (semi)disks are
computed for certain one-step methods.

The second goal of the present work is to compute the stability radius for some
multistep methods. We will achieve this by using again the algebraic form of the
RLCs. Table 3 contains the exact values in the BDF family for 3 ≤ k ≤ 6.

The RLC, as the graph of a [0, 2π ] → C function (or a union of such func-

tions for generalized LMMs), yields information about the boundary of the stability
region, ∂S. It is known, however, that in general the RLC does not coincide with
∂S (see Fig. 3). This does not pose a problem when a fixed multistep method is
considered—one can evaluate the roots of the characteristic polynomial at finitely
many test points sampled from different components of C determined by the RLC
to see which component belongs to S and which one to C \ S. But when work-
ing with parametric families of multistep methods, the precise identification of the
stability region boundaries or components can become challenging with the RLC

Table 3 The exact stability radii r BDF
k of the BDF methods

k r BDF
3 is equal to / r BDF

4,5,6 is a root of the polynomial Approximate value of r BDF
k

3
(

17 + 8
√

10
)

/6 7.049703546891172

4 {18432, 2172,−100855,−114975} 2.727199466336645

5 {2944512000, 260854387200, 679386763440,

266052478296,−1280160594125,−1354065829875} 1.357947301777465

6 {141717600000, 558150393600, 1112790780640,

948530730784,−119637602525,−488414721375} 0.559931687924882
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method. One can overcome this difficulty for example by invoking a reduction pro-
cess, the Schur–Cohn reduction, formulated in, e.g., [37]. Instead of using auxiliary
fractional linear transformations and applying Routh–Hurwitz-type criteria [28, 36]
as mentioned above, these Schur–Cohn-type theorems in [37] are directly tailored to
the context of multistep methods to locate the roots of the characteristic polynomials
with respect to the unit disk.

The third goal of the present work is to demonstrate the effectiveness of the
Schur–Cohn reduction when we solve two optimization case studies in a family of
implicit-explicit (IMEX) multistep methods taken from [18]. On the one hand, we
find the method in the IMEX family that has the largest stability angle, that is, the
method whose stability region contains the largest sector (see our Theorem 5.3).
On the other hand, we illustrate the versatility of the reduction technique by also
finding the method whose stability region contains the largest parabola (see Theo-
rem 6.1); the inclusion of a parabola-shaped region in S is relevant when studying
semi-discretizations of certain partial differential equations (PDEs) of advection-
reaction-diffusion type [5, 18, 28]. The chosen IMEX family is described by two
real parameters, and the corresponding characteristic polynomial is cubic. The
Schur–Cohn reduction process recursively decreases the degree of the characteris-
tic polynomial, so instead of analyzing the roots of high-degree polynomials, we
finally need to check polynomial inequalities in the parameters present in the coef-
ficients of the original polynomial. Besides the two real parameters, two complex
variables are involved in our calculations—the non-trivial interplay between these six
real variables determines the optimum in both cases. We emphasize that we solve the
optimization problem exactly, and RLCs are not relied on in the rigorous part of the
proofs (only when setting up conjectures about the optimal values).

Remark 1.7 The Schur–Cohn reduction is also used in [25] to explore certain prop-
erties of a discrete parametric family of multistep methods. Conditions for disk or
segment inclusions in the stability regions of a two-parameter family of multistep
methods are formulated in [39]. Optimality questions about the size and shape of
the stability regions of one-step or multistep methods are investigated in detail in
[27]. Properties of optimal stability polynomials and stability region optimization in
parametric families of one-step methods are discussed, for example, in [29, 30].

1.2 Structure of the paper

In Section 2.1, we introduce some notation. In Sections 2.2–2.3, we review the Schur–
Cohn reduction and the definition of the stability region of a multistep method. In
Sections 2.4–2.5, the definition of the root locus curve is recalled in two special cases:
for linear multistep methods and for second-derivative multistep methods. Here, we
consider the BDF and Enright families as concrete examples.

Regarding the new results, a simple algebraic technique is described in Section 3.1
to exactly compute the stability angle of a linear multistep or multiderivative mul-
tistep method. Stability angles for the BDF and Enright families are tabulated in
Sections 3.2–3.3. In Section 4, we exactly compute the stability radii in the BDF fam-
ily by using the same approach. In Section 5, we first describe a two-parameter family
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of IMEX multistep methods, in which we determine the unique method with the
largest stability angle, then, in Section 6, the unique method whose stability region
contains the largest parabola. The techniques in Sections 5–6 do not rely on root
locus curves but use the Schur–Cohn reduction instead; the full proofs are deferred
to Appendices A and B.

2 Preliminaries

2.1 Notation

The set of natural numbers {0, 1, . . .} is denoted by N. For z ∈ C, Re(z), Im(z),
and z denote the real and imaginary parts and the conjugate of z, respectively, and
i is the imaginary unit. The boundary of a (possibly unbounded) set H ⊂ C is
∂H ⊂ C. When describing certain algebraic numbers of higher degree, a polynomial∑n

j=0 ajx
j with aj ∈ Z, an �= 0 and n ≥ 3 will be represented simply by its coeffi-

cient list {an, an−1, . . . , a0}. For a polynomial Q(z) = ∑n
j=0 aj z

j with 0 ≤ n ∈ N,
aj ∈ C (0 ≤ j ≤ n), and an �= 0, we denote its degree, leading coefficient and con-
stant coefficient by deg Q = n, lcQ = an, and ccQ = a0. The acronyms RLC and
LMM stand for root locus curve and linear multistep method, respectively.

2.2 The Schur–Cohn reduction

In the rest of this section, we assume that Q is a univariate polynomial with deg Q ≥
1, and follow the terminology of [37]—we have explicitly added the deg Q ≥ 1
condition, being implicit in [37]. We say that:

• Q is a Schur polynomial, Q ∈ Sch, if its roots lie in the open unit disk.
• Q is a von Neumann polynomial, Q ∈ vN, if its roots lie in the closed unit disk.
• Q is a simple von Neumann polynomial, Q ∈ svN, if Q ∈ vN and roots with

modulus 1 are simple.

Remark 2.1 The class Sch is referred to as strongly stable polynomials in [4, p. 345].

Remark 2.2 The property Q ∈ svN is often expressed by saying that Q satisfies the
root condition.

The reduced polynomial of Q(z) =∑n
j=0 aj z

j is defined as

Qr(z) :=
an ·

(∑n
j=0 aj z

j
)

− a0 ·
(∑n

j=0 an−j z
j
)

z
=

n∑

j=1

(
an · aj − a0 · an−j

)
zj−1,

so we have deg Qr ≤ (deg Q) − 1. When this reduction process is iterated, we write
Qrr for (Qr)r, for example. The following theorems from [37] use the notion of the
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reduced polynomial and the derivative to formulate necessary and sufficient condi-
tions for a polynomial to be in the above classes. In all three theorems below, it is
assumed that lcQ �= 0 �= ccQ and deg Q ≥ 2.

Theorem 2.3 Q ∈ Sch ⇔ (|lcQ| > |ccQ| and Qr ∈ Sch).

Theorem 2.4 Q ∈ vN ⇔ either (|lcQ| > |ccQ| and Qr ∈ vN) or (Qr ≡
0 and Q′ ∈ vN).

Theorem 2.5 Q ∈ svN ⇔ either (|lcQ| > |ccQ| and Qr ∈ svN) or (Qr ≡
0 and Q′ ∈ Sch).

Remark 2.6 Let us consider the following example when applying the theorems
above, e.g., Theorem 2.4. For any λ > 0, we set Qλ(z) := z2 + λiz + 1. Then the
roots of Qλ satisfy |z1(λ)| < 1 < |z2(λ)|, so Qλ /∈ vN, and Qr

λ = 2λi. This shows
that it can happen that the degree of the original polynomial is > 1, but its reduced
polynomial is a non-zero constant, so the relation Qr ∈ vN is undefined. In these
cases, when Qr is a non-zero constant, notice that neither |Qr| < 1 nor |Qr| = 1 nor
|Qr| > 1 can help us in general to determine whether Q ∈ vN or not (of course, the
other condition |lcQ| > |ccQ| is violated now) (cf. the sentence above [37, Theorem
5.1]).

2.3 The stability region of amultistepmethod

Stability properties of a broad class of numerical methods (including Runge–Kutta
methods, linear multistep methods, or multiderivative multistep methods) for solving
initial value problems of the form

y′(t) = f (t, y(t)), y(t0) = y0 (2)

can be analyzed by studying the stability region of the method. When an s-stage k-
step method (s ≥ 1, k ≥ 1 fixed positive integers; for k = 1 we have a one-step
method, while for k ≥ 2 a multistep method) with constant step size h > 0 is applied
to the linear test equation y′ = λy (λ ∈ C fixed, y(t0) = y0 given), the method
yields a numerical solution (yn)n∈N that approximates the exact solution y at time
tn := t0 + nh and satisfies a recurrence relation of the form [27]

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

s∑

j=0

k∑

�=0
aj,� μj yn+� = 0, n ∈ N,

aj,� ∈ R,
s∑

j=0
|aj,k| > 0, μ := hλ.

(3)

The characteristic polynomial associated with the method takes the form

�(ζ, μ) :=
s∑

j=0

k∑

�=0

aj,� μj ζ � (ζ ∈ C). (4)
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With �(·, μ) abbreviating the polynomial ζ 
→ �(ζ, μ), the stability region of the
method is defined as

S := {μ ∈ C : the degree of �(·, μ) is exactly k, and �(·, μ) ∈ svN}. (5)

Remark 2.7 Some other variations of the above definition of the stability region of a
multistep method have also been proposed in the literature (see, e.g., [24]). In [4, p.
344], the “open stability region” is defined as the set

{μ ∈ C : �(·, μ) ∈ Sch},
(see also [44, p. 348], [12, p. 452], or [33]). In, e.g., [17, 32], the stability region of
the method (3) is defined as

{μ ∈ C : all roots ζj (μ) of ζ 
→ �(ζ, μ) satisfy |ζj (μ)| ≤ 1, (6)

and multiple roots satisfy |ζj (μ)| < 1},
that is, essentially, �(·, μ) ∈ svN. In [27, Formula (2.5)], the stability region is given
by

{μ ∈ C : roots ζj of �(ζ, μ) = 0 satisfy |ζj (μ)| ≤ 1, (7)

and if |ζj | = 1, then it is a simple root},
with C denoting the extended complex plane.

We can regroup the terms in (4) as �(ζ, μ) = ∑k
�=0 C�(μ)ζ � with some suitable

polynomials C�. The inequality condition in (3) implies that the leading coefficient
Ck does not vanish identically; it may happen that for some exceptional μ values the
leading coefficient is zero:

E := {μ ∈ C : Ck(μ) = 0}.
For example, for the implicit Euler (IE) method �(ζ, μ) = 
(ζ ) − μσ(ζ ) = (1 −
μ)ζ − 1 with 
(ζ ) := ζ − 1 and σ(ζ ) := ζ , so E = {1}. For the 2-step BDF method
(BDF2), �(ζ, μ) = (3−2μ)ζ 2 −4ζ +1; hence , E = {3/2}. If definition (6) (or (7))
is interpreted formally, we have for the IE method that E = {1} ⊂ S (because (6) is
satisfied vacuously). Similarly, for the BDF2 method, E = {3/2} ⊂ S (because then
the unique root of �(ζ, 3/2) = 0 is ζ = 1/4).

However, elements of E or E ∩ S can be problematic.

(i) For μ ∈ E , the order of the recursion (3) decreases, thus, in general, the starting
values y0, y1, . . . , yk−1 of the numerical method cannot be chosen arbitrarily.

(ii) Some exceptional values μ ∈ E ∩ S can be surrounded by points of instability
of the method—this is the case for example for both the IE and BDF2 methods.
When the step size h > 0 is chosen in a way that μ ∈ E ∩ S is such an
isolated value, the recursion (3) generated by the numerical method becomes
practically useless (it quickly “blows up” for arbitrarily small perturbations of
h).

(iii) RLCs are often used to identify the boundary ∂S of the stability region (see
Sections 2.4–2.5 below). In [27, Definition (2.21)], the RLC is given by

� := {μ ∈ C : ∃ζ ∈ C with |ζ | = 1 and �(ζ, μ) = 0}.
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It can happen that ∂S is a proper subset of the corresponding RLC (see, for
example, our Fig. 3), but in [27, Corollary 2.6] it is shown that for a numer-
ical method satisfying Property C (see [27, Formula (2.9)] or [17, Definition
4.7]), the RLC coincides with ∂S. According to [17, Section V.4], all one-step
methods have Property C, so the IE method also has. And indeed, applying
[27, Proposition 2.7] to the IE method we now have that 
 and σ have no com-
mon root and 
/σ is univalent on the set {z ∈ C : |z − 1| > 1}, so Q(μ) =
1/(1 − μ) has Property C. Thus for the IE method ∂S = �. As we have seen
above, 1 ∈ E∩S, so 1 ∈ ∂S. On the other hand, �(ζ, 1) = 
(ζ )−σ(ζ ) = −1,
so 1 /∈ � = ∂S. This apparent contradiction seems to indicate that the authors
of [27] interpreted definition (7) intuitively: a root ζ = ∞ is tacitly introduced
as soon as the leading coefficient Ck(μ) becomes zero. So [27, Corollary 2.6],
for example, actually relies on definition (5) rather than on definition (7) (or
(6)).

The problem of vanishing leading coefficient is implicitly avoided in [33, p. 66],
or in [40], because they impose a requirement on “all the roots rs (s = 1, . . . , k).”
Definition (5) above with the non-vanishing leading coefficient essentially appears,
for example, in [41, Section 2.1] (where it is formulated for LMMs, that is, for s = 1
in (3)), or in [42, Section 2].

Notice that, with the theorems cited in our Section 2.2, one can directly investigate
the stability region of a numerical method, without constructing the corresponding
RLC or without analyzing the relation between ∂S and the RLC (see Sections 5–6
below).

Finally, we remark that the above considerations also play an important role, e.g.,
in control theory [2, Chapter 1], where a “degree invariance” (i.e., “no degree loss”)
condition is incorporated in the Boundary Crossing Theorem. Bhattacharyya et al.
[2, Chapter 1] also recalls several stability results for polynomials, e.g., the Routh–
Hurwitz, Jury, or the recursive Schur(–Cohn) stability tests.

2.4 The RLC of a LMM

A linear multistep method for (2) has the form

k∑

j=0

(αjyn+j − hβjfn+j ) = 0, (8)

where fm := f (tm, ym), and the numbers αj ∈ R and βj ∈ R (j = 0, . . . , k) are the
suitably chosen method coefficients with αk �= 0. The method is implicit, if βk �= 0.
By setting


(ζ ) :=
k∑

j=0

αj ζ
j and σ(ζ ) :=

k∑

j=0

βj ζ
j ,

the associated characteristic polynomial (4) becomes

�(ζ, μ) ≡ P1(ζ, μ) := 
(ζ ) − μσ(ζ ). (9)
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One way to study the stability region (5), or its boundary ∂S in the complex plane is
to depict the RLC corresponding to the method [17]: observe that P1 is linear in μ,
so P1(ζ, μ) = 0 implies μ = 
(ζ )/σ (ζ ) (for σ(ζ ) �= 0). The RLC is then the image
of the parametric curve

[0, 2π ] � ϑ 
→ μ(ϑ) := 

(
eiϑ
)

σ
(
eiϑ
) . (10)

2.4.1 RLCs for the BDFmethods

Each member of the BDF family is a special case of (8). The k-step BDF method
(having order k) is given by

k∑

j=1

1

j
∇j yn+1 = hfn+1,

where ∇ denotes the backward difference operator ∇yn+1 := yn+1 − yn, and
∇j yn+1 := ∇j−1yn+1− ∇j−1yn (for j > 1). It is known [17] that the corresponding
RLC is

μ(ϑ) ≡
k∑

j=1

1

j
(1 − e−iϑ )j . (11)

Figures 1, 2, and 3 show the RLCs for some BDF methods.

2.5 The RLC of amultiderivative multistepmethod

A second-derivative multistep method is more general than (8) and can be written as

k∑

j=0

(αjyn+j − hβjfn+j − h2γjgn+j ) = 0, (12)

where gn := g(tn, yn) with g(t, y) := ∂1f (t, y) + ∂2f (t, y) · f (t, y), and the
method is determined by the coefficients αj , βj , and γj , see [17]. Now the associated
characteristic polynomial (4) becomes

�(ζ, μ) ≡ P2(ζ, μ) :=
k∑

j=0

(αj − μβj − μ2γj )ζ
j .

This time we have two RLCs:

[0, 2π ] � ϑ 
→ μ1,2(ϑ), (13)

where μ1,2 are the two solutions of P2
(
eiϑ , μ

) = 0. For any choice of the method
coefficients αj , βj , and γj , one can construct μ1,2 explicitly, since P2 is only
quadratic in μ.
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Fig. 1 RLCs for the k-step BDF methods for 1 ≤ k ≤ 6. The stability region of the method in each case
is the unbounded component of C
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Fig. 2 RLC for the unstable 7-step BDF method in red (left) and a close-up near the origin (right). For
comparison, the curves from Fig. 1 are also superimposed as dashed gray curves
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Fig. 3 The black curve in the left figure shows the boundary ∂S of the stability region of the (unstable)
7-step BDF method; ∂S is non-differentiable at one point. The stability region is the unbounded outer
component. The red curve segment near the origin is not part of ∂S; it is a subset only of the RLC as
displayed in Fig. 2. The small brown rectangle in the center is shown in detail in the right figure. The
red curve in the right figure is again the RLC. The 6 black dots depict the set of μ values such that
P1(·, μ) in (9) has multiple roots (there are no other μ ∈ C parameters with this property for k = 7). The
polynomial P1(·, μ) has 1, 2, and 3 roots outside the unit disk for μ values in the dark brown, light brown
and orange regions, respectively; P1(·, μ) cannot have 4 or more roots outside the unit disk. Each of the
three self-intersections of the RLC in this figure (as well as the self-intersection of the RLC seen only in
the left figure) corresponds to a μ value for which P1(·, μ) has two distinct roots with modulus 1. Exactly
computing, for example, the unique value of μ† ≈ −2.68886 · 10−6 + 0.275988i in the open upper half-
plane where the RLC crosses itself was a non-trivial task: it took Mathematica 86 minutes to explicitly
determine the coefficients of the integer polynomial defining μ† and having degree 30. The RLCs for the
k-step BDF methods with 1 ≤ k ≤ 6 do not have any self-intersections; other singularities may occur, see
Fig. 6

2.5.1 RLCs for the Enright methods

The Enright methods are special cases of (12), and for k ≥ 1 they are defined [17] as

yn+1 = yn + hfn+1 − h

k∑

j=1

⎛

⎝1

j

⎛

⎝
k∑

�=j

ν�

⎞

⎠∇j fn+1

⎞

⎠+ h2

(
k∑

�=0

ν�

)

gn+1, (14)

where

ν� := (−1)�
∫ 1

0
(τ − 1)

(
1 − τ

�

)
dτ (0 ≤ � ≤ k)

with the usual extension of the binomial coefficients. From (14) one obtains the RLCs
of the Enright methods, see Figs. 4 and 5. The order of the k-step Enright method is
k + 2.
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Fig. 4 RLCs for the k-step Enright methods for 1 ≤ k ≤ 7. The stability region of the method in each
case is the unbounded component of C
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Fig. 5 RLCs for the unstable 8-step Enright method in red. The stability region S is not connected, C \ S
is the annulus-like region. For comparison, the curves from Fig. 4 are displayed as dashed gray curves
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3 Optimal sector inclusions

3.1 The RLC in implicit algebraic form

Computing the stability angle of a method with stability region S is equivalent to
finding the slope of the unique line L that passes through the origin, touches ∂S at
some point in the open upper left half-plane such that ∂S lies on the right-hand side of
L (viewed from the origin) in this quadrant. This last requirement is necessary since
∂S ∩L can consist of more points, even in the open upper left half-plane (see Fig. 7).

Assume now that ∂S can be represented by the RLC of the method (cf. Remark
2.7). As we have seen, the RLC is the image of the function μ(·) in (10) for LMMs,
or the union of the images of the functions μ1,2(·) in (13) for second-derivative mul-
tistep methods. The function μ is given as a simple ratio, but to get the explicit
forms of μ1,2, one should solve a quadratic equation. As the value of k gets larger,
these explicit formulae for μ1,2 corresponding to a k-step second-derivative multistep
method become more and more complicated. Moreover, obtaining explicit and prac-
tically useful parametrized formulae for the RLCs associated with multistep methods
based on higher-than-second-order derivatives would be almost impossible.

To avoid these difficulties, we now describe a more general and effective technique
which reduces the determination of the stability angles to the solution of a suitable
system of polynomial equations. Let us consider the equation �(eiϑ , μ) = 0 (see
(4)). By using the well-known Weierstrass substitution [43, pp. 382–383]

ϑ = 2 arctan(t) (t ∈ R),

we have eiϑ = (i − t)/(i + t); so instead of solving �(eiϑ , μ) = 0 for μ, we can
solve

�

(
i − t

i + t
, μ

)
= 0 (15)

without trigonometric functions. Notice that originally we have ϑ ∈ [0, 2π ] in eiϑ ,
or equivalently, ϑ ∈ (−π, π ], but π is not in the range of the function 2 arctan;
therefore, we define

M−1 := {μ ∈ C : �
(
eiπ , μ

)
= 0}

to restore the missing μ value(s) due to the reparametrization. Then, clearly, (15) can
be brought to the form Q(t, μ)/R(t) = 0 with some (complex) polynomials Q and
R. By writing μ = a + bi (a, b ∈ R), we get that there exist two real polynomials
Qre : R3 → R and Qim : R3 → R such that the solutions of Q(t, μ) = 0 for any
fixed t ∈ R are obtained as the solutions of the system

{
Qre(t, a, b) = 0
Qim(t, a, b) = 0.

(16)

Now, we eliminate t by taking the resultant [14] of Qre and Qim with respect to
this parameter, and get that there exists a real polynomial F : R

2 → R such that
if (16) holds for some t ∈ R, then F(a, b) = 0 should hold with some a, b ∈ R.
Hence, after identifying C with R

2, we see that the RLC can be represented as the
implicit algebraic curve C ∪ M−1 with C := {(a, b) ∈ R

2 : F(a, b) = 0}. Assuming
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that the set M−1 is finite (it has at most two elements in the case of the BDF and
Enright methods we are interested in), we ignore this component and focus only on
C. Suppose now that a line L passes through the origin and touches C in the open
upper left half-plane at some (a0, b0) with a0 < 0 < b0. By assuming that C can be
represented locally as the graph of an implicit function near (a0, b0) ∈ C, we easily
get, by differentiating a 
→ F(a, b(a)), that (a0, b0) satisfies

⎧
⎪⎪⎨

⎪⎪⎩

F(a0, b0) = 0
a0 · ∂1F(a0, b0) + b0 · ∂2F(a0, b0) = 0
a0 < 0
b0 > 0.

(17)

By taking again the resultant of the first two polynomial equations, one of the
variables, say b0, is eliminated. The resulting univariate polynomial yields in the
general case finitely many possible a0 values to choose from. With α denoting the
angle (in radians) between L and the negative half of the real axis, we get that
tan(α) = −b0/a0. To select the appropriate solution (a0, b0) (and hence the appro-
priate tangent line L), we verify in the concrete case that (a0, b0) ∈ ∂S ⊂ C = R

2,
and determine whether ∂S lies on the right-hand side of L. The appropriately chosen
α angle then yields the desired stability angle.

3.2 Results for the BDFmethods

The simplest non-trivial case illustrating the steps in Section 3.1 is the determination
of the stability angle for the 3-step BDF method. Formula (11) with k = 3 yields the
following trigonometric parametrization of the RLC in R

2 after a simplification:

[0, 2π ] � ϑ 
→ μ(ϑ) :=
(

4

3
sin4

(
ϑ

2

)
(1 − 4 cos(ϑ)),

sin(ϑ)

3
[2(cos(2ϑ) + 5) − 9 cos(ϑ)]

)
.

After eliminating the trigonometric functions, (15) can be written as

Q(t, μ)

R(t)
= 3μt3 − 20t3 − 9μt + 6t + i

(
3μ − 9μt2 + 18t2

)

3(t − i)3
= 0.

Then Qre and Qim in (16) become
{

3at3 − 9at + 9bt2 − 3b − 20t3 + 6t = 0
−9at2 + 3a + 3bt3 − 9bt + 18t2 = 0.

We eliminate t from this system and obtain

F(a, b) := 432
[
108a6 − 1188a5 + 9a4

(
36b2 + 439

)
− 2a3

(
1188b2 + 3121

)
+

9a2
(

36b4 + 394b2 + 547
)

− 54a
(

22b4 + 17b2 + 30
)

+ 27b4
(

4b2 − 15
)]

.

Now, b is eliminated from the first two equations of (17), and we get that the possible
choices for a0 are the negative real roots of

a4(24a − 25)4(5324a + 405)2
(

6a2 − 13a + 9
)2 = 0,
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yielding the unique value a0 = −405/5324. Substituting this a0 into (17), we get
the unique value b0 = 987

√
35/5324; hence, tan(α) = −b0/a0 = (329

√
7/5)/27 is

the only possible value for the tangent of the stability angle. Finally, we verify that
the corresponding tangent line L passing through the origin has no other intersection
point with ∂S in the open upper left quadrant, and ∂S lies on the right side of L.

Remark 3.1 The above RLC for the 3-step BDF method can also be parametrized as

R � t 
→
(

4t4
(
5t2 − 3

)

3
(
t2 + 1

)3 ,
2t
(
21t4 + 8t2 + 3

)

3
(
t2 + 1

)3

)

∈ R
2.

Here, M−1 = {(20/3, 0)} ⊂ R
2, corresponding to the t → ±∞ limiting value of the

parametrization.

The remaining stability angle values for 4 ≤ k ≤ 6 can be computed analogously,
so Table 1 shows only the final exact results.

Remark 3.2 For 3 ≤ k ≤ 6, the BDF stability region includes an interval along the
imaginary axis and containing the origin if and only if k = 5 or k = 6. For k = 5 and
k = 6 the two intervals are

{z ∈ C : Re(z) = 0, |Im(z)| ≤ 1

12
√

2

√
12775 − 387

√
1065 ≈ 0.710} ⊂ S

and

{z ∈ C : Re(z) = 0, |Im(z)| ≤ 7

20

√
1263 − 336

√
14 ≈ 0.843} ⊂ S,

respectively.

Remark 3.3 The boundary curve of the stability region of the 6-step BDF method
contains two cusp singularities (see Fig. 6 and compare with Fig. 3). No other ∂S
curve has this type of degeneracy in the BDF family for 1 ≤ k ≤ 5 or k = 7. Since
the cusp points for k = 6 are not part of S, the stability region in this case is not
closed (nor open).

3.3 Results for the Enright methods

By applying the algorithm described in Section 3.1, we can exactly determine the
stability angles for the Enright methods (see Table 2). But since the cEnr

k values are
much more complicated algebraic numbers than the corresponding cBDF

k constants in
Table 1, Table 2 contains only a numerical approximation to the exact stability angles.

Remark 3.4 By rounding the values of αEnr
k given in Table 2 to two decimal places,

we recover the approximate values of these stability angles in [17, Chapter V.3, Table
3.1].
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Fig. 6 Cusp singularities of ∂S for the 6-step BDF method, denoted by red dots in the left figure. The

singularities are located at μ± := 7
120 ± i 21

√
3

40 ≈ 0.0583 ± 0.9093i. For each such μ value, P1(·, μ)

in (9) has a double root with modulus equal to 1. Therefore, μ± ∈ ∂S \ S; hence, this S is not closed.

The right figure depicts the 6 roots of P1(·, μ+), and the double root is located at 1
2

(
1 + i

√
3
)

(note that

μ+ ∈ C \ R, so these roots are not symmetric with respect to the real axis)

It turns out that cEnr
3 is an algebraic number of degree 22, being the unique positive

root of the following even polynomial with coefficients

{6621625501626720011970719022734459520000000000000000, 0,

4744945665370497147850526235135397935643117766707200000, 0,

74537179754361052063480563770102869789636567887828480000, 0,

417809113212221868517393954677075422852686053100794277975, 0,

1103592881533264097533512931940128409045933472020943607320, 0,

1780216754145335084531442707748395556646595339402356863603, 0,

2028417751642933570985301304414377204911584843581604760752, 0,

1720629215811045658880293770988465046952673868659037700813, 0,

1065257770963658030926145190690110109450795207237154063632, 0,

451976742777053443392779380035051991794204051855298481913, 0,

117280744006618927204325767614876515512652225395198902600, 0,

14037302894263476230042573549418427869442188056651130000}.

Remark 3.5 Besides the stability angle, there are other measures of stability for
A(α)-stable methods. One of these characteristics is the stiff stability abscissa, being
the smallest constant D > 0 such that {z ∈ C : Re(z) ≤ −D} ⊂ S. For example, for
the 3-step Enright method, Table 3.1 in [17, Chapter V.3] contains the approximate
value D ≈ 0.103. By using our implicit representation of ∂S, it is straightforward
to determine the exact value of D ≈ 0.10341810907195; it is an algebraic number
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of degree 12, and the total number of digits in the coefficients of its defining integer
polynomial is 529.

As for the k = 4 case, the algebraic degree of cEnr
4 is 28. The constants cEnr

5 , cEnr
6 ,

and cEnr
7 can be given as roots of increasingly more involved integer polynomials, so

we do not reproduce these polynomials here. During the computations in the k = 7
case, for example, we had to manipulate intermediate polynomials of degree of a few
hundred, or polynomials with a total number of coefficient digits of approximately
470000. We could describe the final defining polynomial for cEnr

7 by ≈ 175000
characters in Mathematica.

Remark 3.6 Let us consider the Enright stability region corresponding to k = 7. As
we already remarked earlier, there are exactly two lines that pass through the origin
and are locally tangent to the boundary curve at some point in the open upper left
half-plane (see Fig. 7). Within the BDF family for 1 ≤ k ≤ 6 or in the Enright family
for 1 ≤ k ≤ 7, this phenomenon occurs only in the present case.

4 Optimal disk inclusions

As for the largest inscribed disk in the stability region S, we again expect—similarly
to Section 3.1—that ∂S (or the RLC) and the optimal disk possess a common tangent
line (with point of tangency different from the origin). By using:

• the implicit algebraic form F(a, b) = 0 of the RLC

5. 10 7 0 5. 10 7 1. 10 6
0.0

0.2

0.4

0.6

0.8

1.0
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Im

6 5 4 3 2 1 0 1
0

2

4

6

8

10

12

14

Re

Im

Fig. 7 Part of the boundary of the stability region of the 7-step Enright method near the origin (solid
black curve) together with the two (dashed red and black) lines that pass through the origin and are locally
tangent to the boundary curve at some point in the open upper left half-plane. Due to the scaling, the
dashed black line is seen only in the larger plot window on the right. The stability angle αEnr

7 ≈ 37.6◦ of
the method is determined by the dashed black line; the red line has additional intersection points with the
boundary curve. The angle between the dashed red line and the negative half of the real axis has also been
computed exactly; its approximate value is ≈ 89.9999527◦
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• the implicit equation (a+r)2+b2−r2 = 0 for the boundary of the inscribed disk
• and the condition for a common tangent line

−∂aF (a, b)

∂bF (a, b)
= −∂a

(
(a + r)2 + b2 − r2

)

∂b

(
(a + r)2 + b2 − r2

) ,

we obtain a system of 3 polynomial equations in 3 unknowns (a, b, r). By taking
resultants and successively eliminating the variables (a, b), we obtain a univariate
polynomial in r whose positive root will yield the optimum value of the stability
radius. The exact optimal stability radii r BDF

k for the k-step BDF methods (3 ≤ k ≤
6) are found in Table 3 (see also Fig. 8). The degree of the algebraic number r BDF

k is
2, 3, 5, and 5 for 3 ≤ k ≤ 6, respectively.

Remark 4.1 It is quite surprising that the algebraic numbers listed in Table 3 have
such a low degree for the following reasons. For the 3-step BDF method, the univari-
ate polynomial in r mentioned above has degree 28, but it can be split into several
factors of lower degree and has a unique positive root rBDF

3 ≈ 7.0497. For the 4-step
BDF method, the corresponding r-polynomial has degree 52 and a unique positive
root ≈ 2.7272. The r-polynomial for the 5-step BDF method has degree 88 and a
unique positive root ≈ 1.3579. Finally, the r-polynomial for the 6-step BDF method
has degree 128 and a unique positive root ≈ 0.5599.

5 Optimal stability angle in a family of multistepmethods

In [18], ODEs of the form u′(t) = F(u(t))+G(u(t)), u(0) = u0 are considered, with
F and G representing non-stiff and stiff parts of the equation, respectively. To solve
these equations numerically, the authors construct several implicit-explicit (IMEX)
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Fig. 8 The largest inscribed disk |z + r| ≤ r (with red boundary) in the stability region of the k-step BDF
method for k = 4 (left) and k = 6 (right), see Table 3
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LMMs and thoroughly analyze them from the viewpoint of numerical monotonic-
ity, boundedness, and stability. Their analysis involves finding optimal methods with
respect to various criteria in certain families.

Here, we take their simplest case study from [18, Section 3.2.1], a 2nd-order, 3-
step explicit method augmented by an implicit method (note that the time step is now
denoted by �t instead of h, and we changed their notation from bj to βj ):

un = 3

4
un−1 + 1

4
un−3 + 3

2
�t · Fn−1 +

3∑

j=0

βj�t · Gn−j . (18)

The values of β2 := −3β0 −2β1 +3 and β3 := 2β0 +β1 − 3
2 are determined from the

order conditions, so (18) becomes a 2-parameter family of methods, with real param-
eters β1 and β0. The three figures in [18, Figure 1] then depict the A(α)-stability
angles, the “damping factors,” and the “absolute error constants,” respectively, of
members of the family (18). In what follows, we do not consider these last two cate-
gories but focus only on the leftmost figure in [18, Figure 1]—as the authors conclude
in [18, Section 3.2.1], a method with large stability angle does not necessarily have a
good damping factor or a small error constant, and vice versa; the different optimiza-
tion criteria are often conflicting. In other words, our goal in this section is to find
the IMEX method in the family (18) with the largest stability angle.

To begin the A(α)-stability investigation, the authors of [18] define the usual linear
test functions F(u) := λ̂u and G(u) := λu. They then assume that �t · λ̂ = iη and
�t · λ = ξ with η ∈ R and R � ξ ≤ 0: this choice is relevant “for example, for
advection-diffusion equations if central finite differences or spectral approximations
are used in space.” These assumptions lead to the following characteristic polynomial
of the IMEX multistep family (see [18, (2.4)–(2.7)]):

C � ζ 
→ ζ 3 −
(

3

4
ζ 2 + 1

4

)
− iη

(
3

2
ζ 2
)

− ξ

⎛

⎝
3∑

j=0

βj ζ
3−j

⎞

⎠ . (19)

To create the leftmost figure in [18, Figure 1] approximately indicating the optimal
stability angle within the family, the authors use (19) to construct the RLCs and study
these curves “for ξ → −∞” to estimate the stability angles.1

In the rest of this section, we confirm their numerical findings, but we solve the
optimization problem rigorously and exactly. We have selected family (18) because
the final result—the optimal stability angle—has a particularly simple form (see our
Theorem 5.3 below), and, at the same time, our straightforward approach based on
the theorems cited in Section 2.2 is readily illustrated. We emphasize that our analysis
avoids the construction of the RLCs: as we have seen (for example, in Fig. 3), they

1When the stability angle α of a method is defined in [18, Sections 2.3 and 3.2.1] notice that we should
require that the sector

ξ ≤ 0, |η/ξ | ≤ tan(α) with angle α ≤ π/2

be included in the stability region in the (ξ, η)-plane (with the ξ = 0 and α = π/2 cases interpreted
appropriately). In other words, arctan(α) in [18] is to be replaced by tan(α); otherwise, the sector would not
“open wide enough” and A-stability would not be recovered in the α → π/2− limit. See also Footnote 2.
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may have complicated self-intersections, and it is often not obvious a priori whether
a particular segment of the RLC coincides with the stability region boundary or not.

5.1 Summary of themain steps and results

By rearranging (19) and inserting the values of β2 and β3 given below (18), we define

Pβ1,β0(ζ, ξ, η) := (1 − β0ξ) ζ 3 −
(

3

4
+ β1ξ + 3iη

2

)
ζ 2+

ξ (3β0 + 2β1 − 3) ζ −
(

1

4
+ 2β0ξ + β1ξ − 3

2
ξ

)
, (20)

where ζ ∈ C, (β1, β0) ∈ R
2, ξ ≤ 0 and η ∈ R. Our goal is to find the parameters

(β1, β0) such that the stability region

Sβ1,β0 := {(ξ, η) ∈ R
2 : ξ ≤ 0, η ∈ R, Pβ1,β0(·, ξ, η) ∈ svN} (21)

contains the infinite sector

Am := {(ξ, η) ∈ R
2 : ξ ≤ 0, η ∈ R, |η| ≤ m|ξ |}

with the largest m > 0 in the definition of A(α)-stability. In other words, we are to
find (β1, β0) such that

Am ⊂ Sβ1,β0 (22)

holds with the largest possible m > 0. Note that for convenience we have identified
C with R

2; hence, stability regions in this section are subsets of R2.
As a first step, Lemma 5.1 below yields a necessary condition for the inclusion

(22). In its proof—presented in Appendix A.1—we use the argument proposed in
[18] and consider the ξ → −∞, η = 0 limiting values. At this point, it is conve-

nient to recall the notion of
◦
A-stability [17, Chapter V.2]: a method is

◦
A-stable, if its

stability region includes the non-positive reals {ξ ∈ R : ξ ≤ 0}. Clearly,

A(α)-stability with some α > 0 =⇒ ◦
A-stability.

Lemma 5.1 Let us define

W :=
{
(β1, β0) : β1 ≤ 3

4
,

3 − 2β1

4
≤ β0 ≤ 9 − 8β1

8

}
. (23)

Then a method of the form (18) is not
◦
A-stable for (β1, β0) /∈ W .

As a consequence, from now on, we can assume (β1, β0) ∈ W (see Fig. 9). Note
that the orientation of the axes in Fig. 9 and in the leftmost figure in [18, Figure 1]
is the same: the β1-axis is horizontal, while the β0-axis is vertical. Lemma 5.1 thus
also proves that the wedge-like object in the parameter space in the leftmost figure in
[18, Figure 1] is indeed a perfect (infinite) wedge given by W .
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Fig. 9 The figure shows the set W defined in (23) and the optimal parameter choice Wopt with (β1, β0) =
(3/8, 3/4) determined in Appendix A.2. Interestingly, the coordinates of the vertex of the wedge W are
(3/4, 3/8)

Remark 5.2 The assumption (β1, β0) ∈ W implies β0 > 0, so due to ξ ≤ 0, the
leading coefficient of (20), 1 − β0ξ , cannot vanish (cf. Remark 2.7).

Then in Appendix A.2 we prove the main result of Section 5.

Theorem 5.3 Suppose that (β1, β0) ∈ W . Then the largest m > 0 such that (22)
holds is m ≡ mopt := 1/2.

In the proof, we show that finding the optimal (β1, β0) ∈ W is equivalent to
finding the largest positive real root of a suitable polynomial in m with coefficients
depending on β1 and β0. We verify that this optimal root is located at mopt, cor-
responding to the unique method with (β1, β0) = Wopt := (3/8, 3/4) ∈ W and
represented as a red dot in the parameter space in Fig. 9. The black curve in the left
half-plane in Fig. 12 is the boundary of the optimal stability region, and the dashed
red lines bound the largest inscribed infinite sector A1/2: the optimal stability angle
satisfies tan(α) = mopt. As a conclusion, the highest value in the scale adjacent to
the leftmost figure in [18, Figure 1] should be exactly α = arctan(1/2) ≈ 0.463648,
that is, α ≈ 26.5651◦.

Remark 5.4 Unlike in Section 6 (see Remark B.2), the boundary of the optimal sector
A1/2 does not touch (or intersect) the boundary of the optimal stability region S3/8,3/4
in the open left half-plane.
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Remark 5.5 In [18, Section 3.2.1, (3.4)–(3.5)], the stability angles for two particular
schemes from the family (18) are also approximated. For the IMEX-Shu(3,2) scheme

un = 3

4
un−1 + 1

4
un−3 + 3

2
�t · Fn−1+

4

9
�t · Gn + 2

3
�t · Gn−1 + 1

3
�t · Gn−2 + 1

18
�t · Gn−3

they obtain αShu ≈ 0.06, and for the IMEX-SG(3,2) scheme

un = 3

4
un−1 + 1

4
un−3 + 3

2
�t · Fn−1 + �t · Gn + 1

2
�t · Gn−3

they get αSG ≈ 0.38. Our technique easily yields the exact values

αShu = arctan

(
1/

√
135 + 78

√
3

)
≈ 0.0607719,

and

αSG = arctan

√
1

3

(
2
√

3 − 3
)

≈ 0.374734.

6 Optimal parabola inclusion in a family of multistepmethods

In the previous section, we demonstrated how one can find the optimal sector in a
family of stability regions of multistep methods. Here, we show that the same alge-
braic approach allows us to replace the sector with more general shapes: we use
again the multistep family (18) as a test example and determine the optimal sta-
bility region that contains the largest parabola. The motivation for considering the
shape of a parabola comes from [18] (“for advection-diffusion equations, stability
within a parabola2 can be more relevant than for a wedge”), or from [5, Sections 3–4]
(where linearly implicit Runge–Kutta methods are developed for the numerical inte-
gration of semidiscrete equations originating from spatial discretizations of PDEs of
advection-reaction-diffusion type).

With Pβ1,β0 and Sβ1,β0 defined in (20)–(21), we are now looking for the largest
possible m > 0 such that the stability region of a suitable member of the family (18)
contains the parabola

Pm := {(ξ, η) ∈ R
2 : ξ ≤ 0, η ∈ R, η2 ≤ m|ξ |}, (24)

that is, the inclusion
Pm ⊂ Sβ1,β0 (25)

holds. Clearly, we need
◦
A-stability again to have (25) with some m > 0, so from now

on, by Lemma 5.1, we can assume that (β1, β0) ∈ W (see Fig. 9).

2Similarly to Footnote 1, an analogous typo is present in [18, Section 2.3] when the notion of “stability
within a parabola” is defined. There we should have again tan instead of arctan, that is,

ξ ≤ 0, |η2/ξ | ≤ tan(β) with some angle 0 < β ≤ π/2.
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In Appendix B.1, we apply a simple geometric argument: we first formulate the
RLCs for the members of the multistep family as implicit curves {(ξ, η) ∈ R

2 :
Fβ1,β0(ξ, η) = 0}, then invoke the notion of discriminant [14] to construct a polyno-
mial in m (and depending on the parameters β1 and β0) whose suitable root can yield
the optimal value m̃opt in (25). The simple observation is the same as the one used in
Section 3.1 (or in Section 4): the optimal inscribed object (now a parabola) touches
the boundary of the optimal stability region.

Based on this technique and by using Mathematica, we conjecture that the param-
eter values β1 = 1/5 and β0 = 37/40 give m̃opt = 6/5. In Appendix B.2, we use
a uniqueness argument to rigorously prove this conjecture. We emphasize that, simi-
larly to Appendix A.2, no RLCs are involved in this uniqueness proof; the RLCs are
used only as auxiliary objects to conjecture the optimum. Given the complexity of
intermediate calculations, it is again surprising that the final result m̃opt is a simple
rational number. In summary, we have the following theorem.

Theorem 6.1 Suppose that (β1, β0) ∈ W . Then the largest m > 0 such that (25)
holds is m ≡ m̃opt := 6/5.

Remark 6.2 The authors of [18] observe that “for the methods considered in this
paper, a large angle α will correspond to a large β” (with α and β interpreted in
our Footnotes 1 and 2). According to our results, the optimal (β1, β0) parameter
pairs (3/8, 3/4) and (1/5, 37/40)—determining the stability regions with the largest
inscribed sector and parabola, respectively—do not coincide, although they are both
located on the right boundary of W in Fig. 9 (see also Remark B.1).

Acknowledgment Open access funding provided by Eötvös Loránd University (ELTE). The author
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Appendix A

A.1 Proof of Lemma 5.1

Proof Let us fix some (β1, β0) ∈ R
2. For ξ < 0, Pβ1,β0(ζ, ξ, 0) = 0 is equivalent to

LHS(ζ ) = RHS(ζ ) with

LHSβ1,β0(ζ ) := β0ζ
3 + β1ζ

2 − (3β0 + 2β1 − 3) ζ + 2β0 + β1 − 3

2

and RHSξ (ζ ) := (ζ 3 − 3ζ 2/4 − 1/4)/ξ . Clearly, if |ξ | is large enough, the coeffi-
cients of the RHS polynomial can be arbitrarily close to 0. So by the fact that the
roots of a polynomial are continuous functions of its coefficients, we get that “the ζj
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roots of LHS(ζ ) = RHS(ζ ) can be made arbitrarily close to those of LHS(ζ ) = 0 by
choosing |ξ | large.” To make the previous “statement” precise, we distinguish two cases
according to whether the leading coefficient of LHS vanishes or not: for β0 = 0, the
LHS polynomial has at most two roots, whereas the difference LHS−RHS has three.

Case I: β0 �= 0. By the above statement we easily see that if LHSβ1,β0(·) /∈ vN,
then Pβ1,β0(·, ξ, 0) /∈ svN for |ξ | large enough. We now show that

(β1, β0) /∈ W =⇒ LHSβ1,β0(·) /∈ vN. (26)

So let us suppose in the rest of Case I that (β1, β0) /∈ W and β0 �= 0.

Case Ia. First, we check the case when ccLHSβ1,β0(·) = 0. Then

LHSβ1,β0(ζ ) = ζ/4
[
(2β1 − 3) ζ 2 − 4β1ζ + 2β1 − 3

]
,

and, since now 2β1 − 3 �= 0, we can apply Theorem 2.4 to
the above polynomial in [· · · ]: due to [· · · ]r ≡ 0 we have that
[· · · ] ∈ vN if and only if ζ 
→ [· · · ]′ = 2 (2β1 − 3) ζ − 4β1 ∈
vN. But we directly see that this last linear polynomial /∈ vN,
because (β1, β0) /∈ W and ccLHSβ1,β0(·) = 0 imply β1 > 3/4.

Case Ib. The conditions ccLHSβ1,β0(·) �= 0 �= β0 mean that we can
apply Theorem 2.4 to LHSβ1,β0(·). It is easy to verify that(
LHSβ1,β0(·)

)r does not vanish identically, so LHSβ1,β0(·) ∈ vN
if and only if
∣
∣lcLHSβ1,β0(·)

∣
∣ >

∣
∣ccLHSβ1,β0(·)

∣
∣ and

(
LHSβ1,β0(·)

)r ∈ vN.
(27)

We show in Cases Ib1 and Ib2 below that (27) never occurs.
First, we observe that the inequality constraint in (27) yields that
lc
(
LHSβ1,β0(·)

)r �= 0.
Case Ib1. If cc

(
LHSβ1,β0(·)

)r = 0, then the polynomial
(
LHSβ1,β0(ζ )

)r

has exactly two roots: ζ1 = 0 and

ζ2 = 2 − 3

2 (6β0 + 2β1 − 3)
+ 3

2 (2β0 + 2β1 − 3)
.

One directly checks that cc
(
LHSβ1,β0(·)

)r = 0 and (β1, β0) /∈
W imply |ζ2| > 1.

Case Ib2. If cc
(
LHSβ1,β0(·)

)r �= 0, we apply Theorem 2.4 to get that the
quadratic polynomial

(
LHSβ1,β0(·)

)r ∈ vN if and only if either
Case Ib2α or Ib2β below occurs.

Case Ib2α: when
(
LHSβ1,β0(·)

)rr ≡ 0 and
[(

LHSβ1,β0(·)
)r]′ ∈ vN.

In this case, however, the unique root of the polynomial[(
LHSβ1,β0(·)

)r]′,

ζ1 = 1 − 3

4 (6β0 + 2β1 − 3)
+ 3

4 (2β0 + 2β1 − 3)
,

has absolute value > 1.
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Case Ib2β : when
∣
∣lc
(
LHSβ1,β0(·)

)r∣∣ >
∣
∣cc
(
LHSβ1,β0(·)

)r∣∣ and(
LHSβ1,β0(·)

)rr ∈ vN. But then the unique root of(
LHSβ1,β0(·)

)rr is

ζ1 = 1 − 3 (2β0 + 2β1 − 3)

24β2
0 + 32β1β0 − 36β0 + 8β2

1 − 18β1 + 9
,

for which we again have |ζ1| > 1, completing Case I.

Case II: β0 = 0. Then

Pβ1,0(ζ, ξ, 0) = ζ 3 −ζ 2
(

β1ξ + 3

4

)
−(3 − 2β1) ξζ −

(
β1ξ − 3ξ

2
+ 1

4

)
,

and the leading coefficient of this cubic polynomial is 1. For each fixed
β1 ∈ R we see that at least one of its coefficients is unbounded as ξ →
−∞, so (by Vieta’s formulae) at least one of its roots ζ(ξ) is unbounded
as ξ → −∞. Hence, (−∞, 0) × {0} ⊂ Sβ1,0 cannot hold.

A.2 Proof of Theorem 5.3

Proof In the proof, we suppose m > 0 and, due to Lemma 5.1, that (β1, β0) ∈ W .

Step 1. Let us apply the same ideas as in Section A.1 but along the ray η = −mξ .
For ξ < 0, we consider the roots of Pβ1,β0(·, ξ, −mξ) and get that

MLHSβ1,β0,m(·) /∈ vN =⇒ Pβ1,β0(·, ξ, −mξ) /∈ svN

for some |ξ | large enough, where the corresponding “modified left-hand
side” is defined as

MLHSβ1,β0,m(ζ ) := LHSβ1,β0(ζ ) − 3

2
imζ 2,

and we have also taken into account that lcMLHSβ1,β0,m(·) = β0 �= 0. (The
corresponding “modified right-hand side” would be the same RHSξ (ζ ) as
in Section A.1.) Hence, if the inclusion (22) holds with some m > 0, then
MLHSβ1,β0,m(·) ∈ vN.

Step 2. In this step, we derive a necessary condition for MLHSβ1,β0,m(·) ∈ vN.
First, one simply checks via Theorem 2.4 that ccMLHSβ1,β0,m(·) = 0,
MLHSβ1,β0,m(·) ∈ vN and m > 0 cannot be simultaneously true. So we
can suppose

lcMLHSβ1,β0,m(·) �= 0 �= ccMLHSβ1,β0,m(·).
We check that

(
MLHSβ1,β0,m(·))r does not vanish identically, and that
∣
∣lcMLHSβ1,β0,m(·)∣∣ > ∣∣ccMLHSβ1,β0,m(·)∣∣ .

Then by Theorem 2.4 we have that

MLHSβ1,β0,m(·) ∈ vN ⇐⇒ (
MLHSβ1,β0,m(·))r ∈ vN.
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Now we see that

lc
(
MLHSβ1,β0,m(·))r �= 0 �= cc

(
MLHSβ1,β0,m(·))r ,

and
(
MLHSβ1,β0,m(·))rr does not vanish identically. Thus, Theorem 2.4

yields that (
MLHSβ1,β0,m(·))r ∈ vN

if and only if
∣
∣lc
(
MLHSβ1,β0,m(·))r∣∣ > ∣∣cc (MLHSβ1,β0,m(·))r∣∣ (28)

and (
MLHSβ1,β0,m(·))rr ∈ vN. (29)

Clearly, deg
(
MLHSβ1,β0,m(·))rr ≤ 1, and we directly confirm that (28)

implies that the degree is exactly 1. From this, we obtain that (28) and (29)
hold if and only if (28) and

∣∣
∣
∣1 + im + 2imβ0

4β0 + 2β1 − 3
−

3(1 + im)
[
β0
(
6m2 + 2

)+ (2β1 − 3)
(
m2 + 1

)]

24β2
0 + 4β0

(
8β1 + 3m2 − 9

)+ (2β1 − 3)
(
4β1 + 3m2 − 3

)

∣
∣
∣∣
∣
≤ 1 (30)

hold. In particular, (28) guarantees that the denominators appearing in (30)
are non-zero; hence, from now on, we can restrict the parameters (β1, β0) ∈
W to the set (β1, β0) ∈ W \ L with

L :=
{
(β1, β0) ∈ R

2 : β0 = 3 − 2β1

4

}
, (31)

being the left edge of the wedge W (see Fig. 10).
By defining

C4 := −9 (4β0 + 2β1 − 3)2 ,

C2 := 2
[
864β4

0 + 864 (2β1 − 3) β3
0 + 288

(
4β2

1 − 13β1 + 10
)

β2
0+

4
(

80β3
1 −420β2

1 +684β1−351
)

β0 + (3 − 2β1)
2
(

8β2
1 − 36β1 + 27

)]
,

Fig. 10 These figures show the stability region S3/4,3/8 corresponding to the method with (β1, β0) =
(3/4, 3/8) (i.e., the vertex of the wedge in Fig. 9). Such methods with (β1, β0) ∈ W ∩ L (see (31)) are
◦
A-stable, but Am ⊂ Sβ1,β0 (see (22)) does not hold with any m > 0
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C0 := −3 (4β0 + 2β1 − 3) 2 (8β0 + 8β1 − 9)

and

Qβ1,β0(m) := C4m
4 + C2m

2 + C0,

it is easily verified after some factorization and simplification that

(28) and (30) ⇐⇒ (28) and Qβ1,β0(m) ≥ 0.

In particular, MLHSβ1,β0,m(·) ∈ vN implies Qβ1,β0(m) ≥ 0.
Step 3. We see that C4 < 0 and C0 ≥ 0 for (β1, β0) ∈ W \L; hence, we can denote

the largest real root of the polynomial Qβ1,β0(·) by m∗(β1, β0) ∈ [0, +∞).
Consequently, if MLHSβ1,β0,m(·) ∈ vN, then m ≤ m∗(β1, β0). We now
conjecture (by using Mathematica’s Maximize command, for example)
that

m∗(β1, β0) ≤ 1

2
for (β1, β0) ∈ W \ L, (32)

and m∗(β1, β0) = 1/2 occurs precisely for (β1, β0) = (3/8, 3/4) (see
Fig. 11). With this conjectured optimal m∗ value, we can prove (32) and
the uniqueness property in an elementary way.

By introducing the shifted variable M := m−1/2, we rewrite Qβ1,β0(m)

as
4∑

j=0

Ĉj (β1, β0)Mj . (33)

Then we check that

(β1, β0) ∈ W \ L =⇒ Ĉj (β1, β0) < 0 for 1 ≤ j ≤ 4.

Fig. 11 The function m∗ defined in Step 3 in Appendix A.2. Its maximum value is located at
(β1, β0,m

∗) = (3/8, 3/4, 1/2)

707Numerical Algorithms (2020) 84:679–715



Moreover, we have

Ĉ0(β1, β0) ≡ 6912β4
0 + 768 (18β1 − 35) β3

0

+48
(

192β2
1 − 880β1 + 813

)
β2

0

+40
(

64β3
1 − 528β2

1 + 1062β1 − 621
)

β0

+ (3 − 2β1)
2
(

64β2
1 − 672β1 + 639

)
,

(β1, β0) ∈ W \ L =⇒ Ĉ0(β1, β0) ≤ 0

and
[
(β1, β0) ∈ W \ L and Ĉ0(β1, β0) = 0

]⇐⇒ (β1, β0) = (3/8, 3/4).

On the one hand, these mean that (33) is negative for M > 0 and (β1, β0) ∈
W \ L. On the other hand, for M = 0 the polynomial (33) is zero if and
only if (β1, β0) = (3/8, 3/4).

Therefore, we have proved that if (22) holds with some m > 0, then
m ≤ 1/2, and if m = 1/2 is possible at all, then (β1, β0) = (3/8, 3/4).

Step 4. In this final step we show that m = 1/2 in (22) can be achieved, by showing
that A1/2 ⊂ S3/8,3/4, that is,

(ξ, η) ∈ A1/2 =⇒ P3/8,3/4(·, ξ, η) ∈ svN. (34)

Let us fix such a pair (ξ, η). One sees that
∣
∣lcP3/8,3/4(·, ξ, η)

∣
∣ >

∣
∣ccP3/8,3/4(·, ξ, η)

∣
∣ ,

and in the ccP3/8,3/4(·, ξ, η) = 0 case (34) is easily verified to hold.
Otherwise, if cc �= 0, we check that

(
P3/8,3/4(·, ξ, η)

)r does not vanish
identically; so by Theorem 2.5, we have that P3/8,3/4(·, ξ, η) ∈ svN if and
only if (

P3/8,3/4(·, ξ, η)
)r ∈ svN. (35)

We have that lc
(
P3/8,3/4(·, ξ, η)

)r �= 0. Moreover,
cc
(
P3/8,3/4(·, ξ, η)

)r = 0 for ξ = −2 or ξ = −2/3, in which cases (35)
holds. So we can suppose from now on that cc

(
P3/8,3/4(·, ξ, η)

)r �= 0.
Then one proves that

lc
(
P3/8,3/4(·, ξ, η)

)rr =

−81η2ξ2

256
− 27η2ξ

64
− 9η2

64
+ 81ξ4

512
− 783ξ3

512
+ 441ξ2

128
− 423ξ

128
+ 27

32
�= 0,

so deg
(
P3/8,3/4(·, ξ, η)

)rr = 1. Hence, by using Theorem 2.5 again, we
get that (35) holds if and only if

∣∣lc
(
P3/8,3/4(·, ξ, η)

)r∣∣ >
∣∣cc
(
P3/8,3/4(·, ξ, η)

)r∣∣ and
(
P3/8,3/4(·, ξ, η)

)rr ∈ svN
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hold. Finally, we check that these last two conditions are satisfied for any
(ξ, η) ∈ A1/2 pair not excluded earlier during the case separations.

Remark A.1 By defining

Fopt(ξ, η) := 12η4(3ξ + 2)2−

3η2ξ
(

9ξ3 + 192ξ2 − 620ξ + 368
)

+ 16ξ
(

3ξ2 − 7ξ + 6
)2

and applying Theorem 2.5, it is straightforward to show (cf. Step 4 in the above proof)
that

S3/8,3/4 = {(ξ, η) ∈ R
2 : ξ ≤ 0, η ∈ R, Fopt(ξ, η) ≤ 0},

see Fig. 12 and cf. Remark B.1.

Appendix B

B.1 Locating the candidate optimum for Theorem 6.1

For a given (β1, β0) ∈ W pair, we can represent the RLC of the corresponding
multistep method of the family (18) as an implicit curve of the form

{(ξ, η) ∈ R
2 : ξ ≤ 0, η ∈ R, Fβ1,β0(ξ, η) = 0} (36)

by using the transformations in Section 3.1 as follows. First, we perform the sub-
stitution ζ 
→ i−t

i+t
in the polynomial (20), then eliminate t ∈ R by taking the

resultant of the real and imaginary parts of Pβ1,β0

(
i−t
i+t

, ξ, η
)

. The resulting polyno-

mial can be factored to get 234 · 9 · (1 − β0ξ)6 · Fβ1,β0(ξ, η); the normalization with
Fβ1,β0(0, 1) = 9 has been used to make this polynomial Fβ1,β0 unique. The term
(1 − β0ξ)6 (cf. the leading coefficient of Pβ1,β0(·, ξ, η)) does not vanish now due to
ξ ≤ 0 and (β1, β0) ∈ W ; hence, (36) is obtained. We are not going to display the

Fig. 12 The implicit curve {(ξ, η) ∈ R
2 : Fopt(ξ, η) = 0} (see Remark A.1), being the boundary of the

optimal stability region S3/8,3/4 in the left half-plane, is shown in the left figure and a close-up in the right
figure in black. The dashed red lines represent the boundary of the largest infinite sector A1/2 that can be
included in the stability region
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polynomial Fβ1,β0(ξ, η) explicitly: it contains 82 terms in its expanded form and its
degree in the variables/parameters (ξ, η, β1, β0) is (6, 4, 4, 4).

Now supposing that the RLC (36) describes the boundary of the stability region of
the multistep method determined by the given pair (β1, β0), it is reasonable to expect
that, say, the upper branch of the largest parabola inscribed in Sβ1,β0 , {(ξ, η) ∈ R

2 :
ξ < 0, η > 0, η2 = −mξ}, touches the RLC (36) at some finite point. In this case,
the polynomial

(−∞, 0) � ξ 
→ Fβ1,β0

(
ξ,
√−mξ

)

has a multiple root there—it is indeed a polynomial, because in our situation
Fβ1,β0(ξ, η) contains only even powers of η (namely, η2 and η4). Moreover, we now
have

Fβ1,β0

(
ξ,
√−mξ

)
= ξ · Q̃β1,β0,m(ξ),

where Q̃β1,β0,m(·) is a quartic polynomial. The existence of a multiple root of
Q̃β1,β0,m(·) implies that the discriminant of this polynomial (with respect to ξ ),
denoted by �̃β1,β0(m), vanishes. Mathematica yields that

�̃β1,β0(m) = −213 · 36 · m2 (9β0 + 4β1 − 6)2 ×
(

64β4
1m3 + · · · − 4410

)2 (
590976 β2

0β3
1m5 + · · · − 24402696417

)
,

where the “· · · ” symbols contain 57 and 228 terms, respectively. We see that the
factor 9β0 + 4β1 − 6 above is always positive in W . In this way, we can determine
the parameter m of the largest parabola within the region bounded by the RLC for
any fixed (β1, β0) ∈ W .

Remark B.1 By setting (β1, β0) = (3/8, 3/4) for example (corresponding to the
“sector-optimal” method in Section A.2), we have that the RLC in (36) is identical to
3/16 · Fopt(ξ, η) in Remark A.1, implying that the RLC in the left half-plane ξ ≤ 0
represents the boundary of the stability region S3/8,3/4. Now, �̃3/8,3/4(m) can be
written as

−323

213
(3m − 1)2m2(m + 4)4(3m + 16)2

(
36m3 + 1362m2 + 343m − 2116

)
,

from which we can prove that the largest parabola Pm contained in S3/8,3/4 has m ≈
1.11226 (being the unique positive root of the polynomial {36, 1362, 343, −2116}).

By studying the positive roots of �̃β1,β0(·) as (β1, β0) varies within W , we can
conjecture that the value of m in (25) cannot be greater than 6/5 for the family (18).
Moreover, m = 6/5 occurs only for β1 = 1/5 and β0 = 37/40, and in this case the
RLC and the upper parabola branch touch each other at (ξ, η) = (−10/7, 2

√
3/7).

Since the polynomial �̃β1,β0(m) is much more complicated than the corresponding
polynomial Qβ1,β0(m) in Appendix A.2, this time Mathematica could not confirm in
a reasonable amount of computing time that the value m = 6/5 is indeed the optimal
one.

710 Numerical Algorithms (2020) 84:679–715



B.2 Proof of optimality in Theorem 6.1

However, once the unique optimum has been conjectured properly, the proof of
optimality becomes straightforward to complete.

Step 1. By assuming (β1, β0) ∈ W throughout the step, we show that the point
(ξ0, η0) := (−10/7, 2

√
3/7) belongs to precisely one stability region in the

family, by verifying that

Pβ1,β0 (·, ξ0, η0) ∈ svN ⇐⇒ (β1, β0) = (1/5, 37/40) .

To see this, first we check that lcPβ1,β0 (·, ξ0, η0) �= 0. Moreover, it is
easily seen that ccPβ1,β0 (·, ξ0, η0) vanishes exactly for β1 ≤ 23/40 and
β0 = (67 − 40β1) /80, and in this case the polynomial Pβ1,β0 (·, ξ0, η0) /ξ

has deg = 2 but /∈ svN, as a recursive application of Theorem 2.5 shows.
Then we can also prove that

(
Pβ1,β0 (·, ξ0, η0)

)r does not vanish identically,
and that ∣

∣lcPβ1,β0 (·, ξ0, η0)
∣
∣ >

∣
∣ccPβ1,β0 (·, ξ0, η0)

∣
∣ .

Thus, according to Theorem 2.5,

Pβ1,β0 (·, ξ0, η0) ∈ svN ⇐⇒ (
Pβ1,β0 (·, ξ0, η0)

)r ∈ svN.

Now we repeat the above process with
(
Pβ1,β0 (·, ξ0, η0)

)r. We prove that
∣
∣lc
(
Pβ1,β0 (·, ξ0, η0)

)r∣∣ >
∣
∣cc
(
Pβ1,β0 (·, ξ0, η0)

)r∣∣ > 0

and that
(
Pβ1,β0 (·, ξ0, η0)

)rr does not vanish identically, so by Theorem
2.5 we have that

(
Pβ1,β0 (·, ξ0, η0)

)r ∈ svN ⇐⇒ (
Pβ1,β0 (·, ξ0, η0)

)rr ∈ svN.

But
(
Pβ1,β0 (·, ξ0, η0)

)rr is a linear polynomial (it is easily checked that
it cannot be a constant polynomial), so its unique (complex) root can be
directly expressed: one sees that the absolute value of this root is ≤ 1 if and
only if

(8β0 + 8β1 − 19) (120β0 + 40β1 − 39)
(

483840000β4
0 + 967680000β1β

3
0−

1989440000β3
0 + 645120000β2

1β2
0 − 2967744000β1β

2
0 + 2890070400β2

0+
179200000β3

1β0 − 1404096000β2
1β0 + 2856374400β1β0 − 1693045320β0+

17920000β4
1 − 214336000β3

1 + 673766400β2
1 − 792582600β1 + 301631887

)
≤ 0.

The product of the first two factors is strictly negative in W , and a standard
constrained optimization computation shows that the third factor is ≥ 0 in
W if and only if (β1, β0) = (1/5, 37/40), completing Step 1.

Step 2. Since Pm1 ⊆ Pm2 is equivalent to 0 < m1 ≤ m2 (see (24)), and now∣
∣η2

0/ξ0
∣
∣ = 6/5, the uniqueness property in the previous step implies that

m ≥ 6/5 in (25) can hold only for (β1, β0) = (1/5, 37/40). In this step, we
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verify that (25) indeed holds with m = 6/5 and (β1, β0) = (1/5, 37/40);
that is, we show that P1/5,37/40 (·, ξ, η) ∈ svN for any (ξ, η) ∈ P6/5.

Let us pick and fix an arbitrary point (ξ, η) ∈ P6/5. Then we easily see
that ∣∣lcP1/5,37/40 (·, ξ, η)

∣∣ >
∣∣ccP1/5,37/40 (·, ξ, η)

∣∣ ,

and this cc = 0 if and only if ξ = −5/11; in this case, Theorem 2.5 tells us
that ζ 
→ P1/5,37/40 (ζ, −5/11, η) = ζ(125ζ 2 − 132iζη − 58ζ − 7)/88 ∈
svN. So for ξ �= −5/11, again by Theorem 2.5 we get that

P1/5,37/40 (·, ξ, η) ∈ svN ⇐⇒ (
P1/5,37/40 (·, ξ, η)

)r ∈ svN,

provided that
(
P1/5,37/40 (·, ξ, η)

)r does not vanish identically. But this
non-vanishing condition is true because

∣
∣lc
(
P1/5,37/40 (·, ξ, η)

)r∣∣ >
∣
∣cc
(
P1/5,37/40 (·, ξ, η)

)r∣∣ > 0.

Moreover, since
∣∣lc
(
P1/5,37/40 (·, ξ, η)

)rr∣∣ is also positive, the above with
Theorem 2.5 imply that

P1/5,37/40 (·, ξ, η) ∈ svN ⇐⇒ (
P1/5,37/40 (·, ξ, η)

)rr ∈ svN.

The positivity of
∣∣lc (· · · )rr∣∣ yields that

(
P1/5,37/40 (·, ξ, η)

)rr, a deg = 1
polynomial, has a unique root. The absolute value of this (real or complex)
root is ≤ 1 if and only if (3ξ − 10)(59ξ − 30) · F̃opt(ξ, η) ≤ 0, where

F̃opt(ξ, η) := 720η4(11ξ + 5)2−

η2ξ
(

19575ξ3 + 485696ξ2 − 1009140ξ + 464400
)

+ 240ξ
(

22ξ2 − 49ξ + 30
)2

.

Now, (3ξ − 10)(59ξ − 30) > 0, and one checks that F̃opt(ξ, η) ≤ 0 for
(ξ, η) ∈ P6/5, completing Step 2.

Step 3. To complete the optimality proof, we finally show that

P1/5,37/40 (·, ξ0, η0 + ε) /∈ svN for any ε ∈ (0, 1),

that is, we cannot have m > 6/5 in (25). We repeat the same two-step
reduction process as above and get that ε ∈ (0, 1) guarantees that

P1/5,37/40 (·, ξ0, η0 + ε) ∈ svN ⇐⇒ (
P1/5,37/40 (·, ξ0, η0 + ε)

)rr ∈ svN.

But this last (· · · )rr ∈ svN condition is equivalent to

1120ε
(

27783ε3 + 31752
√

21ε2 + 1649620ε + 833776
√

21
)

(
1323ε2 + 756

√
21ε − 50840

)2
≤ 0,

so it cannot hold for any ε ∈ (0, 1).

Remark B.2 In addition to the inequality F̃opt(ξ, η) ≤ 0 in Step 2, we have that
F̃opt(ξ, η) = 0 for (ξ, η) ∈ P6/5 if and only if (ξ, η) = (ξ0, ±η0). Moreover,
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Fig. 13 The figure shows the optimal stability region S1/5,37/40 (brown) within the family (18) that con-
tains the largest parabola P6/5 (orange), see Theorem 6.1. The point (ξ0, η0) = (−10/7, 2

√
3/7) is shown

as a red dot. For comparison, the dashed red line from Fig. 12 is also included here

F̃opt(ξ, η) ≡ 2000 · F1/5,37/40(ξ, η) (see (36)). On the other hand, by using the
reduction process one can actually prove that

{(ξ, η) ∈ R
2 : ξ ≤ 0, η ∈ R, F̃opt(ξ, η) ≤ 0} = S1/5,37/40.

These mean that the stability region boundary in the optimal case coincides with the
corresponding RLC (in the left half-plane), and the boundary of the optimal inscribed
parabola touches the stability region boundary in the open upper left half-plane at
exactly one point, see Fig. 13 (and cf. Remarks 5.4 and B.1).
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31. Ketcheson, D.I., Kocsis, T.A., Lóczi, L.: On the absolute stability regions corresponding to partial
sums of the exponential function. IMA J. Numer. Anal. 35(3), 1426–1455 (2015)

32. Kirlinger, G.: Linear multistep methods applied to stiff initial value problems—a survey. Math.
Comput. Modelling 40(11–12), 1181–1192 (2004)

33. Lambert, J.D.: Computational Methods in Ordinary Differential Equations. Wiley, London (1973)
34. Liniger, W.: A criterion for A-stability of linear multistep integration formulae. Computing 3, 280–285

(1968)
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