CORRECTION

Correction to: convergence rates for Kaczmarz-type algorithms

Constantin Popa¹

Published online: 13 June 2019 © Springer Science+Business Media, LLC, part of Springer Nature 2019

Correction to: Numerical Algorithms, 79(1)(2018), 1–17 https://doi.org/10.1007/s11075-017-0425-7

1 Comments and notations

We made corrections only on Theorem 7 from Section "4.2 Extended Kaczmarz single - projection algorithm" of the original paper. We will refer to the equations, results, and references from the original paper by adding the sign (*). Else, they are related to this Erratum.

2 Erratum to Theorem *7

Theorem 1 The algorithm MREK has linear convergence.

Proof Let $(x^k)_{k\geq 0}$ be the sequence generated with the MREK algorithm. According to the selection procedure (*44) of the projection index i_k and (*9), we successively obtain (see also Section 1 of the paper [*1])

$$\begin{split} m|\langle A_{i_k}, x^{k-1}\rangle - b_{i_k}^k|^2 &\geq \sum_{1 \leq i \leq m} |\langle A_i, x^{k-1}\rangle - b_i^k|^2 = ||Ax^{k-1} - b^k||^2 \\ &= ||(Ax^{k-1} - b) + (r - y^k)||^2. \end{split}$$
(1)

The online version of the original article can be found at https://doi.org/10.1007/s11075-017-0425-7.

Constantin Popa cpopa@univ-ovidius.ro

¹ Faculty of Mathematics and Informatics, OVIDIUS University of Constanta, Blvd. Mamaia 124, 900527 Constanţa, Romania

We have the following elementary inequality.

Lemma 1 Let α , β be real numbers such that

$$\alpha \in [0, 1], \ \beta \ge -1 \text{ and } \beta - \alpha = \alpha \beta.$$
 (2)

Then

$$(r_1 + r_2)^2 \ge \alpha r_1^2 - \beta r_2^2, \, \forall r_1, r_2 \in \mathbb{R}.$$
 (3)

This gives us the following result.

Corollary 1 Let α , β be as in (2). Then

$$\|x + y\|^{2} \ge \alpha \|x\|^{2} - \beta \|y\|^{2}, \forall x, y \in \mathbb{R}^{n}.$$
 (4)

Proof Indeed, we observe that, in the hypothesis (2), we have

$$|x + y||^2 - \alpha ||x||^2 + \beta ||y||^2 = ||\sqrt{1 - \alpha}x - \sqrt{1 + \beta}y||^2 \ge 0.$$

Therefore, from (1) and (4), we obtain

$$-|\langle A_{i_k}, x^{k-1} \rangle - b_{i_k}^k|^2 \le -\frac{\alpha}{m} \| A x^{k-1} - b \|^2 + \frac{\beta}{m} \| r - y^k \|^2.$$
 (5)

In [*19], Proposition 1, Eq. (59) (for $\omega = 1$) it is proved the equality

$$\|x^{k} - x\|^{2} = \|x^{k-1} - x\|^{2} - \frac{\left(\langle A_{i_{k}}, x^{k-1} \rangle - b_{i_{k}}\right)^{2}}{\|A_{i_{k}}\|^{2}} + \|\gamma_{i_{k}}\|^{2},$$
(6)

where

$$\gamma_{i_k} = \frac{r_{i_k} - y_{i_k}^k}{\|A_{i_k}\|^2} A_{i_k},$$
(7)

and $x \in LSS(A; b)$ is such that $P_{\mathcal{N}(A)}(x) = P_{\mathcal{N}(A)}(x^0)$. If δ is the smallest nonzero singular value of A (therefore also of A^T) and because $P_{\mathcal{N}(A)}(x^k) = P_{\mathcal{N}(A)}(x^0)$, $\forall k \ge 0$ it holds that $x^k - x \in \mathcal{R}(A^T)$ (see also [*1]), hence

$$\|Ax^{k-1} - b\|^{2} \ge \delta^{2} \|x^{k-1} - x\|^{2}.$$
(8)

Then, from (1), (6), and (5), the obvious inequality

$$\| \gamma_{i_k} \|^2 \leq \frac{\| r - y^k \|^2}{\| A_{i_k} \|^2},$$

and (8) we get

$$\|x^{k} - x\|^{2} \leq \|x^{k-1} - x\|^{2} - \frac{\alpha}{m} \frac{\|Ax^{k-1} - b\|^{2}}{\|A_{i_{k}}\|^{2}} + \frac{\beta}{m} \frac{\|r - y^{k}\|^{2}}{\|A_{i_{k}}\|^{2}} + \frac{\|r - y^{k}\|^{2}}{\|A_{i_{k}}\|^{2}}$$

$$\leq \left(1 - \frac{\alpha\delta^{2}}{m}\right) \|x^{k-1} - x\|^{2} + \frac{1}{m}\left(1 + \frac{\beta}{m}\right) \|y^{k} - x\|^{2} + \frac{1}{m}\left(1 + \frac{\beta}{m}\right) \|y^{k} - x\|^{2}$$
(9)

$$\leq \left(1 - \frac{\alpha \delta^{2}}{m \cdot M}\right) \| x^{k-1} - x \|^{2} + \frac{1}{\mu} \left(1 + \frac{\beta}{m}\right) \| y^{k} - r \|^{2}, \tag{9}$$

where

$$M = \max_{1 \le i \le m} \|A_i\|^2, \ \mu = \min_{1 \le i \le m} \|A_i\|^2.$$
(10)

In [*19], Lemma 2 it is proved that

$$\|y^{k} - r\|^{2} \le \left(1 - \frac{\delta^{2}}{n}\right)^{k} \|y^{0} - r\|^{2}, \forall k \ge 0.$$
 (11)

Then, from (*5) and (11), we obtain

$$\|x^{k} - x\|^{2} \leq \left(1 - \frac{\alpha\delta^{2}}{mM}\right) \|x^{k-1} - x\|^{2} + \frac{1}{\mu}\left(1 + \frac{\beta}{m}\right)\left(1 - \frac{\delta^{2}}{n}\right)^{k} \|y^{0} - r\|^{2}.$$
(12)

If we introduce the notations

$$\tilde{\alpha} = 1 - \frac{\alpha \delta^2}{m \cdot M} \in [0, 1), \ \tilde{\beta} = 1 - \frac{\delta^2}{n} \in [0, 1), \ C = \frac{1}{\mu} \left(1 + \frac{\beta}{m} \right) \parallel y^0 - r \parallel^2 (13)$$

from (9) - (10), we obtain

 $\|x^{k} - x\|^{2} \le \tilde{\alpha} \|x^{k-1} - x\|^{2} + \tilde{\beta}^{k}C, \forall k \ge 1.$ (14)

From (14), a recursive argument gives us

$$||x^{k} - x||^{2} \le \tilde{\alpha}^{k} ||x^{0} - x||^{2} + \sum_{j=0}^{k-1} \tilde{\alpha}^{j} \tilde{\beta}^{k-j} C$$

or, for $\nu = \max{\{\tilde{\alpha}, \tilde{\beta}\}} \in [0, 1)$

$$\|x^{k} - x\|^{2} \le \nu^{k} \left(\|x^{0} - x\|^{2} + Ck\right), \forall k \ge 1.$$
(15)

If we define $\epsilon_k = \nu^k (||x^0 - x||^2 + Ck)$, $\forall k \ge 1$, we obtain that $\lim_{k\to\infty} \frac{\epsilon_{k+1}}{\epsilon_k} = \nu \in [0, 1)$, which gives us the linear convergence for MREK algorithm and completes the proof.

Typos mistakes

1. On page 9, at the end of the proof of Corollary 1, replace the equation

$$\frac{\epsilon_{n\Gamma}}{\epsilon_{n\Gamma-1}} = \delta \in [0, 1), \forall n \ge 1.$$

by the equation

$$\frac{\epsilon_{n\Gamma}}{\epsilon_{(n-1)\Gamma}} = \delta \in [0, 1), \forall n \ge 1.$$

2. On page 11, in equation (45), instead of

$$\mathbb{E}\left[\|x^{k} - x_{LS}\|\right] \le \left(1 - \frac{1}{\hat{k}^{2}(A)}\right)^{\lfloor k/2 \rfloor} (1 + 2hatk^{2}(A))\|x_{LS}\|^{2},$$

write

$$\mathbb{E}\left[\|x^{k} - x_{LS}\|\right] \leq \left(1 - \frac{1}{\hat{k}^{2}(A)}\right)^{\lfloor k/2 \rfloor} (1 + 2\hat{k}^{2}(A))\|x_{LS}\|^{2},$$

🖄 Springer

3. On page 10, after the equation (42), please write: Note. We used formula (40) to update the vector y^{k-1} , instead of the formula

$$y^{k} = y^{k-1} - \frac{\langle y^{k-1}, A^{j_{k}} \rangle}{\|A^{j^{k}}\|^{2}} A^{j_{k}}$$

because we supposed that $||A^j|| = 1, \forall j = 1, \dots, n$. This can be achieved by a scalling of A of the form

$$A \Longrightarrow AD$$
, with $D = diag\left(\frac{1}{\parallel A^1 \parallel}, \frac{1}{\parallel A^2 \parallel}, \dots, \frac{1}{\parallel A^n \parallel}\right)$,

which transforms the initial problem (10) into the equivalent one

$$\| (AD)(D^{-1}x) - \hat{b} \| = \min_{z \in \mathbb{R}^n} \| (AD)(D^{-1}z) - \hat{b} \|.$$

4. On page 14, second line from top, instead of the formula

$$x^{k+\Gamma-j} - x = P_{i_{k+\Gamma-j-1}}(x^{k+\Gamma-j-1} - x) + \gamma_{i_{k+\Gamma-j-1}}$$

the formula

$$x^{k+\Gamma-j} - x = P_{i_{k+\Gamma-j}}(x^{k+\Gamma-j-1} - x) + \gamma_{i_{k+\Gamma-j}}.$$

5. On page 14, the fourth line from top, instead of the formula

$$x^{k+\Gamma} = P_{k+\Gamma-1} \circ \cdots \circ P_{i_k}(x^k - x) + \sum_{j=1}^{\Gamma} \prod_j \gamma_{i_k+\Gamma-j}$$

please write

$$x^{k+\Gamma} = P_{i_k+\Gamma} \circ \cdots \circ P_{i_k}(x^k - x) + \sum_{j=1}^{\Gamma} \prod_j \gamma_{i_k+\Gamma-j}.$$

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.