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Abstract Let E be a nonempty closed uniformly convex and 2-uniformly smooth
Banach space with dual E∗ and A : E∗ → E be Lipschitz continuous monotone
mapping with A−1(0) �= ∅. A new semi-implicit midpoint rule (SIMR) with the gen-
eral contraction for monotone mappings in Banach spaces is established and proved
to converge strongly to x∗ ∈ E, where Jx∗ ∈ A−1(0). Moreover, applications
to convex minimization problems, solution of Hammerstein integral equations, and
semi-fixed point of a cluster of semi-pseudo mappings are included.
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1 Introduction

Let E be a real Banach space with dual E∗. A normalized duality mapping J : E →
2E∗

is defined by

Jx =
{
f ∗ ∈ E∗ : 〈

x, f ∗〉 = ‖x‖2 = ∥∥f ∗∥∥2} .
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where 〈·, ·〉 denotes the generalized duality pairing between E and E∗. It is well
known that E is smooth if and only if J is single-valued and if E is uniformly
smooth then J is uniformly continuous on bounded subsets of E. We shall denote the
single-value duality mapping by j . The norm on E is said to be uniformly Gâteaux
differentiable if for each y ∈ S1(0) := {x ∈ E : ‖x‖ = 1} the limt→0

‖x+ty‖−‖x‖
t

exists uniformly for x ∈ S1(0). If the norm of E is uniformly Gâteaux differentiable,
then J is uniformly norm to weak* continuous on each bounded subset of E.

A significant result of Kato [1], a mapping A with domain D(A) and range R(A)

in E is accretive if for each x, y in D(A), there exists j (x − y) ∈ J (x − y) such that

〈Ax − Ay, j (x − y)〉 ≥ 0.

A mapping A : D(A) ⊂ E → E∗ is said to be monotone if for each x, y ∈ D(A),
the following inequality holds:

〈x − y, Ax − Ay〉 ≥ 0.

If E = H , a Hilbert space, the accretive property is equivalent to the monotonicity
of A in the sense of Browder [2] and Minty [3]. Interest in such mappings origi-
nate mainly in their firm connection with the existence theory for nonlinear equation
of evolution (see, e.g., Browder [2]). An early fundamental result in the theory of
accretive operators, due to Browder [2], state the initial value problem of ordinary
differential equation

du

dt
= Au; u(0) = u0, (1.1)

is solvable whenA is locally Lipshitzian and accretive onE. For obtaining the numer-
ical solution of Eq. 1.1, numerous authors devoted themselves to probing methods of
approximating and harvested fruitful results (see, e.g., Mustafa [4], Stephen [5], Sina
[6], Chidume [7]). One of the powerful numerical methods for the numerical solution
of Eq. 1.1 is implicit midpoint rule(IMR) which generates a iterative sequence {xn}
via the relation

1

h
(xn+1 − xn) = A

(
xn+1 + xn

2

)
. (1.2)

The sequence {xn} generated by Eq. 1.2 converges to the exact solution of Eq. 1.1
(see e.g., Auzinger [8], Bader [9], Bayreuth [10], Xu[11, 30], Song [31],Cai [32]).

In recent decades, a host of mathematicians concentrated on approximating the
solution of 0 ∈ Au (when it exists) which is coincided with the equilibrium state:
du
dt

= 0, Au = 0(see, e.g., Berinde [12], Browder [13], Chidume [14] and the ref-
erences therein) because a variety of problems, for example, convex optimization,
linear programming, monotone inclusions and elliptic differential equations can be
formulated as the equilibrium state. Therefore, finding a zero of nonlinear operator A

is of important task in approximation theory. In studying the equation 0 ∈ Au, where
A is a accretive operator on a Hilbert space H , Browder [13] introduced an operator
T : H → H by T = I − A where I is the identity mapping on H . The operator T

is called pseudo-contractive and the zeros of A, if they exist, correspond to the fixed
points of T . Thus, approximating the solution of 0 ∈ Ax is transferred to approxi-
mating the fixed points of pseudo-contractive mappings which has been extended to
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real Banach spaces by numerous authors. For strongly pseudo-contractive mappings,
Chidume [15] proved the following scheme:

xn+1 = (1 − αn)xn + αnT xn, n ≥ 0,

converges strongly to the unique fixed point of T . By replacing T by I − A in this
algorithm, the unique solution of Au = 0 when A : E → E is a strongly accretive
and Lipschitz map is easily obtained (see Chidume [16]). Later, the sequence has
been generalized and extended in various directions, resulting in flouring areas of
research, for numerous authors (see, e.g., Agarwal et al. [17], Berdine [12], Chidume
[18], Reich [19]).

However, we have to acknowledge that the technique of converting the inclusion
0 ∈ Au into a fixed point problem for (I − A) : E → E is not applicable in
Banach spaces since, in this case when A is monotone, A maps E into E∗ and the
identity map does not make sense (see, e.g., Chidume [20], Xu [21], Sina [6] and
other authors). Consequently, algorithms for approximating solutions of equations
0 ∈ Au when A : E → E∗ is of monotone type in Banach spaces has been focused
and explored by increasing authors (see, e.g., Zegeye [22], Ibaraki [23]). Recently,
for obtaining the solution of 0 ∈ Au in Banach spaces, Chidume [24] introduced the
following scheme to approximate the zero of the maximal monotone mapping:

xn+1 = J−1(Jxn − αnAxn − αnθn(Jxn − Ju), n ≥ 0,

where J is the duality mapping.
Inspired and motivated by the above results, we continue the study of methods

of approximating the solution of 0 ∈ Au in Banach spaces much more general than
those considered in Chidume [24] and Zegeye [22] and other authors. The idea is
to use contractions to regularize the implicit midpoint rule for monotone mappings
in Banach spaces which are much more general than Hilbert space and accretive
mapping in Chidume [15] and Xu [21]. Besides the strong convergence theorems for
the zero point of monotone mapping, applications to convex minimization problems,
solution of Hammerstein integral equations and semi-fixed point of a cluster of semi-
pseudo mappings are included.

2 Preliminaries

In the sequel, we shall need the following definitions and results. The space E is said
to be smooth if ρE(τ) > 0, ∀τ > 0,and the space E is said to be uniformly smooth
if limt→0+ ρE(t) = 0, where ρE(τ) is defined by

ρE(τ) = sup

{‖x + y‖ − ‖x − y‖
2

− 1; ‖x‖ = 1, ‖y‖ = τ

}
.

Let p > 1, the space E is said to be p−uniformly smooth if there exists a constant
c > 0 such that ρE(t) ≤ ctp, t > 0. It is well-known that every p−uniformly smooth
Banach space is uniformly smooth and Lp or W

p
m is 2−uniformly smooth if p ≥ 2.
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Furthermore, from Alber [25], we can get that ifE is 2−uniformly smooth, then there
exists constant L∗ > 0 such that

‖Jx − Jy‖ ≤ L∗‖x − y‖,∀x, y ∈ E.

A mapping A : D(A) ⊂ E → E∗ is said to be Lipschitz continuous if there exists
L > 0 such that for each x, y ∈ D(A), the following inequality holds:

‖Ax − Ay‖E∗ ≤ L‖x − y‖E.

Denote the zero set of A by

A−1(0) = {z ∈ D(A) : 0 ∈ Az}.
A mapping f : C → C is called contractive with a coefficient if there exists a

constant ρ ∈ (0, 1) such that

‖f (x) − f (y)‖ ≤ ρ‖x − y‖, ∀x, y ∈ C.

A Banach limit μ is a bounded linear functional on l∞ such that

inf {xn; n ∈ N} ≤ μ(x) ≤ sup{xn; n ∈ N}, ∀ x = {xn} ∈ l∞.

and μ(xn) = μ(xn+1), ∀{xn} ∈ l∞. Let {xn} be a bounded sequence in E. Then we
can define the real valued continuous convex function ϕ on E by

ϕ(y) = μ‖xn − y‖2, ∀y ∈ E,

then ϕ(y) is convex and continuous, and ϕ(y) → ∞ as ‖y‖ → ∞. If E is reflexive,
there exists z ∈ C such that ϕ(z) = miny∈C ϕ(y) , so we can let the set Cmin be

Cmin =
{
z ∈ C; ϕ(z) = min

y∈C
ϕ(y)

}
.

It is easy to verify that Cmin is nonempty, bounded, closed, and convex subset of E.

Lemma 2.1 [26] Let α be a real number, and (x0, x1, ...) ∈ l∞ such that μn(xn) ≤ α

for all Banach limits. If lim supn→∞(xn+1 − xn) ≤ 0, then lim supn→∞ xn ≤ α.

Lemma 2.2 (Tan and Xu [27]) Let {an} be a sequence of nonnegative real numbers
satisfying the following relation:

an+1 ≤ (1 − θn)an + σn, n ≥ 0,

where θn and {σn} are real sequences such that

(i). limn→∞ θn = 0, �∞
n=1θn = ∞;

(ii). limn→∞ σn

θn
≤ 0 or

∑∞
n=0 σn < ∞.

Then the sequence {an} converges to 0.
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Lemma 2.3 (e.g., Xu [21]) LetE be a real Banach space with dualE∗. J : E → 2E∗

be the generalized duality pairing, then for ∀x, y ∈ E,

‖x + y‖2 ≤ ‖x‖2 + 2〈y, j (x + y)〉, ∀j (x + y) ∈ J (x + y).

3 Main results

LetE be a nonempty closed uniformly convex and 2-uniformly smooth Banach space
with dual E∗. Let A : E∗ → E be a Lipschitz continuous monotone mapping. For
the rest of paper, {ωn}, {αn}, {βn}, {γn} are real sequences in [0, 1] satisfying the
following conditions:
(i) : αn + βn + γn = 1; limn→∞ αn = 0 ; �∞

n=1αn = ∞;
(ii): limn→∞ ωn

αn
= 0 and �∞

n=0ωn < ∞;

(iii): f is a piecewise function: f (x∗) = x∗, if x∗ ∈ (AJ )−1(0) ; otherwise f (x∗) is
a contractive function with coefficient ρ.

Theorem 3.1 Let E be a nonempty closed uniformly convex and 2-uniformly smooth
Banach space with dual E∗. Assume that A : E∗ → E is a L−Lipshitz continuous
monotone mapping such that A−1(0) �= ∅. Let {xn} be a sequence generated by
x0 ∈ E,

xn+1 = αnf (xn) + βnxn + γn(I − ωnAJ)

(
xn + xn+1

2

)
, (3.1)

where J is the normalized duality mapping. Suppose that Cmin ∩ (AJ )−1(0) �= ∅,
then the sequence {xn} converges strongly to an element x∗ ∈ (AJ )−1(0).

Proof First we prove that {xn} is bounded. Since αn → 0 and limn→∞ ωn

αn
= 0 as

n → ∞, there exists N0 > 0 such that αn ≤ 1
6 ,

ωn

αn
≤ 1

9LL∗ , ∀n > N0. We take

x∗ ∈ (AJ )−1(0) or Jx∗ ∈ A−1(0). Let r > 0 be sufficiently large that xN0 ∈ Br(x
∗)

and f (xN0) ∈ Br
4
(x∗).

We show that {xn} belongs to B := Br(x∗) for all integers n ≥ N0. First, it is
clearly by construction that xN0 ∈ B. We assume that xn ∈ B, f (xn) ∈ Br

4
(x∗), n >

N0, next we prove that xn+1 ∈ B. If xn+1 does not belong to B, then we have that
‖xn+1 − x∗‖ > r . From the recursion (3.1) we obtain that

xn+1 − xn = αn (f (xn) − xn) + γn

2
(xn+1 − xn) − γnωnAJ

(
xn + xn+1

2

)
,

by inducing,

(
1 − γn

2

)
(xn+1 − xn) = αn(f (xn) − xn) − γnωnAJ

(
xn + xn+1

2

)
,
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which means that

xn+1 − xn = 2αn

2 − γn

(f (xn) − xn) − 2γnωn

2 − γn

AJ

(
xn + xn+1

2

)
, (3.2)

therefore, from Eq. 3.2 and Lemma 2.3 and the fact xn+1−x∗ = xn+1−xn+xn−x∗,
‖xn+1 − x∗‖2 = ‖xn+1 − xn + xn − x∗‖2

≤ ‖xn − x∗‖2 + 2
〈
xn+1 − xn, j

(
xn+1 − x∗)〉

= ‖xn − x∗‖2 + 2

〈
2αn

2 − γn

(f (xn) − xn) − 2γnωn

2 − γn

AJ

(
xn + xn+1

2

)
,

j (xn+1 − x∗)
〉

= ‖xn − x∗‖2 + 2

〈
2αn

2 − γn

(f (xn) − xn) − 2γnωn

2 − γn

AJ

(
xn + xn+1

2

)

+ 2αn

2 − γn

(
xn+1 − x∗) − 2αn

2 − γn

(
xn+1 − x∗) , j

(
xn+1 − x∗)

〉
.

Furthermore,

‖xn+1 − x∗‖2 = ‖xn − x∗‖2 − 2
2αn

2 − γn

‖xn+1 − x∗‖2 + 2

〈
2αn

2 − γn

(f (xn) − x∗)

− 2γnωn

2 − γn

AJ

(
xn + xn+1

2

)
+ 2αn

2 − γn

(xn+1 − xn) , j
(
xn+1 − x∗)

〉

= ‖xn − x∗‖2 − 2
2αn

2 − γn

‖xn+1 − x∗‖2 + 2

〈
2αn

2 − γn

(f (xn) − x∗)

− 2γnωn

2 − γn

AJ

(
xn + xn+1

2

)
+ 2αn

2 − γn

(
2αn

2 − γn

(f (xn) − xn)

− 2γnωn

2 − γn

AJ

(
xn + xn+1

2

))
, j

(
xn+1 − x∗)

〉
,

that is

‖xn+1 − x∗‖2 ≤ ‖xn − x∗‖2 − 4αn

2 − γn

‖xn+1 − x∗‖2 + 2

〈
2αn

2 − γn

(f (xn) − x∗)

− 2γnωn

2 − γn

AJ

(
xn + xn+1

2

)
+ 2αn

2 − γn

(
2αn

2 − γn

(f (xn) − x∗)

− 2αn

2 − γn

(
xn − x∗) − 2γnωn

2 − γn

AJ

(
xn + xn+1

2

))
, j (xn+1 − x∗)

〉

≤ ‖xn − x∗‖2 − 4αn

2 − γn

‖xn+1 − x∗‖2 + 2

[(
2αn

2 − γn

+ 4α2
n

(2 − γn)2

)∥∥f (xn) − x∗∥∥

+ 4α2
n

(2 − γn)2
‖xn − x∗‖ +

(
4αnγnωn

(2 − γn)2
+ 2γnωn

2 − γn

)
‖AJ

(
xn + xn+1

2

)

−AJx∗‖] ∥∥xn+1 − x∗∥∥ .

Since ‖xn+1 − x∗‖ > ‖xn − x∗‖, thus we get
2αn

2 − γn

‖xn+1 − x∗‖ ≤
(

2αn

2 − γn

+ 4α2
n

(2 − γn)2

) ∥∥f (xn) − x∗∥∥

+ 4α2
n

(2 − γn)2
‖xn − x∗‖ +

(
4αnγnωn

(2 − γn)2
+ 2γnωn

2 − γn

)
‖AJ

(
xn + xn+1

2

)

−AJx∗‖.



Numer Algor (2019) 81:853–878 859

Moreover, since A is L−Lipshitz continuous and J is L∗−Lipschitz continuous,

‖xn+1 − x∗‖ ≤
(
1 + 2αn

2 − γn

)∥∥f (xn) − x∗∥∥

+ 2αn

2 − γn

‖xn − x∗‖ +
(
2γnωn

αn

+ γnωn

αn

)
‖AJ

(
xn + xn+1

2

)
− AJx∗‖

≤ (1 + 2αn)‖f (xn) − x∗‖ + 2αn‖xn − x∗‖
+3ωn

αn

LL∗
(‖xn+1 − x∗‖

2
+ ‖xn − x∗‖

2

)
.

In view of the assumptions of the parameters αn and ωn, by inducing, we have that

‖xn+1 − x∗‖ ≤ r.

This is contradiction. Therefore, we can get that {xn} belongs to B for all integers
n ≥ N0, which implies the sequence {xn} is bounded, so the sequence {f (xn)} and
{AJxn} are bounded.

Consequently, it is easy to see that ‖xn+1 − xn‖ → 0 because αn → 0 and
ωn = o(αn)

‖xn+1 − xn‖ ≤ 2αn

2 − γn

‖f (xn) − xn‖ + 2γnωn

2 − γn

‖AJ

(
xn + xn+1

2

)
‖ → 0.

Next we show that limn→∞ sup〈x∗ − f (xn), j (x∗ − xn+1)〉 ≤ 0, where x∗ ∈ Cmin ∩
(AJ )−1(0).

Since the sequences {xn} and {f (xn)} are bounded, there exists R > 0 sufficiently
large such that f (xn), xn ∈ B := BR(x∗), ∀n ∈ N . Furthermore, the set B is
a bounded closed and convex nonempty subset of E. By the convexity of B, we
have that (1 − t)x∗ + tf (xn) ∈ B. Then, it follows from the definition of ϕ that
ϕ(x∗) ≤ ϕ((1 − t)x∗ + tf (xn)). Using Lemma 2.3, we have that

‖xn − x∗ − t (f (xn) − x∗)‖2 ≤ ‖xn − x∗‖2 − 2t
〈
f (xn) − x∗, j (xn − x∗ − t (f (xn) − x∗))

〉
,

thus taking Banach limit over n ≥ 1 ,

μn‖xn −x∗ − t (f (xn)−x∗)‖2 ≤ μn‖xn −x∗‖2 −2tμn〈f (xn)−x∗, j (xn −x∗ − t (f (xn)−x∗))〉,
which means that
2tμn〈f (xn) − x∗, j (xn − x∗ − t (f (xn) − x∗))〉 ≤ μn‖xn − x∗‖2 − μn‖xn − x∗ − t (f (xn)

− x∗)‖2 = ϕ(x∗) − ϕ(x∗ + t (f (xn) − x∗)) ≤ 0,

that is
μn〈f (xn) − x∗, j (xn − x∗ − t (f (xn) − x∗))〉 ≤ 0.

By using the weakly lower semi-continuity of the norm on E, we get that as t → 0,

〈f (xn) − x∗, j (xn − x∗)〉 − 〈f (xn) − x∗, j (xn − x∗ − t (f (xn) − x∗))〉 → 0.

Thus, ∀ε > 0,there exists δ > 0 such that ∀t ∈ (0, δ), n ≥ 1

〈f (xn) − x∗, j (xn − x∗)〉 < 〈f (xn) − x∗, j (xn − x∗ − t (f (xn) − x∗))〉 + ε,

therefore

μn〈f (xn) − x∗, j (xn − x∗)〉 < μn〈f (xn) − x∗, j (xn − x∗ − t (f (xn) − x∗))〉 + ε.
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In view of the arbitrariness of ε, we have that

μn〈f (xn) − x∗, j (xn − x∗)〉 ≤ 0.

Since the norm of E is uniformly Gâteaux differentiable, hence J is uniformly
norm to weak* continuous on each bounded subset of E, then we have that

lim
n→∞(〈f (xn) − x∗, j (xn+1 − x∗)〉 − 〈f (xn) − x∗, j (xn − x∗)〉) = 0.

Thus, the sequence {〈f (xn) − x∗, j (xn − x∗)〉} satisfies the condition of the Lemma
2.1, so we have that

lim sup
n→∞

〈f (xn) − x∗, j (xn+1 − x∗)〉 ≤ 0. (3.3)

Next we show that ‖xn+1 − x∗‖ → 0.
From Eqs. 3.1, 3.2 and Lemma 2.3, we have that

‖xn+1 − x∗‖2 = ‖xn+1 − xn + xn − x∗‖2

= ‖xn − x∗ + 2αn

2 − γn

(f (xn) − xn) − γnωn

2 − γn

AJ

(
xn + xn+1

2

)
‖2

=
∥∥∥∥
(
1 − 2αn

2 − γn

)
(xn − x∗) + 2αn

2 − γn

(f (xn) − x∗) − γnωn

2 − γn

AJ

(
xn + xn+1

2

)∥∥∥∥
2

≤
(
1 − 2αn

2 − γn

)2

‖xn − x∗‖2 + 2

〈
2αn

2 − γn

(f (xn) − x∗) − γnωn

2 − γn

AJ

(
xn + xn+1

2

)
,

j
(
xn+1 − x∗)〉

≤
(
1 − 2αn

2 − γn

)
‖xn − x∗‖2 + 2

〈
2αn

2 − γn

(f (xn) − x∗) − γnωn

2 − γn

AJ

(
xn + xn+1

2

)
,

j
(
xn+1 − x∗)〉 .

In view of the fact that the sequence {xn} is bounded, without loss of generality, we
assume that M := sup{‖xn − x∗‖}, therefore,
∥∥xn+1−x∗∥∥2 ≤

(
1 − 2αn

2 − γn

)∥∥xn − x∗∥∥2+2
2αn

2 − γn

〈(
f (xn) − x∗), j (

xn+1−x∗)〉

+ 2γnωn

2 − γn

∥∥∥∥AJ

(
xn + xn+1

2

)
− AJx∗

∥∥∥∥
∥∥xn+1 − x∗∥∥

≤
(
1 − 2αn

2 − γn

)∥∥xn − x∗∥∥2 + σn,

where σn = 4αn

2−γn
〈(f (xn) − x∗), j (xn+1 − x∗)〉 + 2γnωn

2−γn
LL∗M2.

Putting θn = 2αn

2−γn
, from Lemma 2.2, we shall obtain that

lim
n→∞ ‖xn+1 − x∗‖ = 0,

which means that the consequence {xn} converges strongly to x∗. The proof is
complete.

Theorem 3.2 Let E be a nonempty closed uniformly convex and 2-uniformly smooth
Banach space with dual E∗. Assume that A : E∗ → E is a L−Lipshitz continuous
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monotone mapping such that A−1(0) �= ∅. Let {xn} be a sequence generated by
x0 ∈ E

xn+1 = αnf (xn) + (1 − αn)(I − ωnAJ)

(
xn + xn+1

2

)
,

where J is the normalized duality mapping. Suppose thatCmin∩(AJ )−1(0) �= ∅,then
the sequence {xn} converges strongly to an element x∗ ∈ (AJ )−1(0)..

Proof Putting βn = 0 in Theorem 3.1, the result holds.

In Hilbert spaces, we can see that the duality mapping J is the identity operator.
Next, we recall the example of duality mapping J from Alber and Ryazantseva [33].

Example 3.3 (Alber and Ryazantseva [33]) In �p spaces, 1 < p < ∞, for arbitrary
x = (x1, x2, x3, . . .),

Jx = ‖x‖2−p
�p

{
x1|x1|p−2, x2|x2|p−2, x3|x3|p−2, . . .

}
.

Theorem 3.4 Let E be a nonempty closed uniformly convex and 2-uniformly smooth
Banach space with dual E∗. Assume that A : E∗ → E is a L−Lipshitz continuous
monotone mapping such thatA−1(0) �= ∅. Let {xn} be a sequence generated by x0 ∈ E

xn+1 = αnf (xn) + βnxn + (1 − αn)(I − ωnAJ)xn, (3.4)

where J is the normalized duality mapping. Suppose that Cmin ∩ (AJ )−1(0) �= ∅,
then the sequence {xn} converges strongly to an element x∗ ∈ (AJ )−1(0).

If we take f ≡ u a constant, then we have the following corollaries:

Corollary 3.5 LetE be a nonempty closed uniformly convex and 2-uniformly smooth
Banach space with dual E∗. Assume that A : E∗ → E is a L−Lipshitz continuous
monotone mapping such that A−1(0) �= ∅. Let u be an arbitrary constant, {xn} be a
sequence generated by x0 ∈ E

xn+1 = αnu + (1 − αn)(I − ωnAJ)

(
xn + xn+1

2

)
, (3.5)

where J is the normalized duality mapping. Suppose thatCmin∩(AJ )−1(0) �= ∅,then
the sequence {xn} converges strongly to an element x∗ ∈ (AJ )−1(0).

Corollary 3.6 (Zegeye [22]) Let E be a nonempty closed uniformly convex and 2-
uniformly smooth Banach space with dual E∗. Assume that A : E∗ → E is a
L−Lipshitz continuous monotone mapping such that A−1(0) �= ∅. Let u be an
arbitrary constant,{xn} be a sequence generated by x0 ∈ E

xn+1 = αnu + (1 − αn)(I − ωnAJ)xn, (3.6)

where J is the normalized duality mapping and {ωn}, {αn} are sequences of
nonnegative real numbers in [0, 1] and
(i). limn→∞ αn = 0, �∞

n=1αn = ∞;
(ii). limn→∞ ωn

αn
= 0.
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Suppose that Cmin ∩ (AJ )−1(0) �= ∅, then the sequence {xn} converges strongly
to an element x∗ ∈ (AJ )−1(0).

Very recently, Zegeye [22] introduced semi-pseudo mapping T := J − A, where
A : E → E∗ is a monotone mapping. The zero points of A (if they exist) are
called the semi-fixed points of T , that is, the semi-fixed point set of T is denoted
by FJ (T ) := {x ∈ E, T x = Jx}. If A : E∗ → E is a monotone mapping, then
T = J−1 − A is semi-pseudo contractive mapping, and the semi-fixed point set of T

is denoted by FJ (T ) := {x ∈ E, T Jx = x}.

Corollary 3.7 LetE be a nonempty closed uniformly convex and 2-uniformly smooth
Banach space with dual E∗. Assume that T : E∗ → E is a L−Lipschitz continuous
semi-pseudo mapping such that FJ (T ) �= ∅ and A := J−1−T is maximal monotone
mapping. Let {xn} be a sequence generated by x0 ∈ E

xn+1 = αnf (xn) + βnxn + γn((1 − ωn)I + ωnT J )

(
xn + xn+1

2

)
, (3.7)

where J is the normalized duality mapping. Suppose that Cmin ∩ FJ (T ) �= ∅, then
the sequence {xn} converges strongly to an element x∗ ∈ FJ (T ).

Corollary 3.8 LetE be a nonempty closed uniformly convex and 2-uniformly smooth
Banach space with dual E∗. Assume that T : E∗ → E is a L−Lipshitz continuous
semi-pseudo mapping such that FJ (T ) �= ∅ and A := J−1−T is maximal monotone
mapping. Let {xn} be a sequence generated by x0 ∈ E

xn+1 = αnu + βnxn + γn((1 − ωn)I + ωnT J )

(
xn + xn+1

2

)
, (3.8)

where J is the normalized duality mapping. Suppose that Cmin ∩ FJ (T ) �= ∅, then
the sequence {xn} converges strongly to an element x∗ ∈ FJ (T ).

Example 3.9 (see e.g. Chidume [34]) Let 1 < q < p < ∞ and let λ ∈ R be arbitrary.
Define T : �p → �q by

T x = (λ, x2, x3, . . .),

then T is semi-pseudo contractive mapping and xλ := (λ, 0, 0, 0, . . .) is the semi-
fixed points of T .

4 Applications

4.1 Application to minimization problems

In this section, we study the problem of finding a minimizer of a continuously
Fréchet differentiable convex functional in Banach spaces. Consider the following
minimization problem

min
x∈C

g(x)
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where C is a nonempty closed convex subset of E, and g : C → R is a convex and
Fréchet-differentiable functional. The sub-differential of the functional g is denote
by ∇g:

∇g(x) := {
x∗ ∈ C : g(y) − g(x) ≥ 〈y − x, x∗〉, ∀y ∈ E

}
.

Clearly, ∇g : E → 2E is a continuous and monotone operator and 0 ∈ ∇g(x0) if
and only if x0 is a minimizer of g. Applying Theorem 3.1 and Theorem 3.2, we get
the results below.

Theorem 4.1 Let E be a nonempty closed uniformly convex and 2-uniformly smooth
Banach space with dual E∗. Assume that g : E∗ → (−∞, +∞) is a L−Lipshitz
continuous Fréchet convex differentiable functional such that the gradient of g, ∇g is
Lipschitz continuous monotone mapping with (∇g)−1(0) �= ∅. Let {xn} be a sequence
generated by x0 ∈ E

xn+1 = αnf (xn) + βnxn + γn(I − ωn∇gJ )

(
xn + xn+1

2

)
,

where J is the normalized duality mapping. Suppose that Cmin ∩ (∇gJ )−1(0) �= ∅,
then the sequence {xn} converges strongly to an element x∗ ∈ (∇gJ )−1(0).

Theorem 4.2 Let E be a nonempty closed uniformly convex and 2-uniformly smooth
Banach space with dual E∗. Assume that g : E∗ → (−∞, +∞) is a L−Lipshitz
continuous Fréchet convex differentiable functional such that the gradient of g, ∇g is
Lipschitz continuous monotone mapping with (∇g)−1(0) �= ∅. Let {xn} be a sequence
generated by x0 ∈ E

xn+1 = αnf (xn) + (1 − αn)(I − ωn∇gJ )

(
xn + xn+1

2

)
,

where J is the normalized duality mapping. Suppose that Cmin ∩ (∇gJ )−1(0) �= ∅,
then the sequence {xn} converges strongly to an element x∗ ∈ (∇gJ )−1(0).

4.2 Application to solution of Hammerstein integral equations

An integral equation (generally nonlinear) of Hammerstein type has the form

u(x) +
∫

�

k(x, y)f (y, u(y)) = w(x), (4.1)

where the unknown function u and inhomogeneous function w lie in a Banach space
E of measurable real-valued functions.

By simple transformation, Eq. (4.1) shall be written as

u + KFu = w,

which can be illustrated, without loss of generality, as

u + KFu = 0. (4.2)
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For the case of real Hilbert space H , for F,K : H → H , Chidume and Zegeye [28]
defined an auxiliary map on Cartesian product E := H × H , T : E → E by

T [u, v] = [Fu − v, Kv + u].
It is known that

T [u, v] = 0 ⇔ u is the solution of Eq. 4.2 and v = Fu.
They obtained strong convergence of an iterative algorithm defined in Cartesian

product space E to a solution of Hammerstein equation (4.2). In Banach spaces more
general than Hilbert spaces, Chidume and Idu [24] introduced the operator T : E ×
E∗ → E∗ × E

T [u, v] = [Ju − Fu + v, J∗v − Kv − u],
where F : E → E∗ and K : E∗ → E are monotone mappings. They proved
that the mapping A := J − T is monotone and u∗ is a solution (when is exists)
of Hammerstein equation u + KFu = 0 if and only if (u∗, v∗) is zero point of A,
where v∗ = Fu∗. Abiding by the construction of the operator T , combining with our
semi-implicit midpoint rule, the following theorems are obtained.

Theorem 4.3 Assume the Hammerstein equation (4.2) is solvable. Let E be a
nonempty closed uniformly convex and 2-uniformly smooth Banach space with dual
E∗. Let F : E∗ → E,K : E → E∗ be Lipshitz continuous monotone map-
pings. Let f : C → C be a contraction with a coefficient ρ ∈ (0, 1). For
(x0, y0), (u0, v0) ∈ E × E∗, define the sequences {un} and {vn} respectively by

un+1 = αnf (un) + βnun + γn

(
un + un+1

2
− ωn

(
FJ

(
un + un+1

2

)
− vn

))
,

vn+1 = αnf (vn) + βnvn + γn

(
vn + vn+1

2
− ωn

(
KJ

(
vn + vn+1

2

)
+ un

))
,

where {ωn}, {αn}, {βn}, {γn} are sequences of nonnegative real numbers in [0, 1] and
(i): αn + βn + γn = 1;
(ii): limn→∞ αn = 0, �∞

n=1αn = ∞;
(iii): limn→∞ ωn

αn
= 0,

then the sequences {un} and {vn} converge strongly to u∗ and v∗ respec-
tively,where u∗ is a solution of u + KFu = 0 with v∗ = Fu∗.

Theorem 4.4 Assume the Hammerstein equation (4.2) is solvable. Let E be a
nonempty closed uniformly convex and 2-uniformly smooth Banach space with dual
E∗. Let F : E∗ → E,K : E → E∗ be Lipschitz continuous monotone mappings. Let
u, v ∈ E be arbitrary constant, for (x0, y0), (u0, v0) ∈ E ×E∗, define the sequences
{un} and {vn} respectively by

un+1 = αnu + βnun + γn

(
un + un+1

2
− ωn

(
FJ

(
un + un+1

2

)
− vn

))
,
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vn+1 = αnv + βnvn + γn

(
vn + vn+1

2
− ωn

(
KJ

(
vn + vn+1

2

)
+ un

))
,

where {ωn}, {αn}, {βn}, {γn} are sequences of nonnegative real numbers in [0, 1] and
(i): αn + βn + γn = 1;
(ii): limn→∞ αn = 0, �∞

n=1αn = ∞;
(iii): limn→∞ ωn

αn
= 0,

then the sequences {un} and {vn} converge strongly to u∗ and v∗ respectively,
where u∗ is a solution of u + KFu = 0 with v∗ = Fu∗.

4.3 Application to a cluster of semi-pseudo mappings

Let C be a nonempty convex subset of a real Banach space. Let {Ti, i = 1, 2, · · · , N}
be a finite of semi-pseudo mappings. Define

T = �N
i=1siTi

where si, i = 1, 2, · · · , N are sequences in [0, 1] and �N
i=1si = 1. We can prove that

T is semi-pseudo and J − T is monotone mapping.

Lemma 4.5 Let C be a nonempty closed convex and bounded subset of a smooth
Banach space E and {Ti : C → C, i = 1, 2, · · · , N} be a finite family of semi-
pseudo mappings such that ∩N

i=1F(Ti) �= ∅. Suppose that s = inf{si} > 0, then there
exists semi-pseudo mapping T : C → C such that F(T ) = ∩m

i=1F(Ti).

Proof Let {si} be sequence of positive real numbers in [0, 1] satisfying ∑m
i=1 si = 1

and set T = ∑m
i=1 siTi . Since each Ti is semi-pseudo for any i ∈ {1, 2, ..., N}, and

Ai = J −Ti is monotone, thus we have that T is well defined semi-pseudo mapping, and

〈(J − T )x − (J − T )y, x − y〉 =
〈(

J −
m∑

i=1

siTi

)
x −

(
J −

m∑
i=1

siTi

)
y, x − y

〉

=
〈(

m∑
i=1

si (J − Ti)

)
x −

(
m∑

i=1

si (J − Ti)

)
y, x − y

〉

=
〈(

m∑
i=1

siAi

)
x −

(
m∑

i=1

siAi

)
y, x − y

〉
≥ 0,

which means that J − T is monotone, therefore T is semi-pseudo mapping.
Next, we claim that FJ (T ) = ∩N

i=1FJ (Ti).
Clearly ∩N

i=1F(Ti) ⊂ FJ (T ).
Now we prove that FJ (T ) ⊂ ∩N

i=1FJ (Ti).
Let x ∈ FJ (T ) and p ∈ ∩N

i=1FJ (Ti). Then

0 = 〈T x − Jx, x − p〉 =
〈

N∑
i=1

siTix − Jx, x − p

〉
=

N∑
i=1

si 〈Tix − Jx, x − p〉 ,
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noticing that Ai is monotone and Aip = 0, therefore

0 =
N∑

i=1

si〈Tix − Jx, x − p〉 =
N∑

i=1

si〈Aix − Aip, x − p〉,

which means that 〈Tix − Jx, x − p〉 = 0 for each i = 1, 2, · · ·N , i.e. Tix = Jx for
each i = 1, 2, · · · N . Therefore, x ∈ ∩N

i=1FJ (Ti) and hence F(T ) = ∩N
i=1FJ (Ti).

The proof is complete.

Theorem 4.6 Let E be a nonempty closed uniformly convex and 2-uniformly smooth
Banach space with dual E∗. Assume that Ti : E∗ → E are a finite of Li−Lipshitz
continuous semi-pseudo mapping such that F = ∩FJ (Ti) �= ∅ and A := J−1 −
�N

i=1siTi is maximal monotone mapping. Let f : C → C be a contraction with a
coefficient ρ ∈ (0, 1). Let {xn} be a sequence generated by x0 ∈ E

xn+1 = αnf (xn) + βnxn + γn

(
(1 − ωn)I + ωn�

N
i=1siTiJ

)(
xn + xn+1

2

)
,

where J is the normalized duality mapping and {ωn}, {αn}, {βn}, {γn} are sequences
of nonnegative real numbers in [0, 1] and

(i): αn + βn + γn = 1;
(ii): limn→∞ αn = 0, �∞

n=1αn = ∞;
(iii): limn→∞ ωn

αn
= 0.

Suppose that Cmin ∩ F �= ∅, then the sequence {xn} converges strongly to an
element x∗ ∈ F .

Especially, the following corollary holds:

Theorem 4.7 Let E be a nonempty closed uniformly convex and 2-uniformly smooth
Banach space with dual E∗. Assume that Ti : E∗ → E is a Li−Lipshitz continuous
semi-pseudo mapping such that F = ∩FJ (Ti) �= ∅ and A := J−1 − �N

i=1siTi is
maximal monotone mapping. Let f : C → C be a contraction with a coefficient
ρ ∈ (0, 1). Let {xn} be a sequence generated by x0 ∈ E

xn+1 = αnu + βnxn + γn

(
(1 − ωn)I + ωn�

N
i=1siTiJ

)(
xn + xn+1

2

)
,

where J is the normalized duality mapping and {ωn}, {αn}, {βn}, {γn} are sequences
of nonnegative real numbers in [0, 1] and
(i): αn + βn + γn = 1;
(ii): limn→∞ αn = 0, �∞

n=1αn = ∞;
(iii): limn→∞ ωn

αn
= 0.

Suppose that Cmin ∩ F �= ∅, then the sequence {xn} converges strongly to an
element x∗ ∈ F .
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5 Numerical example

In the sequel, we give some numerical examples to illustrate the applicability, effec-
tiveness, efficiency and stability of our semi-implicit midpoint rule(SIMR) proposed
algorithm. We have written all the codes in Matlab R2016b and preformed on a LG
dual core personal computer.

5.1 Numerical behavior of SIMR

Example 5.1 Let E = R, C = E. Let A, J : R → R be the mappings defined as

Ax = axm, Jx = x, (m = 1, 2),

f : C → C be defined as

f (x) =
{

x
2 , if Ax �= 0,
x, if Ax = 0.

Thus, we have that J is a duality mapping and for x, y ∈ R,

‖Ax − Ay‖ = ‖axm − aym‖
≤ a‖x − y‖,

‖Jx − Jy‖ = ‖x − y‖.
Hence, A is a-Lipschitz continuous monotone with the condition x + y ≤ 1, J is
1-Lipschitz continuous and f is contractive with coefficient ρ = 1

2 and (AJ )−1(0) = 0.

Now we set αn = γn = 1
n+1 , βn = n−1

n+1 , ωn = 1
n(n+1) , we can see all these

parameters satisfy conditions:

(i) :αn + βn + γn = 1, also

1 2 3 4 5 6 7
Number of Iterations(n)

0

0.1

0.2

0.3

0.4

0.5

||x
n
||

Ax=x2/4

Ax=4x2

Ax=2x2

Ax=x2/2

Fig. 1 The case of x0 = 0.5
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Number of Iterations(n)

0

0.1

0.2

0.3

0.4

0.5
||x

n
||

Ax=x/4
Ax=4x
Ax=2x
Ax=x/2

Fig. 2 The case of x0 = 0.5

(ii) :limn→∞ αn = 0, �∞
n=1αn = ∞,

(iii) :ωn = o(αn) and �∞
n=1ωn < ∞.

In addition, it is obviously that if xn ∈ (AJ )−1(0), then the process stop and
xn is the solution of problem 0 ∈ Au. Otherwise, we shall compute the following
semi-implicit midpoint rule

xn+1 = xn

2(n + 1)
+ (n − 1)xn

n + 1
+ 1

n + 1

(
xn + xn+1

2
− a

n(n + 1)

(
xn + xn+1

2

)m)
.

1 2 3 4 5 6 7 8
Number of Iterations

0

1

2

3

4

5

6

7

D
n

107

Fig. 3 Dn and Number of Iterations with Ax = x2

2
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Number of Iterations
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D
n
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Fig. 4 Dn and Number of Iterations with Ax = x
4

The convergence of the rule is illustrated in the following figures for different
initial point xo and coefficient a and m.

In these figures (Figs. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12), x−axes represent
for the number of iterations while y−axes represent the value of Dn or xn (where the
stop criterion is ‖xn+1−xn‖ = 10−16. We can summarize the following observations
from these figures:

(a) The rate of Dn = 109‖xn+1−xn‖2 generated by Algorithm 3.1 depends strictly
on the convergent rate of parameter {αn} and the Lipschitz continuous monotone
operator.

1 2 3 4 5 6 7 8
Number of Iterations

0

0.5

1

1.5

2

2.5
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3.5

4

4.5

D
n
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Fig. 5 Dn and Number of Iterations with Ax = x2

4
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Fig. 6 Dn and Number of Iterations with Ax = 4x2

(b) In general, Algorithm 3.1 works well for the parameter {αn} being fast conver-
gent to 0 as n → ∞. The best error of Dn can be obtained approximately equal
to 10−16. When Dn obtains to this error, it will become unstable.

Example 5.2 For the uniformly convex and uniformly smooth Banach spaces �p, we
can recall from Alber [33] the example of the normalized duality mapping J as

Jx = ‖x‖2−p

�p y,

1 2 3 4 5 6 7 8
Number of Iterations
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3

4

5

D
n
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Fig. 7 Dn and Number of Iterations with Ax = 4x
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1 2 3 4 5 6 7 8
Number of Iterations
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1

1.5

2

D
n

108

Fig. 8 Dn and Number of Iterations with Ax = 2x

where x = {x1, x2, x3, . . .}, y = {
x1|x1|p−2, x2|x2|p−2, x3|x3|p−2, . . .

} ∈ �q with
1
p

+ 1
q

= 1 and norm ‖ · ‖�p = (
�∞

n=1x
p
n

) 1
p . As the reviewers mention, the duality

mapping J is not easy to compute, hence for simplicity, we take p = 2 and define
Ax = x

2 and f : C → C as

f (x) =
{

x
2 , if Ax �= 0,
x, if Ax = 0.
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Fig. 9 Dn and Number of Iterations with Ax = x
2
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Fig. 10 Dn and Number of Iterations with Ax = 2x2

The parameters αn = 1
n+1 , βn = 0 and ωn = 1

n(n+1) , if xn ∈ (AJ )−1(0), then the
process stop and xn is the solution of problem 0 ∈ Au. Otherwise, we shall compute
the following semi-implicit midpoint rule

xn+1 = xn

2(n + 1)
+ n

n + 1

(
xn + xn+1

2
− 1

2n(n + 1)

(
xn + xn+1

2

))
.

We test the initial point x0 = {1, 0, 0, . . .} for our Algorithm 3.1 and the test results
are reported in Table 1.
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Fig. 11 the case of x0 = 1
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Fig. 12 the case of x0 = 1

Table 1 Comparison between Algorithm 3.1 and other algorithms x0 = (1, 0, 0, 0, 0, 0, . . .)

n xn+1 xn ‖xn+1 − xn‖ ‖xn‖

0 (0.5385, 0, 0, 0, 0, 0, . . .) (1, 0, 0, 0, 0, 0, . . .) 0.4615 1

1 (0.3662, 0, 0, 0, 0, 0, . . .) (0.5385, 0, 0, 0, 0, 0, . . .) 0.1723 0.5385

10 (0.0933, 0, 0, 0, 0, 0, . . .) (0.1017, 0, 0, 0, 0, 0, . . .) 0.0084 0.1017

30 (0.0350, 0, 0, 0, 0, 0, . . .) (0.0362, 0, 0, 0, 0, 0, . . .) 0.0012 0.0362

100 (0.0110, 0, 0, 0, 0, 0, . . .) (0.0111, 0, 0, 0, 0, 0, . . .) 0.0012 0.0362

330 (0.0034, 0, 0, 0, 0, 0, . . .) (0.0034, 0, 0, 0, 0, 0, . . .) 0.0000 0.0034

0 50 100 150 200 250 300 350
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Fig. 13 Comparison of SIMR,RM,GMIM for Ax = x2

2
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Fig. 14 Comparison of SIMR,RM,GMIM for Ax = x
4

From this example, we can obtain the sequence converges to one element of
(AJ )−1(0).

5.2 Comparison SIMR with other algorithms

In this part, we present several experiments in comparison with other algorithms.
Two methods used to compare are generalized mann iteration method (GMIM)( [29],

0 50 100 150 200 250 300 350 400 450
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n
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Fig. 15 Comparison of SIMR,RM,GMIM for Ax = x2/4
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Table 2 Comparison between Algorithm 3.1 and other algorithms x0 = 1

TOL SIMR(Iter) CPU(s) RM(Iter)(u=1) CPU(s) GMIM(Iter) CPU(s)

10−8 56 0.079 83 0.0608 419 0.073

10−10 175 0.084 319 0.0909 2919 0.252

10−12 307 0.102 1156 0.179 21331 1.96

TOL SIMR(Iter) CPU(s) RM(Iter)(u=0.5) CPU(s) GMIM(Iter) CPU(s)

10−8 56 0.079 46 0.063 419 0.073

10−10 176 0.084 123 0.065 2919 0.252

10−12 307 0.102 307 0.095 21331 1.96

Algorithm 1), regularization method (RM)( [22], Algorithm 2). RM require to previ-
ously know a constant u. For experiments, we choose the same sequence αn = 1

n+1

and ωn = 1
n(n+1) in GMIM and RM. The condition ‖xn+1 − xn‖2 ≤ T OL is cho-

sen to be as the stopping criterion. The following figures (Figs. 13, 14, and 15) are
comparisons of SIMR, RM, GMIM with different monotone operators.

The numerical results are showed in Tables 2 and 3 with different initial value and
u.

From these tables, we can see that our Algorithm 3.1 (SIMR) is the best. The
GMIM is the most time-consuming and the reasonable explanation is the fact that at
each step the GMIM has no the contractive parameters (coefficients) for obtaining
the next step which can take lower convergence rate, while the convergent rate of
RM depends strictly on the previous constant u and the initial value x0. In comparing
with other two methods, our Algorithm 3.1 seems to have a competitive advantage.
However, the main advantage of our Algorithm 3.1 is that the semi-implicit midpoint
rule works more stable than other methods and it is done in Banach spaces much
more general than Hilbert spaces.

Table 3 Comparison between Algorithm 3.1 and other algorithms x0 = 0.5

TOL SIMR(Iter) CPU(s) RM(Iter)(u=1) CPU(s) GMIM(Iter) CPU(s)

10−8 40 0.074 103 0.065 233 0.063

10−10 127 0.075 371 0.100 1749 0.163

10−12 269 0.085 1300 0.203 13569 1.141

TOL SIMR(Iter) CPU(s) RM(Iter)(u=0.5) CPU(s) GMIM(Iter) CPU(s)

10−8 40 0.074 36 0.059 233 0.063

10−10 127 0.075 146 0.064 1749 0.163

10−12 269 0.085 544 0.112 13569 1.141
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6 Conclusion

LetE be a nonempty closed uniformly convex and 2-uniformly smooth Banach space
with dual E∗. Approximation of zero points of accretive mappings has been explored
with the past several decades. The key method of this study is to approximate the
fixed point of pseudo-contractive mappings because the operator A := I − T is
accretive if and only T is pseudo-contractive.

However, the technique of converting the inclusion 0 ∈ Au into a fixed point
problem for (I − A) : E → E is not applicable since, in this case when A is
monotone, A maps E into E∗, and the identity map does not make sense.

This motivated the study of zeros of monotone mappings via semi-fixed point.
The main result of this paper is to study the semi-implicit midpoint rule with the
viscosity methods in Banach spaces which is a easily applicable iterative algorithm
that converges strongly to zero point of monotone mapping. Although the proof of the
main result is very technical and nontrivial, with the simple restriction of parameters,
the recursion formula of the theorem (Theorem 3.1) does not involve the resolvent
operator which is computational complexity.

Furthermore, the theorems in this paper complement the implicit midpoint rule
and proximal point algorithm by proposing strong convergence to zero of monotone
mapping and extend and unify some results (see, e.g., Zegeye [22], Chidume [24],
Xu [21]). In addition, it is applied to convex minimization problems, solution of
Hammerstein integral equations and semi-fixed point of a cluster of semi-pseudo
mappings. This may be the topic of some of our forthcoming papers.

Acknowledgements The authors express their deep gratitude to the referees and the editor for their
valuable comments and suggestions.

Author Contributions All authors contributed equally to this work. All authors read and approved final
manuscript.

Funding information This article was funded by the National Science Foundation of China
(11471059)and Science and Technology Research Project of Chongqing Municipal Education Com-
mission (KJ1706154)and the Research Project of Chongqing Technology and Business University
(KFJJ2017069).

Compliance with Ethical Standards

Competing Interests The authors declare that they have no competing interests.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, dis-
tribution, and reproduction in any medium, provided you give appropriate credit to the original author(s)
and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Kato, T.: Nonlinear semigroups and evolution equations. J. Math. Soc. Jpn. 19, 508–520 (1967)

http://creativecommons.org/licenses/by/4.0/


Numer Algor (2019) 81:853–878 877

2. Browder, F.E.: Nonlinear mappings of nonexpansive and accretive-type in Banach spaces. Bull. Am.
Math. Soc. 73, 875–882 (1967)

3. Minty, G.J.: Monotone (nonlinear) operators in Hilbert space. Duke. Math. J. 29(4), 341–346 (1962)
4. Turkyilmazoglua, M.: Approximate analytical solution of the nonlinear system of differential equa-

tions having asymptotically stable equilibrium. Filomat 31(9), 2633-2641 (2017)
5. Duffull, S.B., Hegarty, G.: An Inductive Approximation to the Solution of Systems of Nonlinear Ordi-

nary Differential Equations in Pharmacokinetics-Pharmacodynamics. Journal of Computer Science
and Networking pp. 1-14 (2014)

6. Khorasani, S., Adibian, A.: Alytical solution of linear ordinary differential equations by differential
transfer. Electronic Journal of Differential Equations 79, 1-18 (2003)

7. Chidume, C.E., Osilike, M.O.: Iterative solution of nonlinear integral equations of Hammerstein-type.
J. Niger. Math. Soc. Appl. Anal. pp. 353-367 (2003)

8. Auzinger, W., Frank, R.: Asyptotic error expansions for stiff equations: an analysis for the implicit
midpoint and trapezoidal rules in the strongly stiff case, vol. 56 (1989)

9. Bader, G., Deuflhard, P.: A semi-implicitmid-point rule for stiff systems of ordinary differential
equations. Number. Math. 41, 373-398 (1983)

10. Bayreuth, A.: The implicit midpoint rule applied to discontinuous differential equations. Computing
49, 45-62 (1992)

11. Xu, H.K., Alghamdi, M.A., Shahzad, N.: The viscosity technique for the implicit midpoint rule of
nonexpansive mappings in Hilbert spaces. Fixed Point Theory Appl. 2015, 41 (2015)

12. Berinde, V.: Iterative approximation of fixed points. Lecture Notes in Mathematics. Springer, London
(2007)

13. Browder, F.E.: Nonlinear mappings of nonexpansive and accretive-type in Banach spaces. Bull. Am.
Math. Soc. 73, 875–882 (1967)

14. Chidume, C.E.: Geometric Properties of Banach Spaces and Nonlinear Iterations Lectures Notes in
Mathematics, vol. 1965. Springer, London (2009)

15. Chidume, C.E.: Iterative approximation of fixed points of Lipshitzian strictly pesudo-contractive
mappings. Proc. Amer. Math. Soc. 99(2), 283-288 (1987)

16. Chidume, C.E., Osilike, M.O.: Iterative solutions of nonlinear accretive operator equations in arbitrary
Banach spaces. Nonlinear Anal. Theory Methods Appl. 36, 863-872 (1999)

17. Agarwal, R.P., Meehan, M., O’Regan, D.: Fixed point theory and applications. Cambridge Tracts in
Mathematics, vol. 141. Cambridge University Press, Cambridge (2001)

18. Chidume, C.E.: Anapproximation method for monotone Lipschitzian operators in Hilbert-spaces. J.
Aust. Math. Soc. Ser. A. 41, 59-63 (1986)

19. Reich, S.: A weak convergence theorem for alternating methods with Bergman distance. In: Kart-
satos, A.G. (ed.) Theory and Applications of Nonlinear Operators of Accrective and Monotone Type.
Lecture Notes in Pure and Appl. Math, vol. 178, pp. 313-318. Dekker, New York (1996)

20. Chidume, C.E., Djitte, N.: Strong convergence theorems for zeros of bounded maximal monotone
nonlinear operators. Abstr. Appl. Anal. 2012 Article ID 681348 (2012)

21. Xu, H.K.: An iterative approach to quadratic optimization. Journal of Optim Theory and Application
116, 659-678 (2003)

22. Zegeye, H.: Strong convergence theorems for maximal monotone mappings in Banach spaces. Journal
of Mathematical Analysis and Applications 343(2), 663-671 (2008)

23. Ibaraki, T., Takashiwa, W.: A new projection and convergence theorems for the projections in Banach
spaces. Journal of Approximation Theory 1-14, 149 (2007)

24. Chidume, C.E., Idu, K.O.: Approximation of zeros of bounded maximal monotone mappings, solu-
tions of Hammerstein integral equations and convex minimization problems. Fixed Point Theory and
Applications:97. https://doi.org/10.1186/s13663-016-0582-8 (2016)

25. Alber, Y.A.: Metric and generalized projection operators in Banach spaces: properties and appli-
cations. In: Theory and Applications of Nonlinear Operators of Accretive and Monotone Type,
pp. 15-50. Marcel Dekker, New York (1996)

26. Takahashi, W.: Nolinear Functional Analysis. Yokohama Publishers, Yokohama (2000)
27. Tan, K.K., Xu, H.K.: Approximating fixed points of nonexpansive mappings by the Ishikawa iteration

process. J. Math. Anal. Appl. 178(2), 301-308 (1993)
28. Chidume, C.E., Zegeye, H.: Approximation of solutions of nonlinear equations of monotone and

Hammerstein-type. Appl. Anal. 82(8), 747–758 (2003)

https://doi.org/10.1186/s13663-016-0582-8


878 Numer Algor (2019) 81:853–878

29. Chidume, C.E., Romanus, O.M., Nnyaba, U.V.: A new iterative algorithm for zeros of generalized Phi-
strongly monotone and bounded maps with application. British Journal of Mathematics and Computer
science 18(1), 1-14 (2016)

30. Xu, H.K., Alghamdi, M.A., Shahzad, N.: The implicit midpoint rule for nonexpansive mappings in
banach spaces. Fixed Point Theory 17(2), 509-517 (2016)

31. Song, Y.L., Pei, Y.G.: A new modified semi-implicit midpoint rule for nonexpansive mappings and 2-
generalized hybrid mappings. Journal of Nonlinear Science and Applications 9(12), 6348-6363 (2016)

32. Cai, G., Shehu, Y., Iyiola, O.S.: Strong convergence results for variational inequalities and fixed point
problems using modified viscosity implicit rules. Numerical Algorithms 77(2), 535C558 (2018)

33. Alber, Y.I.: Metric and generalized projection operators in Banach spaces: properties and applications,
Theory and Applications of Nonlinear Operators of Accretive and Monotone Type of Lecture Notes
in Pure and Applied Mathematics. In: Kartsatos, A.G. (ed.), vol. 178, p. 15C50. Marcel Dekker, New
York (1996)

34. Chidume, C.E., Idu, K.O.: Approximation of zeros of bounded maximal monotone mappings, solu-
tions of Hammerstein integral equations and convex minimization problems. Fixed Point Theory and
Applications. 2016, 97 (2016)


	New semi-implicit midpoint rule for zero of monotone mappings in Banach spaces
	Abstract
	Introduction
	Preliminaries
	Main results
	Applications
	Application to minimization problems
	Application to solution of Hammerstein integral equations
	Application to a cluster of semi-pseudo mappings

	Numerical example
	 Numerical behavior of SIMR
	 Comparison SIMR with other algorithms

	Conclusion
	Acknowledgements
	Author Contributions
	Funding information
	Compliance with Ethical Standards
	Competing Interests
	Open Access
	References


