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Interval methods of Adams-Bashforth type
with variable step sizes

Andrzej Marciniak1,2 ·Malgorzata A. Jankowska3

Abstract
In a number of our previous papers, we have proposed interval versions of multistep
methods (explicit and implicit), including interval predictor-corrector methods, in
which the step size was constant. In this paper, we present interval versions of Adams-
Bashforth methods with a possibility to change step sizes. This possibility can be
used to obtain interval enclosures of the exact solution with a width given beforehand.

Keywords Initial value problem · Adams-Bashforth methods · Interval
Adams-Bashforth methods · Variable step size · Floating-point interval arithmetic

1 Introduction

Using computers and approximate methods to solve problems described in the form
of ordinary differential equations, we usually provide all calculations in floating-
point arithmetic. This arithmetic causes two kinds of errors: representation errors
(most real numbers cannot be represented exactly) and rounding errors (differences
between the calculated approximations of numbers and their exact mathematical val-
ues), which occur during floating-point operations. Using approximate methods, we
introduce the third kind of errors—the errors of methods, usually called the truncation
errors.
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Interval arithmetic (see, e.g., [12, 31, 32, 37]) realized in floating-point computer
arithmetic is a way to estimate two first kinds of errors. Applying interval methods
to approximate the solution of the initial value problem in floating-point interval
arithmetic (see, e.g., [11]) we can obtain enclosures of the solution in the form of
intervals which contain both these errors and also the truncation error.

We can distinguish three main kinds of interval methods for solving the initial
value problem: methods based on high-order Taylor series (see, e.g., [1, 2, 6, 15, 33,
34]), explicit and implicit methods of Runge-Kutta type ([9, 10, 22, 28, 30, 37]), and
explicit and implicit multistep methods ([9, 17–19, 22, 25, 26]), including interval
predictor-corrector methods [27]. In interval methods based on Runge-Kutta and in
interval multistep methods considered so far, a constant step size has been used. The
methods based on high-order Taylor series use variable step sizes and seem to be the
most universal. But it should be noted that in [25–27] and [30] we have shown that in
some cases the interval methods of the second and third kinds give better enclosures
of the exact solutions. Therefore, it is worth to take into account also such methods.

In conventional multistep methods, a problem for changing step size was described
firstly by F. Ceschino in [4], and developed further, among others, by C. V. D. For-
rington [8] and F. T. Krogh [20]. In these methods by appropriate selection of step
size, one can minimize the truncation error, i.e., obtain an approximate solution at
some points (mesh points of a grid) with a tolerance given beforehand. Since in inter-
val methods the truncation errors are included in interval enclosures of the exact
solutions, the only reason to change a given step size is to decrease the widths of these
enclosures. Although we consider only interval methods of Adams-Bashforth type,
it seems that the presented procedure can be also applied to other interval multistep
methods.

The paper is divided into seven sections. In Section 2, we shortly recall conven-
tional Adams-Bashforth methods with variable step sizes. Interval versions of these
methods are proposed in Section 3. Section 4 is the main section of this paper, in
which we describe how to match the step size to obtain interval enclosures of the
exact solution with a desired width. Since for simplicity in Sections 2–4 we consider
only one-dimensional initial value problem, in Section 5, we announce some remarks
on solving systems of differential equations by interval Adams-Bashforth methods
using our algorithm. In Section 6, we present some numerical examples, and in the
last section, some conclusions are given.

2 Adams-Bashforth methods

Below we present briefly (on the basis of [11, p. III.5]) the methods of Adams-
Bashforth (explicit multistep methods)1 with variable step sizes.

1The term “Adams-Bashforth method” is often used only for the four-step explicit linear method, which is
a special case of the class of methods that we consider in this paper. In [11], the methods considered here
are called “explicit Adams methods,” but J. C. Butcher in [3, p. 143] used the same term as we use, since
there are other similar linear explicit methods known as Adams-Nyström or simply Nyström methods (see,
e.g., [3] or [13]).
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Let us consider the initial value problem2

y′ = f (t, y) , y (0) = y0, t ∈ [0, a] . (1)

Let the set of points {t0, t1, . . . , tk, . . . , tm}, such that

0 = t0 < t1 < . . . < tk < . . . < tm ≤ a,

be a grid on the interval [0, a] (the points ti are called the mesh points), and hi = ti−ti−1
(i = 1, 2, . . . , m) denote the step sizes. On the interval

[
tk−1, tk

]
, the differential

equation (1) is equivalent to

y (tk) = y (tk−1) +
tk∫

tk−1

f (τ, y (τ )) dτ . (2)

The integrand in (2) we approximate by the interpolation polynomial P(τ) of
degree n − 1 in such a way that

P
(
tk−j

) = f
(
tk−j , y

(
tk−j

))
, j = 1, 2, . . . , n.

Substituting τ = tk−1 + thk and using Newton’s interpolation formula, we can write
the polynomial P (τ) in the form

P (tk−1 + thk) = f (tk−1, y (tk−1)) + (t − tk−1)
[
tk−1, tk−2; f

]

+ (t − tk−1) (t − tk−2)
[
tk−1, tk−2, tk−3; f

]

+ . . . + (t − tk−1) (t − tk−2) · · · (t − tk−n+1)
[
tk−1, tk−2, . . . , tk−n; f

]

=
n−1∑

j=0

[
tk−1, tk−2, . . . , tk−j−1; f

] j−1∏

i=0

(t − tk−i−1) ,

where
[
tk−1, tk−2, . . . , tk−j−1; f

]
denote the divided differences given by

[
tk−1, tk−2, . . . , tk−j−1; f

] =
k−j−1∑

i=k−1

f (ti , y (ti))

k−j−1∏

l=k−1
l �=i

(ti − tl)

,

j = 1, 2, . . . , n − 1, (3)

which may be defined recursively by
[
tk−1; f

] = f (tk−1, y (tk−1)) ,

[
tk−1, tk−2, . . . , tk−j−1; f

] =
[
tk−1, tk−2, . . . , tk−j ; f

] − [
tk−2, tk−3, . . . , tk−j−1; f

]

tk−1 − tk−j−1
,

j = 1, 2, . . . , n − 1.

2The case when (1) presents a system of differential equations is discussed in Section 5
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Let us denote

ϕ0 (k) = f (tk−1, y (tk−1)) ,

ϕj (k) = [
tk−1, tk−2, . . . , tk−j−1; f

] j−1∏

i=0

(tk − tk−i−1) , (4)

g0 (k) = 1,

gj (k) = 1

hk

tk∫

tk−1

j−1∏

i=0

t − tk−i−1

tk − tk−i−1
dt . (5)

Then, the formula (2) may be written as

y (tk) = y (tk−1) + hk

n−1∑

j=0

gj (k) ϕj (k) +
tk∫

tk−1

rn (τ ) dτ, (6)

where rn (τ ) denotes the interpolation error, and the integral over this error is the
local truncation error. We have (see, e.g., [14, 35])

tk∫

tk−1

rn (τ ) dτ = y(n+1) (ξ)

n!

tk∫

tk−1

n∏

i=1

(τ − tk−i ) dτ

= y(n+1) (ξ)

n! hn+1
k

1∫

0

t

n∏

i=2

(
t + tk−1 − tk−i

hk

)
dt,

where ξ ∈ [
tk−n, tk

]
and y(n+1) (ξ) = f (n) (ξ, y (ξ)). Thus, the formula (6) may be

written in the form

y (tk) = y (tk−1) + hk

n−1∑

j=0

gj (k) ϕj (k) + hn+1
k gn (k) f (n) (ξ, y (ξ)) , (7)

where the values ϕj (k) and gj (k) for j = 0, 1, . . . , n − 1 are given by (4) and (5),
respectively, and

gn (k) = 1

n!
1∫

0

t

n∏

i=2

(
t + tk−1 − tk−i

hk

)
dt . (8)

The values ϕj (k) and gj (k) for j = 0, 1, . . . , n − 1 can be computed efficiently
with recurrence relations [11, 13]. As an immediate consequence of (3), we have

ϕ0 (k) = ϕ0 (k) = f (tk−1, y (tk−1)) ,

ϕj (k) = ϕj−1 (k) − ϕj−1 (k − 1) ,

ϕj (k) = βj (k) ϕj (k) , j = 1, 2, . . . , n − 1,
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where the coefficients

βj (k) =
j−1∏

i=0

tk − tk−i−1

tk−1 − tk−i−2

can be calculated by

β0 (k) = 1,

βj (k) = βj−1 (k)
tk−tk−j

tk−1−tk−j−1
, j = 1, 2, . . . , n − 1.

The calculation of the coefficients gj (k) is more tricky [13, 21]. We introduce the
q-fold integral

cjq (t) = (q − 1)!
h

q
k

t∫

tk−1

ζq−1∫

tk−1

. . .

ζ1∫

tk−1

j−1∏

i=0

ξ0 − tk−i−1

tk − tk−i−1
dξ0dξ1 . . . dξq−1.

It appears that
gj (k) = cj1 (tk) , j = 1, 2, . . . , n − 1,

where for the quantities cjq (tk) we have the following recurrence relations:

c0q (tk) = 1

q
, c1q (tk) = 1

q (q + 1)
,

cjq (tk) = cj−1,q (tk) − cj−1,q+1 (tk)
hk

tk − tk−j

.

If the approximations
yk−1, yk−2, . . . , yk−n

of the exact values
y (tk−1) , y (tk−2) , . . . , y (tk−n)

are known, we denote fi = f (ti , yi) for i = k − n, k − n + 1, . . . , k − 1, and in
the formula (7) we omit the truncation error, then we obtain the Adams-Bashforth
methods with variable step sizes given by

yk = yk−1 + hk

n−1∑

j=0

gj (k) ϕj (k) . (9)

In particular, from (9) we get:

– n = 1
yk = yk−1 + hkfk−1, (10)

– n = 2
yk = yk−1 + hkγ2k, (11)

where

γ2k = fk−1 + 1

2

hk

hk−1
(fk−1 − fk−2) ,
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– n = 3
yk = yk−1 + hkγ3k, (12)

where

γ3k = γ2k + 1

2

(
1 − 1

3

hk

hk + hk−1

)
hk

hk−1

hk + hk−1

hk−1 + hk−2

×
[
fk−1 − fk−2 − hk−1

hk−2
(fk−2 − fk−3)

]
,

– n = 4
yk = yk−1 + hkγ4k, (13)

where

γ4k = γ3k

+
[

1

2

(
1− 1

3

hk

hk + hk−1

)
− 1

6

(
1 − 1

2

hk

hk + hk−1

)
hk

hk + hk−1 + hk−2

]

× hk

hk−1

hk + hk−1

hk−1 + hk−2

hk + hk−1 + hk−2

hk−1 + hk−2 + hk−3

×
{
fk−1 − fk−2 − hk−1

hk−2
(fk−2 − fk−3)

−hk−1

hk−2

hk−1 + hk−2

hk−2 + hk−3

[
fk−2 − fk−3 − hk−2

hk−3
(fk−3 − fk−4)

]}
.

If for each i = k, k − 1, . . . , k − n + 1 we have hi = h (a constant step size), then
from the above formulas we obtain the following well-known conventional Adams-
Bashforth methods (see, e.g., [3, 5, 11, 16, 38]):

– n = 1 (Euler’s method)
yk = yk−1 + hfk−1,

– n = 2

yk = yk−1 + h

2
(3fk−1 − fk−2) ,

– n = 3

yk = yk−1 + h

12
(23fk−1 − 16fk−2 + 5fk−3) ,

– n = 4

yk = yk−1 + h

24
(55fk−1 − 59fk−2 + 37fk−3 − 9fk−4) .

3 Interval versions of Adams-Bashforth methods with variable step
sizes

Let us denote:

– �t and �y—bounded sets in which the function f (t, y), occurring in (1), is
defined, i.e.,

�t = {t ∈ R : 0 ≤ t ≤ a} , �y = {
y ∈ R : b ≤ y ≤ b,

}
,
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– F (T , Y )—an interval extension of f (t, y), where an interval extension of the
function

f : R × R ⊃ �t × �y → R

we call a function

F : IR × IR ⊃ I�t × I�y → IR

such that

(t, y) ∈ (T , Y ) ⇒ f (t, y) ∈ F (T , Y ) ,

where IR denotes the space of real intervals.
– 	 (T , Y )—an interval extension of f (n) (t, y (t)) ≡ y(n+1) (t),

and let us assume that:

– the function F (T , Y ) is defined and continuous3 for all T ⊂ �t and Y ⊂ �y ,
– the function F (T , Y ) is monotonic with respect to inclusion, i.e.,

T1 ⊂ T2 ∧ Y1 ⊂ Y2 ⇒ F (T1, Y1) ⊂ F (T2, Y2) ,

– for each T ⊂ �t and for each Y ⊂ �y , there exists a constant 
 > 0 such that

w (F (T , Y )) ≤ 
(w (T ) + w (Y )) ,

where w (A) denotes the width of the interval A,
– the function 	 (T , Y ) is defined for all T ⊂ �t and Y ⊂ �y ,
– the function 	 (T , Y ) is monotonic with respect to inclusion.

Moreover, let us assume that y (0) ∈ Y0 and the intervals Yk such that y (tk) ∈ Yk for
k = 1, 2, . . . , n − 1 are known. We can obtain such Yk by applying an interval one-
step method, for example, an interval method of Runge-Kutta type (see, e.g., [9, 10,
22, 28, 30, 37]).

The interval methods of Adams-Bashforth type with variable step sizes we define
as follows (compare (7)):

Yk = Yk−1 + hk

n−1∑

j=0
gj (k) �j (k)

+ hn+1
k gn (k) 	

(
Tk−1 + [−hk−n+1 − hk−n+2 − . . . − hk−1, hk

]
,

Yk−1 + [−hk−n+1 − hk−n+2 − . . . − hk−1, hk

]

×F
(
�t, �y

))
,

k = n, n + 1, . . . , m, (14)

3The function F(T , Y ) is continuous at (T0, Y0) if for every ε > 0 there is a positive number δ = δ(ε) such
that d(F (T , Y ), F (T0, Y0)) < ε whenever d(T , T0) < δ and d(Y, Y0) < δ. Here, d denotes the interval
metric defined by d(X1, X2) = max{|X1 − X2|, |X1 − X2|}, where X1 = [X1, X1] and X2 = [X2, X2]
are two intervals.
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where gj (k) for j = 1, 2, . . . , n − 1 is given by (5), gn (k)—by (8),

�0(k) = Fk−1,

�j (k) = [
tk−1, tk−2, . . . , tk−j−1; F

] j−1∏

i=0
(tk − tk−i−1) ,

[
tk−1, tk−2, . . . , tk−j−1; F

] =
k−j−1∑

i=k−1

Fi
k−j−1∏

l=k−1
l �=i

(ti−tl )

,

j = 1, 2, . . . , n − 1, (15)

and Fi = F (Ti, Yi) for i = k − n, k − n + 1, . . . , k − 1.
In particular, for a given n, we get the following methods (compare (10)–(13)):

– n = 1

Yk = Yk−1 + hkFk−1

+h2
k

2
	

(
Tk−1 + [0, hk] , Yk−1 + [0, hk] F

(
�t, �y

))
, (16)

– n = 2

Yk = Yk−1 + hk�2k

+ h3
kg2 (k)	

(
Tk−1 + [−hk−1, hk

]
,

Yk−1 + [−hk−1, hk

]
F

(
�t, �y

))
, (17)

where

�2k = Fk−1 + 1
2

hk

hk−1
(Fk−1 − Fk−2) ,

g2 (k) = 1
2

(
1
3 + 1

2
hk−1
hk

)
,

– n = 3

Yk = Yk−1 + hk�3k

+h4
kg3 (k)	

(
Tk−1 + [−hk−2 − hk−1, hk

]
,

Yk−1 + [−hk−2 − hk−1, hk

]
F

(
�t, �y

))
, (18)

where

�3k = �2k

+1

2

(
1 − 1

3

hk

hk + hk−1

)
hk

hk−1

hk + hk−1

hk−1 + hk−2

×
[
Fk−1 − Fk−2 − hk−1

hk−2
(Fk−2 − Fk−3)

]
,

g3 (k) = 1

6

(
1

4
+ 1

3

2hk−1 + hk−2

hk

+ 1

2

hk−1

hk

hk−1 + hk−2

hk

)
,
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– n = 4

Yk = Yk−1 + hk�4k

+h5
kg4 (k) 	

(
Tk−1 + [−hk−3 − hk−2 − hk−1, hk

]
,

Yk−1 + [−hk−3 − hk−2 − hk−1, hk

]
F

(
�t, �y

))
,(19)

where

�4k = �3k

+
[

1

2

(
1 − 1

3

hk

hk + hk−1

)
− 1

6

(
1− 1

2

hk

hk + hk−1

)
hk

hk + hk−1 + hk−2

]

× hk

hk−1

hk + hk−1

hk−1 + hk−2

hk + hk−1 + hk−2

hk−1 + hk−2 + hk−3

×
{
Fk−1 − Fk−2 − hk−1

hk−2
(Fk−2 − Ffk−3)

−hk−1

hk−2

hk−1 + hk−2

hk−2 + hk−3

[
Fk−2 − Fk−3 − hk−2

hk−3
(Fk−3 − Fk−4)

]}
,

g4 (k) = 1

24

(
1

5
+ 1

4

3hk−1 + 2hk−2 + hk−3

hk

+ 1

3

hk−1

hk

3hk−1 + 4hk−2 + 2hk−3

hk

+ 1

3

hk−2

hk

hk−2 + hk−3

hk

+ 1

2

hk−1

hk

hk−1 + hk−2

hk

hk−1 + hk−2 + hk−3

hk

)
.

For the methods (14), we can prove that the exact solution of the initial value
problem (1) belongs to the intervals (enclosures) obtained by these methods. Before
that, it is convenient to present the following

Lemma If (ti , y (ti)) ∈ (Ti, Yi) for i = k−n, k−n+1, . . . , k−1, where Yi = Y (ti),
then for any j = 0, 1, . . . , n − 1 we have

ϕj (k) ∈ �j (k) . (20)

Proof Since F (T , Y ) is an interval extension of f (t, y) and (ti , y (ti)) ∈ (Ti, Yi) for
i = k − n, k − n + 1, . . . , k − 1, we can write

f (tk−1−l , y (tk−1−l)) ∈ F (Tk−1−l , Yk−1−l) , l = 0, 1, . . . , j .

This implies that

k−j−1∑

i=k−1

f (ti , y (ti))

k−j−1∏

l=k−1
l �=i

(ti − tl)

∈
k−j−1∑

i=k−1

Fi

k−j−1∏

l=k−1
l �=i

(ti − tl)

. (21)

From (15) and (21), the relation (20) follows immediately.
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Theorem 1 If y (0) ∈ Y0 and y (ti) ∈ Yi for i = 1, 2, . . . , n − 1, then for the exact
solution y(t) of the initial value problem (1) we have

y (tk) ∈ Yk (22)

for k = n, n + 1, . . . , m, where Yk = Y (tk) are obtained from the methods (14).

Proof Let us consider the formula (7) for k = n. We have

y (tn) = y (tn−1) + hn

n−1∑

j=0

gj (n) ϕj (n) + hn+1
n gn (n) f (n) (ξ, y (ξ)) , (23)

where ξ ∈ [t0, tn]. From the assumption we get y (tn−1) ∈ Yn−1, and from the Lemma
it follows that

hn

n−1∑

j=0

gj (n) ϕj (n) ∈ hn

n−1∑

j=0

gj (n)�j (n) .

Applying Taylor’s formula, we get

y (ξ) = y (tn−1) + (ξ − tm−1) y′ (tn−1 + ϑ (ξ − tn−1)) , (24)

where ϑ ∈ [0, 1]. Due to ξ ∈ [t0, tn] and ti = h1 + h2 + . . . + hi for i = 1, 2, . . . , m

(t0 = 0), we have

ξ − tn−1 ∈ [−h1 − h2 − . . . − hn−1, hn

]
. (25)

Moreover, y′ (t) = f (t, y (t)). Since

f
[
tn−1 + ϑ (ξ − tn−1) , y (tn−1 + ϑ (ξ − tn−1))

] ∈ F
(
�t, �y

)
,

then
y′ (tn−1 + ϑ (ξ − tn−1)) ∈ F

(
�t, �y

)
.

Taking into account the above considerations, from (24), we get

y (ξ) ∈ Yn−1 + [−h1 − h2 − . . . − hn−1, hn

]
F

(
�t, �y

)
. (26)

As we assumed, 	 is an interval extension of f (n) (t, y). Hence, applying (25) and
(26), we have

hn+1
n gn (n) f (n) (ξ, y (ξ))

∈ hn+1
n gn (n)	

(
Tn−1 + [−h1 − h2 − . . . − hn−1, hn

]
,

Yn−1 + [−h1 − h2 − . . . − hn−1, hn

])
F

(
�t, �y

)
.

Thus, we have shown that y (tn) belongs to the interval

Yn−1 + hn

n−1∑

j=0

gj (n)�j (n)

+ hn+1
n gn (n) 	

(
Tn−1 + [−h1 − h2 − . . . − hn−1, hn

]
,

Yn−1 + [−h1 − h2 − . . . − hn−1, hn

])
F

(
�t, �y

)
,

but—according to (14)—this is the interval Yn. This conclusion ends the proof for
k = n. In a similar way we can show the thesis of this theorem for k = n + 1,

n + 2, . . . , m.
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Theorem 2 If the intervals Yk for k = 0, 1, . . . , n − 1 are known, ti = h1+ h2
+ . . . + hi ∈ Ti , i = 1, 2, . . . , m (t0 = 0 ∈ T0 = [0, 0]), and the intervals Yk for
k = n, n + 1, . . . , m are obtained from (14), then

w (Yk) ≤ A max
q=0,1,...,n−1

w
(
Yq

) + B max
j=1,2,...,m−1

w
(
Tj

) + Chn, (27)

where

h = max
k=n,n+1,...,m

hk, (28)

and the constants A, B, and C are independent of h.

Proof Because of gj (k) > 0 for j = 0, 1, . . . , n − 1 (see (5)) and gn (k) > 0 (see
(8)), from (14), we get

w (Yk) ≤ w (Yk−1) + hk

n−1∑

j=0

gj (k) w
(
�j (k)

)

+ hn+1
k gn (k)

× w
(
	

(
Tk−1 + [−hk−n+1 − hk−n+2 − . . . − hk−1, hk

]
,

Yk−1 + [−hk−n+1 − hk−n+2 − . . . − hk−1, hk

])

× F
(
�t, �y

)))
. (29)

We assumed that 	 is monotonic with respect to inclusion. Moreover, if step sizes
hk−j for j = 0, 1, . . . , n − 1 are such that satisfy the conditions

Tk−1 + [−hk−n+1 − hk−n+2 − . . . − hk−1, hk

] ⊂ �t,

Yk−1 + [−hk−n+1 − hk−n+2 − . . . − hk−1, hk

]
F

(
�t, �y

) ⊂ �y,

then

	
(
Tk−1 + [−hk−n+1 − hk−n+2 − . . . − hk−1, hk

]
,

Yk−1 + [−hk−n+1 − hk−n+2 − . . . − hk−1, hk

]
F

(
�t, �y

)) ⊂ 	
(
�t, �y

)
.

From the above inclusion, it follows that

w
(
	

(
Tk−1 + [−hk−n+1 − hk−n+2 − . . . − hk−1, hk

]
,

Yk−1 + [−hk−n+1 − hk−n+2 − . . . − hk−1, hk

]

×F
(
�t, �y

))) ≤ w
(
	

(
�t, �y

))
. (30)

If we denote

αi0(k) = 1, αij (k) =

j−1∏

l=0
(tk − tk−l−1)

k−j−1∏

l=k−1
l �=i

(ti − tl)

,

i = k − 1, k − 2, . . . , k − j − 1, j = 1, 2, . . . n − 1,
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then from (15) we have

�j (k) =
k−j−1∑

i=k−1

αij (k) Fi . (31)

But we also assumed that for the function F there exists a constant 
 > 0 such that

w (Fi) ≤ 
(w (Ti) + w (Yi)) . (32)

Therefore, from (29)–(32), we get

w (Yk) ≤ w (Yk−1) + hk


n−1∑

j=0

gj (k)

k−j−1∑

i=k−1

∣∣αij (k)
∣∣ (w (Ti) + w (Yi))

+hn+1
k gn (k) w

(
	

(
�t, �y

))
.

If we denote
αj (k) = max

i=k−1,k−2,...,k−j−1

∣∣αij (k)
∣∣ ,

then from the above inequality it follows that

w (Yk) ≤ w (Yk−1) + hk


n−1∑

j=0

gj (k) αj (k)

k−j−1∑

i=k−1

(w (Ti) + w (Yi))

+hn+1
k gn (k) w

(
	

(
�t, �y

))
,

and denoting
ρn (k) = max

j=0,1,...,n−1
αj (k) , (33)

we have

w (Yk) ≤ w (Yk−1) + hk
ρn (k)

n−1∑

j=0

k−j−1∑

i=k−1

(w (Ti) + w (Yi))

+ hn+1
k gn (k) w

(
	

(
�t, �y

))
. (34)

But
n−1∑

j=0

k−j−1∑

i=k−1

(w (Ti) + w (Yi)) =
n∑

j=1

(n − j + 1)
(
w

(
Tk−j

) + w
(
Yk−j

))
.

Thus, from (34), we get

w (Yk) ≤ w (Yk−1) + ςn (hk)

n∑

j=1

(n − j + 1)w
(
Yk−j

)

+ςn (hk)

n∑

j=1

(n − j+1) w
(
Tk−j

) +σn (hk) w
(
	

(
�t, �y

))
, (35)

where
ςn (hk) = hk
ρn (k) , σn (hk) = hn+1

k gn (k) . (36)

662 Numerical Algorithms (2020) 84:651–678



From (35) for k = n, we obtain

w (Yn) ≤ [1 + nςn (hn)] w (Yn−1) + ςn (hn)

n∑

j=2

(n − j + 1)w
(
Yn−j

)

+ ςn (hn)

n∑

j=1

(n − j + 1)w
(
Tn−j

) + σn (hn) w
(
	

(
�t, �y

))

≤ [1 + nςn (hn)] w (Yn−1) + nςn (hn)

n∑

j=2

w
(
Yn−j

)

+ nςn (hn)

n∑

j=1

w
(
Tn−j

) + σn (hn)w
(
	

(
�t, �y

))

≤ [1 + nςn (hn)]
n∑

j=1

w
(
Yn−j

) + nςn (hn)

n∑

j=1

w
(
Tn−j

)

+ σn (hn) w
(
	

(
�t, �y

))
, (37)

and using mathematical induction, one can prove that for each i = 1, 2, . . . , m − 1
we have

w (Yn+i ) ≤ Pni

n∑

j=1

w
(
Yn−j

) + Qni

n+i∑

j=1

w
(
Tn+i−j

) + Rniw
(
	

(
�t, �y

))
, (38)

where

Pni = [
1 + nςn (hn+i )

] (
1 + Pn,i−1

)
, Qni = [

1 + nςn (hn+i )
]
Qn,i−1 + nςn (hn+i ) ,

Rni = [
1 + nςn (hn+i )

]
Rn,i−1 + σn (hn+i ) ,

Pn0 = 1 + nςn (hn) , Qn0 = nςn (hn) , Rn0 = σn (hn) .

It is self-evident that

ςn (hk) ≤ ςn (h) = h
ρn, σn (hk) ≤ σn (h) = hn+1gn, (39)

where

ρn = max
k=n,n+1,...,m

ρn (k) , gn = max
k=n,n+1,...,m

gn (k) ,

and where h is given by (28). Hence,

Pni =
i∑

l=0

[1 + nςn (h)]l+1 ≤
i∑

l=0

exp [(l + 1) nςn (h)] ≤ (i + 1) exp [(i + 1) nςn (h)]

≤ (m − n + 1) exp [(m − n + 1) nςn (h)] ≤ m exp [mnςn (h)]

≤ m exp
(
m2h
ρn

)
≤ m exp

(
m2a
ρn

)
,
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and

Qni =
i∑

l=0

[1 + nςn (h)]l nςn (h) = nςn (h)

i∑

l=0

[1 + nςn (h)]l = [1 + nςn (h)]i+1 − 1

≤ exp [(i + 1) nςn (h)] − 1 ≤ exp [(m − n + 1) nςn (h)] − 1 ≤ exp [mnςn (h)] − 1

≤ exp
(
m2h
ρn

)
− 1 ≤ exp

(
m2a
ρn

)
− 1,

Rni ≤
i∑

l=0

[1 + nςn (h)]l nσn (h) = nσn (h)

i∑

l=0

[1 + nςn (h)]l

= σn (h)

ρn (h)

{
[1 + nςn (h)]i+1 − 1

}
≤ hn gn


ρn

[
exp

(
m2a
ςn

)
− 1

]
.

It means that from (38), we have

w (Yn+i ) ≤ nm exp
(
m2a
ρn

)
max

q=0,1,...,n−1
w

(
Yq

)

+ (n + i)
[
exp

(
m2a
ρn

)
− 1

]
max

j=0,1,...,m−1
w

(
Tj

)

+ hn gn


ρn

[
exp

(
m2a
ρn

)
− 1

]
w

(
	

(
�t, �y

))
. (40)

Since i ≤ m − n, then from (40), we finally get

w (Yn+i ) ≤ A max
q=0,1,...,n−1

w
(
Yq

) + B max
j=0,1,...,m−1

w
(
Tj

) + Chn (41)

for each i = 1, 2, . . . , m − n, where

A = m2 exp
(
m2a
ρn

)
, B = m

[
exp

(
m2a
ρn

)
− 1

]
,

C = gn


ρn

[
exp

(
m2a
ρn

)
− 1

]
.

Since T0 = [0, 0], i.e., w (T0) = 0, for i = 1, 2, . . . , m − n, the inequality (27)
follows immediately from (41). For i = 0, the relation (41) follows directly from
(37).

4 Using variable step sizes

In conventional one- and multistep methods, the change of step size is used to obtain
approximate solutions with a given tolerance (to decrease the truncation errors). In
the case of multistep methods, it is worth to recommend the methods of Adams
with variable step size of predictor-corrector type, in which the explicit methods of
Adams-Bashforth are predictors and the implicit methods of Adams-Moulton are cor-
rectors. A usable algorithm based on these methods has been proposed by F. T. Krogh
in [21], and appropriate procedures in Fortran programming language to implement
this algorithm on computers have been published in the book [36] written by L. F.
Shampine and M. K. Gordon.
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In interval methods, all errors (representation, rounding, and truncation errors)
are included in obtained enclosures of solutions. Thus, the only aim to choose an
adequate step size is to decrease the width of interval enclosures.

To obtain interval enclosures of Yk with a width eps giving beforehand, one can
consider the inequality (27) and compare the right-hand side of it. But this inequality
overestimates the width of Yk , and a better way to do it is to take into consideration
the relation (35).

Let us assume that the right-hand side (34) is equal to eps, i.e.,

w (Yk−1) + ςn (hk)

n∑

j=1

(n − j + 1)w
(
Yk−j

)

+ ςn (hk)

n∑

j=1

(n − j + 1)w
(
Tk−j

)

+ σn (hk) w
(
	

(
�t, �y

)) = eps. (42)

Since Tk−j (j = 1, 2, . . . , n) is only an interval representation of tk−j , we have
w

(
Tk−j

) ≈ 0. If we assume w
(
Tk−j

) = 0 and take into account (42), then we have

hn+1
k gn (k) w

(
	

(
�t, �y

))

+hk
ρn (k)

n∑

j=1

(n − j + 1)w
(
Yk−j

) + w (Yk−1) − eps = 0. (43)

The equation (43) presents a polynomial (with respect to h) of degree n+1. Denot-
ing this polynomial by pn+1 (hk), we look for hk > 0 such that pn+1 (hk) = 0. To
find such an hk , one can use any method for finding roots of polynomials. Applying,
for example, the Newton iterations we have

h
(s+1)
k = h

(s)
k −

pn+1

(
h

(s)
k

)

p′
n+1

(
h

(s)
k

) , s = 0, 1, . . . , (44)

where h
(0)
k is given (we can take h

(0)
k = hk−1). The process (44) is stopped when

∣∣
∣h(s+1)

k − h
(s)
k

∣∣
∣ < ε,

where ε denotes an accuracy given beforehand.
Note that in general, the real hk > 0, satisfying (43), may not exist. Since in (43)

all coefficients near by any power of hk are positive, such a case occurs, for instance,
when

w (Yk−1) − eps > 0.

If this relation holds, we can try to increase eps or simply stop the calculations. Of
course, if the widths of successive Yk increase, then the successive step sizes hk must
decrease (see Example 2 in Section 6). Moreover, if tm is the last tk , for which tk < a,
and we want to achieve the end a of integration interval, then for the last integration
step we should take hm+1 = a − tm.
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According to the definitions of gn (k) and ρn (k) (see (8) and (33), respectively), it
is difficult to write the general form of pn+1 (hk). For n ≤ 4, we have the following
formulas:

– n = 1

p2 (hk) = h2
k

12
w

(
	

(
�t, �y

)) + hk
w (Yk−1) + w (Yk−1) − eps = 0,

– n = 2

p3 (hk) = h2
k

12
(2hk + 3hk−1) w

(
	

(
�t, �y

))

+ 
q2 (hk)
[
2w (Yk−1) + w (Yk−2)

] + w (Yk−1) − eps = 0,

where

q2 (hk) = hk · max

{
1,

hk

hk−1

}
,

– n = 3

p4 (h4) = h2
k

72

[
3h2

k + 4hk (2hk−1 + hk−2)

+6hk−1 (hk−1 + hk−2)
]
w

(
	

(
�t, �y

))

+
q3 (hk)
[
3w (Yk−1) + 2w (Yk−2) + w (Yk−3)

]

+w (Yk−1) − eps = 0,

where

q3 (hk) = hk · max

{
1,

hk

hk−1
,
hk (hk + hk−1)

hk−1hk−2

}
,

– n = 4

p5 (h4) = h2
k

1440

{
12h3

k + 15h2
k (3hk−1 + 2hk−2 + hk−3)

+ 20hk

[
hk−1 (hk−1 + hk−2)

+ (2hk−1 + hk−2) (hk−1 + hk−2 + hk−3)
]

+30hk−1 (hk−1 + hk−2) (hk−1 + hk−2 + hk−3)}
× w

(
	

(
�t, �y

))

+
q4 (h4)
[
4w (Yk−1) + 3w (Yk−2) + 2w (Yk−3) + w (Yk−4)

]

+w (Yk−1) − eps = 0,

where

q4 (hk) = hk · max

{
1,

hk

hk−1
,
hk (hk + hk−1)

hk−1hk−2
,

hk (hk + hk−1) (hk + hk−1 + hk−2)

hk−1hk−2 (hk−2 + hk−3)
,

hk (hk + hk−1) (hk + hk−1 + hk−2)

(hk−1 + hk−2) hk−2hk−3

}
.
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Note that in the case of n > 1, the form of pn+1 (hk) depends on which αj (k)

(j = 0, 1, . . . , n − 1) is chosen (see (33)).

5 A note on a system of differential equations

For simplicity, we have considered only one-dimensional initial value problem. The
methods (14) and the algorithm presented in Section 4 can be easily extended to
systems of ordinary differential equations, i.e., to the initial value problem of the form

y′ = f (t, y) , y (0) = y0, t ∈ [0, a] ,

where y ∈ R
N and f : [0, a] × R

N → R
N . In this case the formula (14)

and the relation (22) in Theorem 1 should be written for each component of the
interval vector Yk = [Yk,(1), Yk,(2), . . . , Yk,(N)]T . In the inequality (27) and in
the proof of Theorem 2, any number w(A) means max

i=1,2,...,N
w (Ai) for any vector

A = [
A(1), A(2), . . . , A(N)

]T . The same concerns the equation (43) for calculating
the step size in kth integration step. An example of two-dimensional problem, for
which step size changing is applied, we present in the next section (Example 4).

6 Numerical examples

In the examples presented below, we have used our own implementation of floating-
point interval arithmetic in Delphi Pascal. This implementation has been written in
the form of a unit called IntervalArithmetic32and64, which current version is pre-
sented in [23]. This unit take advantage of the Delphi Pascal floating-point Extended
type and makes it possible to represent any input numerical data in the form of a
machine interval, perform all calculations in floating-point interval arithmetic, use
some standard interval functions and give results in the form of proper intervals (if
the ends of an interval are not the same machine numbers, one can see the difference
in the output). All programs written in Delphi Pascal for the examples presented one
can find in [24]. We have run these programs on Lenovo® Z51 computer with Intel®

Core i7 2.4 GHz processor.

Table 1 Starting values for Adams-Bashforth methods and the problem (45)

k tk hk yk Yk

0 0.00 – ≈ 1 [1.0000000000000000E + 0000, 1.0000000000000000E + 0000]

1 0.08 0.08 ≈ 1.0408108 [1.0408107741923882E + 0000, 1.0408107741923883E + 0000]

2 0.15 0.07 ≈ 1.0778842 [1.0778841508846315E + 0000, 1.0778841508846315E + 0000]

3 0.20 0.05 ≈ 1.1051709 [1.1051709180756476E + 0000, 1.1051709180756477E + 0000]
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Table 2 Intervals obtained for the problem (45) at t = 2 by the methods (16)–(19)

Method Yk Width CPU time

(s)

(16) [ 2.7169134040046282E+0000, 2.7235393714205552E+0000] ≈ 6.63 · 10−3 0.042

(17) [ 2.7179091592957537E+0000, 2.7187125466868537E+0000] ≈ 8.03 · 10−4 0.054

(18) [ 2.7182298899088899E+0000, 2.7183323624455116E+0000] ≈ 1.02 · 10−4 0.055

(19) [ 2.7182739085121117E+0000, 2.7182894852166692E+0000] ≈ 1.56 · 10−5 0.076

Example 1 At first, let us consider a commonly used test problem

y′ = 0.5y, y(0) = 1. (45)

with the exact solution
y = exp(0.5t). (46)

Let us assume

�t = {t ∈ R : 0 ≤ t ≤ 2} , �y = {
y ∈ R : 1 ≤ y ≤ 2.72

}
,

where x denotes the smallest machine number greater or equal to x (similarly, by x,
we will denote the largest machine number less or equal to x). From (46), we obtain
the results presented in Table 1.4

Taking m = 20 and h1 = 0.08, h2 = 0.07, h3 = 0.05, h4 = 0.09, h5 = 0.08,
h6 = 0.07, h7 = 0.10, h8 = 0.08, h9 = 0.14, h10 = 0.09, h11 = 0.15,
h12 = 0.11, h13 = 0.07, h14 = 0.10, h15 = 0.15, h16 = 0.12, h17 = 0.08,
h18 = 0.12, h19 = 0.15, and h20 = 0.10 by the methods (16)–(19) at t = 2, we get
enclosures of the exact solution presented in Table 2. The methods are very fast and
for all of them the time of calculations (CPU time) is less then 1 s. Of course, for
each method, the exact solution y(t20) ≈ 2.7182818284590452 is within the interval
obtained. It should be added that if we use the interval methods of Adams-Bashforth
type for greater n and very small step sizes we can obtain intervals with greater
widths then presented in Table 2 (see [22, Example 4.5 in Sec. 4.7]). This is caused
by a great number of calculations in these methods and by a significant increase of
rounding errors following from that, which is not compensated for the method orders.

Example 2 Again, let us take into account the problem (45), but now let us apply the
procedure for finding step sizes described in Section 4. For the same starting data as
in Example 1, requiring 10−8 for interval widths and taking 
 = 0.5, ε = 10−18,
h

(0)
1 = 0.08, h

(0)
2 = 0.07, h

(0)
3 = 0.05, and h

(0)
4 = 0.09 as initial approximations

of step size for the first integration step for n = 1, 2, 3 and 4, respectively (for the
next steps we have accepted h

(0)
k = hk−1), we have obtained (at the first and the

last possible to calculate integration steps) the results presented in Table 3. The CPU
times have been equal to 36.019 s for the method (16), 1.152 s for (17), 0.344 s

4The values of Yk are presented in the form obtained in our programs.
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Table 3 Intervals obtained for the problem (45) at the first and the last calculated integration steps by the
methods (16)–(19) with matching step sizes

Method k tk Yk Width

(16) 1 ≈ 0.0002 [ 1.0001078385871569E+0000, 1.0001078385888622E+0000] ≈ 1.71 · 10−12

15852 ≈ 1.5766 [ 2.1996396812768524E+0000, 2.1996396912768528E+0000] < 1.00 · 10−8

(17) 2 ≈ 0.0815 [ 1.0415997191016650E+0000, 1.0415997197462058E+0000] ≈ 6.45 · 10−10

278 ≈ 0.8333 [ 1.5168547254474315E+0000, 1.5168547354474316E+0000] < 1.00 · 10−8

(18) 3 ≈ 0.1597 [ 1.0831027071336879E+0000, 1.0831027083961128E+0000] ≈ 1.26 · 10−9

76 ≈ 0.6178 [ 1.3619093684910934E+0000, 1.3619093784910935E+0000] < 1.00 · 10−8

(19) 4 ≈ 0.2529 [ 1.1348046916372604E+0000, 1.1348046936371020E+0000] ≈ 2.00 · 10−9

71 ≈ 0.6259 [ 1.3674527147839997E+0000, 1.3674527247839998E+0000] < 1.00 · 10−8

Fig. 1 Step size changes in problem (45) for the methods (16)–(19)
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for (18), and 0.415 s for the method (19). The changes of step sizes are shown in
Fig. 1a–d.

Let us note that it is not possible to achieve the assumed end t = 2 of integration
interval. In each method, the step size is decreased for following integration steps
(excluding initial steps in two- and more step methods, where some fluctuations can
be caused by initial data), but there exists a point tm, after which further calcula-
tions are impossible. To counteract such a situation, one can increase the required
widths of intervals or consider a limitation of integration interval. For instance, if
for the problem (45) we assume t ≤ 0.6, then—for the same remaining initial data
as previously—we obtain results presented in Table 4 (we present only intervals
obtained at the last step for which tm < 0.6 and at the final t = 0.6, where the last
step size is equal to 0.6 − tm). In order to achieved the point t = 0.6, the methods
(16), (17), (18), and (19) have needed 10.274 s, 0.574 s, 0.138 s, and 0.073 s, respec-
tively. As we could expect, the greater order of method has permitted to obtain results
in smaller numbers of integration steps.

Example 3 For the initial value problem of the form (the problem A5 from [7, p. 23])

y′ = y − t

y + t
, y (0) = 4, (47)

the solution is unknown. In [7], it is taken a = 20. In our methods, we can-
not take this value, because for 0 ≤ t ≤ 20 we have −1 < y < 6.3 and in
the interval extension F

(
�t, �y

)
of f (x, y) for �t = {t ∈ R : 0 ≤ t ≤ 20} and

�y = {y ∈ R : −1 ≤ y ≤ 6.3} we have a division by an interval containing zero
(such an operation is not defined in proper interval arithmetic). Thus, we restrict these
regions to

�t = {t ∈ R : 0 ≤ t ≤ 10} , �y = {
y ∈ R : 4 ≤ y ≤ 6.3

}
.

Let us take the fourth-order method (19) with additional starting intervals given in
Table 5. These intervals have been obtained by an interval version of conventional

Table 4 Intervals obtained for the problem (45) with �t = {
t ∈ R : 0 ≤ t ≤ 0.6

}
and �y ={

y ∈ R : 1 ≤ y ≤ 2.72
}

Method k tk Yk Width

(16) 3190 ≈ 0.60000 [ 1.3498581914855010E+0000, 1.3498581958390336E+0000] ≈ 4.35 · 10−9

3191 0.60000 [ 1.3498588069670051E+0000, 1.3498588113205398E+0000] ≈ 4.35 · 10−9

(17) 135 ≈ 0.59891 [ 1.3491258950165315E+0000, 1.3491259025297920E+0000] ≈ 7.51 · 10−9

136 0.60000 [ 1.3498588036394939E+0000, 1.3498588111590695E+0000] ≈ 7.52 · 10−9

(18) 32 ≈ 0.59894 [ 1.3491410173457222E+0000, 1.3491410270971693E+0000] ≈ 9.75 · 10−9

33 0.60000 [ 1.3498588016695426E+0000, 1.3498588114278859E+0000] ≈ 9.76 · 10−9

(19) 15 ≈ 0.59880 [ 1.3490512149587291E+0000, 1.3490512245357438E+0000] ≈ 9.58 · 10−9

16 0.60000 [ 1.3498588016932220E+0000, 1.3498588112774857E+0000] ≈ 9.58 · 10−9
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Table 5 Starting values for the method (19) and the problem (47)

k tk Yk

0 0 [4.0000000000000000E + 0000, 4.0000000000000000E + 0000]

1 0.081746227283888863 [4.0801194662264153E + 0000, 4.0801194662264155E + 0000]

2 0.163492454567777736 [4.1571485011046702E + 0000, 4.1571485011046705E + 0000]

3 0.245238681851666599 [4.2313071906453238E + 0000, 4.2313071906453243E + 0000]

Runge-Kutta method (of fourth order) with an optimal step size for the first integra-
tion step (see [29] for details). For the method (19), we also need an interval extension
of y(5) (t) = f (4) (t, y). Since for the problem (47), we have

f (4) (t, y) = 40
(
y2 + t2

)

(y + t)9

(
16y3 − 13y2t + 10yt2 − 3t3

)
,

this extension can be obtained easily.
Requiring 10−8 for interval widths, taking 
 = 1, ε = 10−18, step sizes h1 =

h2 = h3 = 0.081746227283888863 and h
(0)
4 = h3 as the initial approximation

of step size for the first integration step, after 2.295 s, we have obtained the results
presented in Table 6. Figure 2 shows the step size changes. Note that we are able
to execute 464 integration steps and obtain the last interval for t ≈ 1.5476, but step
sizes are small (and tend to zero) for t approximately greater than 1.54. If we assume
eps = 10−12, then we achieve t ≈ 1.3991 (smaller t) after 4.758 s, and for eps = 10−4

we can achieve t ≈ 2.0843 (greater t) after 3.333 s (see Tables 7 and 8 for details).

Example 4 Finally, consider the motion of a simple pendulum described by the
equation

ϕ′′ + u2 sin ϕ = 0, (48)

where ϕ = ϕ (t), u = √
g/L, and where g is the gravitational acceleration at the

Earth surface and L denotes the pendulum length. If we assume that the angle ϕ is
small, i.e., sin ϕ ≈ ϕ, then the equation (48) can be reduced to the equation of simple

Table 6 Intervals obtained for the problem (47) including the last calculated integration step by the method
(19) with matching step sizes (eps = 10−8)

k tk Yk Width

50 ≈ 0.69774 [ 4.5975465221505685E+0000, 4.5975465243497029E+0000] ≈ 2.20 · 10−9

100 ≈ 1.14965 [ 4.9030146239176995E+0000, 4.9030146292963836E+0000] ≈ 5.38 · 10−9

150 ≈ 1.47461 [ 5.0930266442612574E+0000, 5.0930266533191654E+0000] ≈ 9.06 · 10−9

200 ≈ 1.54340 [ 5.1304617719687623E+0000, 5.1304617819135613E+0000] ≈ 9.94 · 10−9

250 ≈ 1.54735 [ 5.1325793100365724E+0000, 5.1325793200333748E+0000] < 1.00 · 10−8

464 ≈ 1.54759 [ 5.1327090107108448E+0000, 5.1327090207108449E+0000] < 1.00 · 10−8
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Fig. 2 Step size changes in problem (47) for the method (19)

Table 7 Intervals obtained for the problem (47) with eps = 10−12

k tk Yk Width

200 ≈ 0.55405 [ 4.4886273748015889E+0000, 4.4886273748017744E+0000] ≈ 1.85 · 10−13

400 ≈ 0.85821 [ 4.7120930249268474E+0000, 4.7120930249272235E+0000] ≈ 3.76 · 10−13

600 ≈ 1.13809 [ 4.8958332122088699E+0000, 4.8958332122095143E+0000] ≈ 6.44 · 10−13

800 ≈ 1.36239 [ 5.0299271956108516E+0000, 5.0299271956117965E+0000] ≈ 9.45 · 10−13

900 ≈ 1.39889 [ 5.0507330026032329E+0000, 5.0507330026042326E+0000] < 1.00 · 10−12

955 ≈ 1.39915 [ 5.0508805112730600E+0000, 5.0508805112740601E+0000] < 1.00 · 10−12

Table 8 Intervals obtained for the problem (47) with eps = 10−4

k tk Yk Width

10 ≈ 0.67182 [ 4.5783575612188736E+0000, 4.5783702917087973E+0000] ≈ 1.27 · 10−5

20 ≈ 1.22301 [ 4.9478886689807839E+0000, 4.9479228693528902E+0000] ≈ 3.42 · 10−5

30 ≈ 1.62289 [ 5.1725533292643105E+0000, 5.1726121849592280E+0000] ≈ 5.89 · 10−5

100 ≈ 2.07277 [ 5.3895608440740060E+0000, 5.3896595445228829E+0000] ≈ 9.87 · 10−5

150 ≈ 2.08316 [ 5.3941735254856961E+0000, 5.3942734009330229E+0000] ≈ 9.99 · 10−5

632 ≈ 2.08426 [ 5.3946582071369410E+0000, 5.3947582071369411E+0000] < 1.00 · 10−4
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Table 9 Starting values for the method (18) and the problem (50)–(51)

k tk Ys = Ysk

0 0 Y1 = [ 0.0000000000000000E + 0000, 0.0000000000000000E + 0000]

Y2 = [ 5.2359877559829887E − 0001, 5.2359877559829888E − 0001]

1 0.0001 Y1 = [−5.1347498487965657E − 0004, −5.1347498487965656E − 0004]

Y2 = [ 5.2359874992454941E − 0001, 5.2359874992454942E−0001]

2 0.0002 Y1 = [−1.0269499194046190E − 0003, −1.0269499194046189E − 0003]

Y2 = [ 5.2359867290330357E − 0001, 5.2359867290330358E − 0001]

harmonic motion
ϕ′′ + u2ϕ = 0 (49)

with the solution ϕ = ϕ0 cos (ut), where ϕ0 is an initial angle. Denoting y1 = ϕ′,
y2 = ϕ and assuming that ϕ′ (0) = 0, ϕ (0) = ϕ0, we can transform (49) into the
following systems of differential equations of first order:

y′
1 = −u2y2, y′

2 = y1, (50)

with initial conditions
y1 (0) = 0, y2 (0) = ϕ0. (51)

Let us take g = 9.80665, L = 1 and ϕ0 = π/6. Let

�t = {t ∈ R : 0 ≤ t ≤ 2} ,

�y =
{
(y1, y2) ∈ R

2 : −1.8 ≤ y1 ≤ 1.8, −0.6 ≤ y2 ≤ 0.6
}

and consider the method (18). Assuming eps = 10−8, taking 
 = 9.80665π/6,
ε = 10−18, step sizes h1 = h2 = 0.0001, h

(0)
3 = h2 as the initial approximation

of step size for the first integration step, and starting points given in Table 9, we
have obtained the results presented in Table 10. The CPU time has been equal to

Table 10 Intervals obtained for the problem (50)–(51) including the last calculated integration step by the
method (18) with matching step sizes (eps = 10−8)

k tk Yk Width

20 ≈ 0.052266 Y1 = [−2.6717739871166114E−0001,−2.6717739518323742E−0001] ≈ 3.53 · 10−9

Y2 = [ 5.1660096723952543E−0001, 5.1660096833861906E−0001] ≈ 1.10 · 10−9

40 ≈ 0.098329 Y1 = [−4.9695523554187293E−0001,−4.9695522814330236E−0001] ≈ 7.40 · 10−9

Y2 = [ 4.9897124759486593E−0001, 4.9897124992870939E−0001] ≈ 2.33 · 10−9

60 ≈ 0.123971 Y1 = [−6.2069000044409622E−0001,−6.2068999060901059E−0001] ≈ 9.84 · 10−9

Y2 = [ 4.8463438814236487E−0001, 4.8463439125965848E−0001] ≈ 3.12 · 10−9

80 ≈ 0.125890 Y1 = [−6.2979775595258544E−0001,−6.2979774595297822E−0001] < 1.00 · 10−8

Y2 = [ 4.8343471268438440E−0001, 4.8343471585460307E−0001] ≈ 3.17 · 10−9

122 ≈ 0.125895 Y1 = [−6.2982173628611325E−0001,−6.2982172628611324E−0001] < 1.00 · 10−8

Y2 = [ 4.8343152696498447E−0001, 4.8343153013532947E−0001] ≈ 3.17 · 10−9
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Fig. 3 Step size changes in problem (50)–(51) for the method (18)

0.740 s. The changes of step size are shown in Fig. 3, from which it follows that
for t approximately greater than 0.125 the step size is too small (tends to zero) to
satisfactory continue the calculations. On the other hand, one can observe that—
according to Theorem 1—the exact solution belongs to interval enclosures obtained.

Table 11 CPU times for the method (19) and different values of eps

eps k tmax CPU time

(s)

10−2 842 ≈ 2.612638 4.411

10−3 731 ≈ 2.341260 3.751

10−4 632 ≈ 2.084259 3.333

10−5 557 ≈ 1.880208 2.816

10−6 503 ≈ 1.731451 2.502

10−7 472 ≈ 1.624865 2.352

10−8 464 ≈ 1.547588 2.295

10−9 489 ≈ 1.490991 2.433

10−10 559 ≈ 1.450758 2.704

10−11 705 ≈ 1.423210 3.496

10−12 955 ≈ 1.399150 4.758

10−13 1312 ≈ 1.321706 6.575
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Fig. 4 CPU times for the method (19) and different values of eps

The examples show that using the procedure for step size changing we can obtain
interval enclosures of the exact solution with widths given beforehand for tmax ≤ a.
Unfortunately, very often we have tmax << a. Of course, to reach a, we can always
use a multistep method with constant step size and theorems similar to the Theo-
rem 1 guarantee that the exact solution will be inside interval enclosures obtained.5

We can also use a combination of methods with variable and constant step sizes. If we
assume that the step size h cannot be less than some hmin, we can start calculations
using a method which matches step sizes with a width of intervals given before-
hand, and when the step size will be decreased to hmin—continue calculations with
h = hmin. Of course, such a procedure does not guarantee that at t ≈ a we will obtain
intervals with a given width, but it can significantly reduce the number of integration
steps.

Some remarks concerning computing time for our methods should be given at
the end. First of all, let us note that the Adams-Bashforth methods with step size
changes are very fast (usually in the process (44), only a few iterations are needed
to achieve a desired width eps of interval). Obviously, for a greater n (the number of
method steps and the order of method), the computing time is less for a given t ≤ a.
Moreover, for decreasing desired widths of intervals, we can observe decreasing val-
ues of tmax ≤ a, but computing times may not be decreasing (compare the values
of tmax and computing times in Example 3 for eps = 10−4, 10−8 and 10−12). To
confirm this observation, let us consider

5For a number of interval multistep methods, such theorems have been presented in [9, 17–19, 22, 25–29,
37].
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Fig. 5 CPU times needed to achieve t = 1.3 for the methods (17), (18), and (19) and different values of
eps

Example 5 For the same problem as in Example 3 and for the same �t and �y , let
us take different values of eps (from 10−2 to 10−13) in the method (19). In Table 11,
we present the number of steps k and CPU times to achieve tmax for each value of
eps. These times are also presented in Fig. 4, and we can see that for eps = 10−8 the
computing time is the smallest. It may be generalized: for each problem considered,
there exists the smallest computing time for some eps.

On the other hand, for some t < T ≤ a, where T denotes the smallest tmax
common for different n and eps, the smaller computing times are obtained for greater
values of n. For the problem considered, the methods (17) (n = 2), (18) (n = 3), and
(19) (n = 4), and t = 1.3 are shown in Fig. 5.

7 Conclusions

Until now, interval multistep methods (explicit and implicit) have been used only
with a constant step size. Using variable step sizes and the procedure presented in
Section 4 we can obtain interval enclosure of the exact solution with a width given
beforehand. Although we have presented our algorithm only for interval methods
of Adams-Bashforth type, it seems that the same procedure one can apply to other
multistep methods, including interval predictor-corrector ones [27].
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