Correction to: convergence rates for Kaczmarz-type algorithms

Constantin Popa ${ }^{1}$

Published online: 13 June 2019

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Correction to: Numerical Algorithms, 79(1)(2018), 1-17
https://doi.org/10.1007/s11075-017-0425-7

1 Comments and notations

We made corrections only on Theorem 7 from Section "4.2 Extended Kaczmarz single - projection algorithm" of the original paper. We will refer to the equations, results, and references from the original paper by adding the sign (*). Else, they are related to this Erratum.

2 Erratum to Theorem *7

Theorem 1 The algorithm MREK has linear convergence.
Proof Let $\left(x^{k}\right)_{k \geq 0}$ be the sequence generated with the MREK algorithm. According to the selection procedure ($* 44$) of the projection index i_{k} and (*9), we successively obtain (see also Section 1 of the paper [$\left.{ }^{*} 1\right]$)

$$
\begin{align*}
m\left|\left\langle A_{i_{k}}, x^{k-1}\right\rangle-b_{i_{k}}^{k}\right|^{2} & \geq \sum_{1 \leq i \leq m}\left|\left\langle A_{i}, x^{k-1}\right\rangle-b_{i}^{k}\right|^{2}=\left\|A x^{k-1}-b^{k}\right\|^{2} \\
& =\left\|\left(A x^{k-1}-b\right)+\left(r-y^{k}\right)\right\|^{2} . \tag{1}
\end{align*}
$$

[^0]We have the following elementary inequality.
Lemma 1 Let α, β be real numbers such that

$$
\begin{equation*}
\alpha \in[0,1], \beta \geq-1 \text { and } \beta-\alpha=\alpha \beta . \tag{2}
\end{equation*}
$$

Then

$$
\begin{equation*}
\left(r_{1}+r_{2}\right)^{2} \geq \alpha r_{1}^{2}-\beta r_{2}^{2}, \forall r_{1}, r_{2} \in \mathbb{R} \tag{3}
\end{equation*}
$$

This gives us the following result.
Corollary 1 Let α, β be as in (2). Then

$$
\begin{equation*}
\|x+y\|^{2} \geq \alpha\|x\|^{2}-\beta\|y\|^{2}, \forall x, y \in \mathbb{R}^{n} \tag{4}
\end{equation*}
$$

Proof Indeed, we observe that, in the hypothesis (2), we have

$$
\|x+y\|^{2}-\alpha\|x\|^{2}+\beta\|y\|^{2}=\|\sqrt{1-\alpha} x-\sqrt{1+\beta} y\|^{2} \geq 0 .
$$

Therefore, from (1) and (4), we obtain

$$
\begin{equation*}
-\left|\left\langle A_{i_{k}}, x^{k-1}\right\rangle-b_{i_{k}}^{k}\right|^{2} \leq-\frac{\alpha}{m}\left\|A x^{k-1}-b\right\|^{2}+\frac{\beta}{m}\left\|r-y^{k}\right\|^{2} . \tag{5}
\end{equation*}
$$

In [*19], Proposition 1, Eq. (59) (for $\omega=1$) it is proved the equality

$$
\begin{equation*}
\left\|x^{k}-x\right\|^{2}=\left\|x^{k-1}-x\right\|^{2}-\frac{\left(\left\langle A_{i_{k}}, x^{k-1}\right\rangle-b_{i_{k}}\right)^{2}}{\left\|A_{i_{k}}\right\|^{2}}+\left\|\gamma_{i_{k}}\right\|^{2}, \tag{6}
\end{equation*}
$$

where

$$
\begin{equation*}
\gamma_{i_{k}}=\frac{r_{i_{k}}-y_{i_{k}}^{k}}{\left\|A_{i_{k}}\right\|^{2}} A_{i_{k}} \tag{7}
\end{equation*}
$$

and $x \in \operatorname{LSS}(A ; b)$ is such that $P_{\mathcal{N}(A)}(x)=P_{\mathcal{N}(A)}\left(x^{0}\right)$. If δ is the smallest nonzero singular value of A (therefore also of A^{T}) and because $P_{\mathcal{N}(A)}\left(x^{k}\right)=P_{\mathcal{N}(A)}\left(x^{0}\right)$, $\forall k \geq 0$ it holds that $x^{k}-x \in \mathcal{R}\left(A^{T}\right)$ (see also [*1]), hence

$$
\begin{equation*}
\left\|A x^{k-1}-b\right\|^{2} \geq \delta^{2}\left\|x^{k-1}-x\right\|^{2} . \tag{8}
\end{equation*}
$$

Then, from (1), (6), and (5), the obvious inequality

$$
\left\|\gamma_{i_{k}}\right\|^{2} \leq \frac{\left\|r-y^{k}\right\|^{2}}{\left\|A_{i_{k}}\right\|^{2}}
$$

and (8) we get

$$
\begin{align*}
\left\|x^{k}-x\right\|^{2} & \leq\left\|x^{k-1}-x\right\|^{2}-\frac{\alpha}{m} \frac{\left\|A x^{k-1}-b\right\|^{2}}{\left\|A_{i_{k}}\right\|^{2}}+\frac{\beta}{m} \frac{\left\|r-y^{k}\right\|^{2}}{\left\|A_{i_{k}}\right\|^{2}}+\frac{\left\|r-y^{k}\right\|^{2}}{\left\|A_{i_{k}}\right\|^{2}} \\
& \leq\left(1-\frac{\alpha \delta^{2}}{m \cdot M}\right)\left\|x^{k-1}-x\right\|^{2}+\frac{1}{\mu}\left(1+\frac{\beta}{m}\right)\left\|y^{k}-r\right\|^{2} \tag{9}
\end{align*}
$$

where

$$
\begin{equation*}
M=\max _{1 \leq i \leq m}\left\|A_{i}\right\|^{2}, \quad \mu=\min _{1 \leq i \leq m}\left\|A_{i}\right\|^{2} . \tag{10}
\end{equation*}
$$

In [*19], Lemma 2 it is proved that

$$
\begin{equation*}
\left\|y^{k}-r\right\|^{2} \leq\left(1-\frac{\delta^{2}}{n}\right)^{k}\left\|y^{0}-r\right\|^{2}, \forall k \geq 0 \tag{11}
\end{equation*}
$$

Then, from (*5) and (11), we obtain

$$
\begin{equation*}
\left\|x^{k}-x\right\|^{2} \leq\left(1-\frac{\alpha \delta^{2}}{m M}\right)\left\|x^{k-1}-x\right\|^{2}+\frac{1}{\mu}\left(1+\frac{\beta}{m}\right)\left(1-\frac{\delta^{2}}{n}\right)^{k}\left\|y^{0}-r\right\|^{2} \tag{12}
\end{equation*}
$$

If we introduce the notations

$$
\begin{equation*}
\tilde{\alpha}=1-\frac{\alpha \delta^{2}}{m \cdot M} \in[0,1), \tilde{\beta}=1-\frac{\delta^{2}}{n} \in[0,1), C=\frac{1}{\mu}\left(1+\frac{\beta}{m}\right)\left\|y^{0}-r\right\|^{2} \tag{13}
\end{equation*}
$$

from (9) - (10), we obtain

$$
\begin{equation*}
\left\|x^{k}-x\right\|^{2} \leq \tilde{\alpha}\left\|x^{k-1}-x\right\|^{2}+\tilde{\beta}^{k} C, \forall k \geq 1 . \tag{14}
\end{equation*}
$$

From (14), a recursive argument gives us

$$
\left\|x^{k}-x\right\|^{2} \leq \tilde{\alpha}^{k}\left\|x^{0}-x\right\|^{2}+\sum_{j=0}^{k-1} \tilde{\alpha}^{j} \tilde{\beta}^{k-j} C
$$

or, for $v=\max \{\tilde{\alpha}, \tilde{\beta}\} \in[0,1)$

$$
\begin{equation*}
\left\|x^{k}-x\right\|^{2} \leq v^{k}\left(\left\|x^{0}-x\right\|^{2}+C k\right), \forall k \geq 1 \tag{15}
\end{equation*}
$$

If we define $\epsilon_{k}=\nu^{k}\left(\left\|x^{0}-x\right\|^{2}+C k\right), \forall k \geq 1$, we obtain that $\lim _{k \rightarrow \infty} \frac{\epsilon_{k+1}}{\epsilon_{k}}=$ $v \in[0,1)$, which gives us the linear convergence for MREK algorithm and completes the proof.

Typos mistakes

1. On page 9 , at the end of the proof of Corollary 1 , replace the equation

$$
\frac{\epsilon_{n \Gamma}}{\epsilon_{n \Gamma-1}}=\delta \in[0,1), \forall n \geq 1
$$

by the equation

$$
\frac{\epsilon_{n \Gamma}}{\epsilon_{(n-1) \Gamma}}=\delta \in[0,1), \forall n \geq 1
$$

2. On page 11 , in equation (45), instead of

$$
\mathbb{E}\left[\left\|x^{k}-x_{L S}\right\|\right] \leq\left(1-\frac{1}{\hat{k}^{2}(A)}\right)^{\lfloor k / 2\rfloor}\left(1+2 \operatorname{hatk}^{2}(A)\right)\left\|x_{L S}\right\|^{2},
$$

write

$$
\mathbb{E}\left[\left\|x^{k}-x_{L S}\right\|\right] \leq\left(1-\frac{1}{\hat{k}^{2}(A)}\right)^{\lfloor k / 2\rfloor}\left(1+2 \hat{k}^{2}(A)\right)\left\|x_{L S}\right\|^{2},
$$

3. On page 10 , after the equation (42), please write:

Note. We used formula (40) to update the vector y^{k-1}, instead of the formula

$$
y^{k}=y^{k-1}-\frac{\left\langle y^{k-1}, A^{j_{k}}\right\rangle}{\left\|A^{j^{k}}\right\|^{2}} A^{j_{k}}
$$

because we supposed that $\left\|A^{j}\right\|=1, \forall j=1, \ldots, n$. This can be achieved by a scalling of A of the form

$$
A \Longrightarrow A D, \text { with } D=\operatorname{diag}\left(\frac{1}{\left\|A^{1}\right\|}, \frac{1}{\left\|A^{2}\right\|}, \ldots, \frac{1}{\left\|A^{n}\right\|}\right)
$$

which transforms the initial problem (10) into the equivalent one

$$
\left\|(A D)\left(D^{-1} x\right)-\hat{b}\right\|=\min _{z \in \mathbb{R}^{n}}\left\|(A D)\left(D^{-1} z\right)-\hat{b}\right\|
$$

4. On page 14 , second line from top, instead of the formula

$$
x^{k+\Gamma-j}-x=P_{i_{k+\Gamma-j-1}}\left(x^{k+\Gamma-j-1}-x\right)+\gamma_{i_{k+\Gamma-j-1}}
$$

the formula

$$
x^{k+\Gamma-j}-x=P_{i_{k+\Gamma-j}}\left(x^{k+\Gamma-j-1}-x\right)+\gamma_{i_{k+\Gamma-j}} .
$$

5. On page 14 , the fourth line from top, instead of the formula

$$
x^{k+\Gamma}=P_{k+\Gamma-1} \circ \cdots \circ P_{i_{k}}\left(x^{k}-x\right)+\sum_{j=1}^{\Gamma} \Pi_{j} \gamma_{i k+\Gamma-j}
$$

please write

$$
x^{k+\Gamma}=P_{i_{k}+\Gamma} \circ \cdots \circ P_{i_{k}}\left(x^{k}-x\right)+\sum_{j=1}^{\Gamma} \Pi_{j} \gamma_{i_{k}+\Gamma-j} .
$$

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

[^0]: The online version of the original article can be found at https://doi.org/10.1007/s11075-017-0425-7.
 Constantin Popa
 cpopa@univ-ovidius.ro

 1 Faculty of Mathematics and Informatics, OVIDIUS University of Constanta, Blvd. Mamaia 124, 900527 Constanţa, Romania

