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Abstract Implicitly defined fully nonlinear differential equations can admit solu-
tions which have only finitely many derivatives, making their solution via analytical
or numerical techniques challenging. We apply the optimal homotopy analysis
method (OHAM) to the solution of implicitly defined ordinary differential equations,
obtaining solutions with low error after few iterations or even one iteration of the
method. This is particularly true in cases where an auxiliary nonlinear operator was
employed (in contrast to the commonly used choice of an auxiliary linear operator),
highlighting the need for further study on using auxiliary nonlinear operators in the
HAM. Through various examples, we demonstrate that the approach is efficient for
an appropriate selection of auxiliary operator and convergence control parameter.

Keywords Optimal homotopy analysis method · Implicit differential equations ·
Nonlinear auxiliary operator · Control of error

1 Introduction

The homotopy analysis method (HAM) is an analytical solution method which allows
one to approximate the solution to a variety of problems, such as nonlinear ordinary
differential equations, partial differential equations, integral equations [1–3]. The
approach has been applied to many problems (see [4–8]). One reason for the popu-
larity of the method is that it contains a convergence control parameter which allows
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one to adjust and control the error properties of the solution. For example, one may
minimize the error or residual error of approximate solutions over this parameter, and
such an approach is commonly referred to as the optimal homotopy analysis method
(OHAM) [9–15]. The HAM also gives one great freedom in selecting the form of
the solutions via representation of solutions [1, 16], since one has control over the
type of basis functions employed in such a representation. This is tied closely to the
choice of auxiliary operator used in the construction of the homotopy.

In applying the HAM, one attempts to solve a nonlinear differential equation
N[u] = 0 by solving a related linear or nonlinear problem that is simpler and hence
more amenable to analysis. Introducing an auxiliary operator, L, and convergence
control parameter, h, the next step is to construct a homotopy of operators

H [u] = (1 − q)L[u] − hqN[u] , (1)

which is itself a differential operator. Here, q ∈ [0, 1] is an embedding parameter,
such that upon setting q = 0 we have L[u] = 0 implies H [u] = 0, while setting
q = 1 gives N[u] = 0 implies H [u] = 0. Setting H [u] ≡ 0 identically, we have a
homotopy of the operators L and N . If we then consider the more general equation
H [u] = 0, then if a solution exists it should depend on the embedding parameter
q, say u(t) = û(t; q). We should have that û(t; 0) is a solution of L[u] = 0, while
û(t; 1) is a solution is N[u] = 0. If û(t; q) varies continuously in q ∈ [0, 1], then
taking q from 0 to 1 gives a map from a solution of L[u] = 0 to a solution of
N[u] (the original nonlinear problem of interest). Note that an entire literature exists
for the case where h = −1, in which case the method is often referred to as the
homotopy perturbation method (HPM); see [17–19]. However, there is no guarantee
of convergence for the HPM, since the choice of h = −1 may not yield convergence.
When h is picked in a specific way to minimize the error in the approximate solution
the method is often referred to as the optimal homotopy analysis method (OHAM)
[9–15], and this is the approach we shall consider.

In obtaining a homotopy solution, one often assumes that the resulting function
is smooth with infinitely many derivatives existing at all points on the interior of the
problem domain. However, as was recently shown [20], the HAM can also be used to
construct solutions to differential equations which are not analytic over the domain.
Such solutions exist when only a fixed number of derivatives exist, or when there
is a sufficiently strong singularity in the domain. However, such solutions can still
be physically reasonable and hence merit study. Indeed, for an nth order differential
equation, a solution will in general need only have as many continuous derivatives as
the order of the equation. Therefore, loss of regularity at higher order derivatives will
not preclude a solution from being a physically viable solution to such a problem.

For implicit differential equations, such as those corresponding to fully nonlinear
equations where the highest derivative may enter into the equation non-linearly, the
solution may not be regular beyond the number of derivatives in the original equa-
tion. However, such equations do arise in various areas of science and engineering
in the form of PDEs [21–23] and ODEs [24–27]. While many such equations are
PDEs, traveling wave or other common reductions are often used to put them into the
form of ODEs. Due to the appearance of implicitly defined differential equations in
a variety of problems, it is sensible to consider the HAM for solving these equations.
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However, a review of the open literature reveals that the problem of implicitly defined
differential equations has not been well-studied in the context of the HAM or for
other related analytic methods. This motivates us to develop the HAM for implicitly
defined differential equations.

The remainder of the paper is organized as follows. In Section 2, we formulate the
implicitly defined differential equations. In Section 3, we outline the application of
the HAM for such problems, also discussing the optimal selection of the convergence
control parameter (resulting in the OHAM). In Section 4, we consider several spe-
cific examples of implicit fully nonlinear differential equations, and apply OHAM to
obtain approximate solutions. In some cases, the solutions will even be exact after
few or even one iteration of the method. We discuss how, in some situations, auxil-
iary nonlinear operators may be preferable to selecting auxiliary linear operators. In
Section 5 we give concluding remarks.

2 Formulation of the implicit problem

Let us consider the implicit ordinary differential equation

F(x′, x, t) = 0 , (2)

subject to the initial condition
x(0) = a . (3)

Here, prime denotes differentiation with respect to t ∈ R. We assume that F ∈
C∞(R2) with respect to x and x ′ (we do not make such an assumption on F with
respect to t , in order to be able to consider discontinuous forcing terms), x ∈ C1(R),
and a ∈ R is a constant. While we assume that F is smooth in all variables, we only
assume that x is continuous with continuous first derivative. This allows our formu-
lation to be much more general than if we were to assume that x was smooth. Under
such an assumption, one could then differentiate (2) with respect to t , obtaining(

∂F

∂x′ (x
′, x, t)

)
x′′ +

(
∂F

∂x
(x′, x, t)

)
x′ +

(
∂F

∂t
(x′, x, t)

)
= 0 , (4)

which is no longer an implicit equation for the highest derivative. Therefore,
considering (2) is more general than considering (4).

We should also note that we can extend (2)–(3) to vector equations, viz.,

F(x′, x, t) = 0 , (5)

subject to the initial condition
x(0) = a . (6)

Here, F : R
2ξ+1 → R

ξ , F ∈ C∞(R2ξ ) (with respect to x and x′ but not t , again
so that we may include forcing terms that may be discontinuous), x : R → R

ξ ,
x ∈ C1(R) is a vector-valued function, a ∈ R

ξ is a constant vector, and ξ ≥ 1 is the
dimension of the system. Such a construction would then allow one to consider any
differential equation with higher order derivatives. For example, the single second
order differential equation

sin(x′′) + cos(x′) + x = t (7)
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would fit into the framework (5) as

F(y′, y, t) = 0 , (8)

where y = [y1, y2]T , y1 = x, y2 = x′, and

F(y′, y, t) =
[

y′
1 − y2

sin(y′
2) + cos(y2) + y1 − t

]
. (9)

Therefore, we can use a formulation such as (5)–(6) to study a wide variety of
problems.

3 Homotopy analysis method and control of residual error
for the implicit problem (2)–(3)

Let us construct the homotopy

H[x] := (1 − q)L[x] − hqF(x ′, x, t) ≡ 0 . (10)

Clearly, when q = 0, H[x] = 0 is equivalent to L[x] = 0, which is a linear problem.
On the other hand, when q = 1, H[x] = 0 is equivalent to F(x′, x, t) = 0, which is
the original nonlinear problem.

Let us consider the standard homotopy series solution to (10),

X(t; q) =
∞∑

k=0

qkxk(t) . (11)

When q = 0, X(t) = x0(t) is the initial guess or approximation to the solution. On
the other hand, if this series exists as q → 1−, then the series X(t) converges to a
solution x(t) of the original nonlinear problem (2). Often, one will be interested in a
truncated expansion of the form (11) evaluated at q = 1, say

XK(t) =
K∑

k=0

xk(t) , (12)

as this serves as an approximation to the true solution of (2). The approximation
should gain accuracy as we increase the total number of terms included in this expan-
sion. Theorems concerning the convergence of the series to the true solution of the
initial equation can be found in [1, 3, 28–35].

In order to calculate the terms in the approximation (12), we place the series (11)
into the homotopy (10),

(1 − q)L[X(t; q)] − hqF(X′(t; q), X(t; q), t) = 0 . (13)

Matching powers of the embedding parameter, q, we find the zeroth order deforma-
tion equation,

L[x0(t)] = 0 , (14)

as well as the higher order deformation equations

L[xk(t)] = L[xk−1(t)] + hfk(x
′
0(t), . . . , x

′
k−1(t), x0(t), . . . , xk−1(t), t) , (15)
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for k = 1, 2, 3, . . . . Here, the terms fk are obtained through the expansion of the
function qF(X′(t; q), X(t; q), t) in powers of q, that is to say

qF

(
K∑

k=0

x′
k(t),

K∑
k=0

xk(t), t

)

= qf1(x
′
0(t), x0(t), t) + q2f2(x

′
0(t), x

′
1(t), x0(t), x1(t), t) + · · ·

=
∞∑

j=1

qjfj (x
′
0(t), . . . , x

′
j−1(t), x0(t), . . . , xj−1(t), t) .

(16)

The terms in this expansion can be calculated for any given F . The first few terms are

f1 = F(x′
0, x0, t) , (17)

f2 = ∂F

∂x′ (x
′
0, x0, t)x

′
1 + ∂F

∂x
(x′

0, x0, t)x1 , (18)

f3 = ∂2F

∂x′∂x
(x′

0, x0, t)x
′
1x1 + 1

2

∂2F

∂x′2 (x′
0, x0, t)(x

′
1)

2 + 1

2

∂2F

∂x2
(x′

0, x0, t)(x1)
2

+ ∂F

∂x′ (x
′
0, x0, t)x

′
2 + ∂F

∂x
(x′

0, x0, t)x2 ,

(19)

f4 = 1

2

∂3F

∂x′2∂x
(x′

0, x0, t)(x
′
1)

2x1 + 1

2

∂3F

∂x′∂x2
(x′

0, x0, t)x
′
1(x1)

2

+ 1

6

∂3F

∂x′3 (x′
0, x0, t)(x

′
1)

3 + 1

6

∂3F

∂x3
(x′

0, x0, t)(x1)
3

+ ∂2F

∂x′2 (x′
0, x0, t)x

′
1x

′
2 + ∂2F

∂x∂x
(x′

0, x0, t)(x
′
1x2 + x1x

′
2)

+ ∂2F

∂x2
(x′

0, x0, t)x1x2 + ∂F

∂x′ (x
′
0, x0, t)x

′
3 + ∂F

∂x
(x′

0, x0, t)x3 .

(20)

Therefore, when we solve the deformation (15), we solve a linear problem for each
xk(t), with the inhomogeneous term given (in general) in terms of all previously
calculated terms. These equations are solved subject to the initial conditions

x0(0) = a and xk(0) = 0 for k = 1, 2, 3, . . . . (21)

3.1 Selection of the auxiliary linear operator L

It is clear from the form of the terms (17)–(20) that the initial approximation x0(t)

will have a critical influence on the solution process. Indeed, it will be the initial
approximation which molds the effects from the nonlinearity (the derivatives of F

will involve only arguments of x0(t) and x′
0(t)). This highlights the need to find a

good initial approximation for the problem.
Since our problem is first order, we will restrict our attention to first order

operators, which can be put into the form

L[x] = x′ + A(t)x . (22)
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If A(t) = 0, we obtain the initial approximation x0(t) = a, and the full homotopy
solution can be recovered in terms of powers of the variable t . However, when A(t) �=
0, we should obtain

x0(t) = a exp

(
−

∫ t

0
A(τ)dτ

)
. (23)

This initial approximation can take a variety of forms, depending on the functional
form of A(t). It is important to pick the operator (22) so that the initial approximation
is accurate. If we consider how x0(t) given in (23) acts when placed into the original
nonlinear equation, we obtain

F(X′
K(t; h), XK(t; h), t) = Res(t; h) , (24)

which gives the residual error. If this quantity is small, then the initial approximation
is a good choice, and it is likely that relatively few additional terms will be needed to
gain a sufficiently accurate homotopy solution.

Another way to view an appropriate choice of the linear operator is to consider
a linearization of the original nonlinear equation at t = 0. Linearizing at the point
t = 0, we find

∂F

∂x′ (x
′(0), a, 0)x′ + ∂F

∂x
(x′(0), a, 0)x , (25)

where we neglect constant terms in the linearization. This linearization depends on
the value of x′ at t = 0. However, this can be found provided that the algebraic
equation F(x′(0), a, 0) = 0 can be solved. In general, this solution will be a function
of the initial condition x(0) = a, and there may even be multiple solutions. So,
writing x′(0) = b, and noting that b = b(a) in general, we have the option to pick

L[x] = x′ + A0(a)x , (26)

where

A0(a) =
∂F
∂x

(b(a), a, 0)

∂F
∂x′ (b(a), a, 0)

(27)

is a constant which depends on the initial condition x(0) = a. Of course, we assume
that ∂F

∂x′ (b(a), a, 0) �= 0; otherwise, the linearization is degenerate. For this case, the
initial approximation is an exponential function,

x0(t) = ae−A0(a)t . (28)

3.2 Control of error and optimal homotopy analysis

While a proper choice for the auxiliary linear operator L is important, in order to
minimize the error inherent in any truncated approximation to the true solution we
should consider the role of the convergence control parameter, h. Assuming that we
carry out the iterative algorithm needed to obtain a truncated solution (12), we still
need to pick h appropriately. Let XK(t; h) be such a truncated homotopy solution,
where we make explicit the dependence on the convergence control parameter, h.
Then, if we place this approximation back into the original nonlinear equation, we
obtain the residual error at each point t in the domain, given by (24). In the absence
of an exact solution to compare our approximate solution with, we should attempt to
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minimize this residual error, since a larger residual error implies that the approximate
solution Xk(t; h) is a poor fit the to original differential equation.

Therefore, we often consider the integral of squared residual errors,

E(h) = 1

l

∫ l

0
(Res(t; h))2dt . (29)

Often, it is impractical to integrate over all of R, so we shall often consider a more
restricted integral region [0, l]. A minimum value for E(h) should exist (although
it need not be unique). The so-called optimal homotopy analysis method then states
that h should be chosen so as to minimize the function E(h), i.e., there should be a
residual error minimizing choice of h, say h∗, such that

min
h�=0

E(h) = E(h∗) ≥ 0 . (30)

At h = h∗, the residual errors are minimized over the subset of the domain [0, l].
Therefore, XK(t; h∗) is a residual error minimizing approximation to the true solu-
tion x(t) over the interval t ∈ [0, l]. There are many examples in the literature where
the success of the approximation obtained through the homotopy analysis method
depends strongly on the choice of the convergence control parameter, h [9–15].
Therefore, this error minimization is essential for selecting the parameter h in the
homotopy analysis method.

We should note that in rare cases where we have an exact solution to the nonlinear
differential equation, we may perform a similar optimization with respect to the exact
solution. Let xexact(t) denote a closed-form exact solution to (2). Then,

Abs(h) = 1

l

∫ l

0
(xexact(t) − XK(t; h))2dt . (31)

denotes the average squared error between the exact solution and the approximate
solution over the subset [0, l] of the real line R. In such a situation where xexact(t) is
known, h can be optimally chosen by minimizing this measure of absolute error.

4 Implementation of the method for example problems

In the previous section, we outlined the homotopy analysis method for the solution
of implicit first order nonlinear initial value problems. Therefore, we are now able to
use these results to present several examples of the analytical method.

4.1 A simple case where the choice of L matters

Consider the nonlinear implicit initial value problem

sin2 (
x′(t)

) + cos2 (x(t)) = 1 subject to x(0) = a . (32)

In order to demonstrate the utility of appropriately selecting the auxiliary linear
operator, we shall consider two choices for L, namely

L1[x] = x′ and L2[x] = x′ + x . (33)
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Applying the method outlined in the previous section, using L1, we find that a five-
term approximation can be iteratively calculated as

X4(t) = a +
(

3h2 − 4

2
+ 2(1 − h2) cos(2a) + h2

2
cos(4a)

)
ht

+ 3

32
((16 − 5h) sin(2a) − 4(2 − h2) sin(4a) − sin(6a))h2t2

+ (1 − 3 cos(2a) + 3 cos(4a) − cos(6a))
h3

6
t3

− (4 sin(2a) − 6 sin(4a) + 4 sin(6a) − sin(8a))
h4

64
t4 .

(34)

On the other hand, if we seek a solution using the auxiliary linear operator L2, we
find that the initial approximation is given by

x0(t) = ae−t , (35)

while all of the higher order terms can be shown to give zero, that is, xk(t) = 0
for all k ≥ 1. Therefore, we have the homotopy solution X(t) = ae−t . Since this
solution comes from only the initial approximation, there is no dependence on the
convergence control parameter, h. It is interesting that the homotopy solution should
essentially terminate after a fixed number of terms. The reason for this is clear if we
consider the (32) more closely: indeed, we see that x(t) = ae−t is an exact solution.
Therefore, with the choice of linear operator L2, we have obtained the exact solution
from the HAM. Since the exact solution is obtained, the method stops and all higher
order terms are zero.

Now, while the solution obtained with the linear operator L1 is not exact, we
should determine how good the approximation is. Since we have an exact solution
x(t) = ae−t , we can compare the solution (34) directly without the need for resid-
ual errors. Let us then define the integral of the square of the absolute errors as in
(31). The value of l in that equation gives the size of the interval on which we are
comparing the solutions. While the domain is unrestricted, often we consider a finite
region on which to calculate the error for numerical reasons. Of course, for the solu-
tion obtained using L2, this integral is always zero. For the case where we use L1,
we should calculate

Abs(h) = 1

l

∫ l

0
(ae−t − X4(t))

2dt . (36)

In Figs. 1 and 2, we plot this error as a function of h, for various values of l and a. As
both the size of the initial condition a and the interval size l increase, the error tends
to increase. As we increase the domain size, the solution loses accuracy. For such
cases, we would need more terms in the homotopy solution in order to recover the
lost accuracy. As the initial condition is increased, the solutions also lose accuracy,
and an increase in the initial condition results in an increase in the magnitude of the
solution, which results in any errors being amplified as well.

In Fig. 3, we plot the error minimizing approximation against the true solution
x(t) = ae−t . The first HAM solution is very accurate over the domain [0, 1], which
is where the optimization occurred. On the other hand, the solution optimized over
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Fig. 1 Plot of the absolute errors Abs(h) given in (36) for the five-term homotopy solution (34) when
compared to the exact solution xexact(t) = ae−t , for various values of a. We fix l = 1

Fig. 2 Plot of the absolute errors Abs(h) given in (36) for the five term homotopy solution (34) when
compared to the exact solution xexact(t) = ae−t , for various values of l. We fix a = 1
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Fig. 3 Plot of the exact solution xexact(t) = ae−t along with the HAM solutions with optimal convergence
control parameter h∗ = 0.33 when l = 1, h∗ = 0.22 when l = 5

[0, 5] is not very accurate over that interval. Both of these HAM solutions correspond
to the auxiliary linear operator Lx = x′. When we instead pick Lx = x′ + x, we
quickly recover the exact solution. This demonstrates that one should also carefully
select the auxiliary linear operator, and not only the convergence control parameter,
in the homotopy analysis method.

Of course, it makes sense to wonder why one choice of linear operator works
much better than another. To explain this, let us return to the discussion of the linear
operator from the previous section. At t = 0, for the present problem we obtain a
linearization (25) of the form

2 sin(x′(0)) cos(x′(0))x′ − 2 sin(a) cos(a)x . (37)

Yet, at t = 0 we must have 0 = F(x ′(0), a, 0) = sin2(x′(0)) + cos2(a) − 1, which
gives sin2(x′(0)) = sin2(a). We have two solutions for x′(0), either x′(0) = a or
x′(0) = −a. Let us pick x′(0) = −a. This gives

A0(a) = 2 sin(−a) cos(−a)

−2 sin(a) cos(a)
= 1 , (38)

which in turn implies that

L[x] = x′ + A0(a)x = x′ + x (39)

corresponds exactly with the linearization of F at t = 0. Hence, by picking the
auxiliary linear operator L to exactly correspond to the linearization of F at t = 0, we
were quickly able to recover the exact solution using the homotopy analysis method.
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4.2 Clairaut’s equation with piecewise continuity

Consider next the ill-posed boundary value problem

U(t; 1)x′2+tx′−x = 0 subject to x(0) = 0 and x′(2) = 1 , for 0 ≤ t ≤ 2 .

(40)
Here, the function U(t; τ) is a step function defined by

U(t, τ ) =
{

0 , t < τ ,

1 , t ≥ τ .
(41)

Equation (40) is a form of Clairaut’s equation [24] if instead U is set to unity.
This problem is ill-posed, since it is first order yet contains two boundary condi-

tions. A continuous exact solution exists over the domain t ∈ [0, 2], and takes the
form

xexact(t) =
{

2t , 0 ≤ t < 1 ,

1 + t , 1 ≤ t ≤ 2 .
(42)

In order to solve this equation using HAM, define

F(x′, x, t) = U(t; 1)x′2 + tx′ − x . (43)

We shall consider each part of the solution separately. First, when t = 0, note that

∂F

∂x
= −1 and

∂F

∂x′ = 0 , (44)

hence the quantity A(0) is singular. Note that near t = 0, we can solve the equivalent
problem tx′

0 − x0 = 0, x0(0) = 0, which gives the zeroth order approximation
x0(t) = At . Since this satisfies both the ODE and the boundary condition, this is
the exact solution on the region where 0 ≤ t ≤ 1, i.e., where U(t; 1) = 0, so we
do not need to calculate higher terms as they will all be zero since we have already
converged to the exact solution at the first step.

To obtain the solution on the second half of the domain, we expand F about t = 2.
We have that x′(2) = 1. Meanwhile, F(1, x, 2) = 3 − x = 0, so x(2) = 3. Thus,
expanding about t = 2, x = 3, x′ = 1, we have

(t − 2)(x′ − 1) + t − 3 − x + 4x′ = O((x′ − 1)2) , (45)

or
(t + 2)x′ − x − 1 = 0 . (46)

Define an auxiliary nonlinear operator by

L[x] = (t + 2)x′ − x − 1 . (47)

Forming the homotopy

0 = H [x] = (1 − q)L[x] − hqN[x] , (48)

where N[x] = U(t; 1)x′2 + tx′ − x = x′2 + tx′ − x, the zeroth order approximation
is given by the solution to

(t − 2)x′
0 − x0 − 1 = 0 , (49)

x′
0(2) = 1 . (50)
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The general solution is x(t) = C0(t + 2) − 1, and using the boundary condition, we
have C0 = 1 giving x0(t) = t + 1. However, note that N[x0(t)] = 0, hence x0(t)

is also an exact solution. Therefore, the homotopy series terminates after the initial
term since it has converged to the exact solution after one step. Therefore, we have
obtained the exact solution on the interval 1 ≤ t ≤ 2.

What remains is to match the solutions on the interval 0 ≤ t ≤ 1 and the interval
1 ≤ t ≤ 2. To do so, note

A = lim
t→1− x0(t) = lim

t→1+ x0(t) = 2 (51)

giving A = 2. As such, we obtain x(t) = 2t on 0 ≤ t ≤ 1 and x(t) = t + 1 on
1 ≤ t ≤ 2. This is exactly the exact solution (42).

4.3 An ODE related to the Whitney umbrella point

We consider the implicit problem

x′2 − t (t − x)2 = 0 subject to x(1) = 0 , for 0 ≤ t ≤ 1 . (52)

This ODE is related to the Whitney umbrella point [25] and also arises in the study
of slow motion of relaxation equations with one fast and two slow variables [26, 27].
Note from the form of the equation that x′(1) = ±1.

An exact solution can be given by choosing x′(1) = −1, but it takes the rather
complicated form

xexact(t) = 182/3

10

{
WhittakerM

(
1

3
,

5

6
,

2

3

)
exp

(
2

3
t3/2 − 1

3

)

−√
tWhittakerM

(
1

3
,

5

6
,

2

3
t3/2

)
exp

(
1

3
t3/2

)}
,

(53)

where WhittakerM denotes the Whittaker M function.
Note that the nonlinear operator N[x] = x ′2 − t (t − x)2 for this example can be

factored into a form
N[x] = L−[x]L+[x] , (54)

where L±[x] = x′ ± √
t(t − x). Let us chose L[x] = L+[x] and then construct the

homotopy

0 = H [x] = (1−q)L+[x]−hqN [x] = (1−q)(x′−√
t(t−x))−hq(x′2−t (t−x)2) .

(55)
This represents a rare case where the homotopy operator H [x] = 0 itself can be
solved directly. Indeed, writing

0 = H [x] = (1 − q)L+[x] − hqN[x]
= (1 − q)L+[x] − hqL+[x]L−[x]
= L+[x] (1 − q − hqL−[x]) .

(56)

Therefore, all of H [x], N[x], and L+[x] share a solution. This means that if one is
able to solve L+[x], then one will have a solution to N[x] and H [x] without the need
for iteration.
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Note that L+[x] = 0 gives the equation

x′ − t1/2x = −t3/2 , (57)

subject to x(1) = 0. Solving the ODE using integrating factors, we find

xexact(t) = C0 exp

(
2

3
t3/2

)
− 182/3

10

√
tWhittakerM

(
1

3
,

5

6
,

2

3
t3/2

)
exp

(
1

3
t3/2

)
.

(58)
Using the boundary condition x(1) = 0 then allows us to choose the arbitrary
constant C0, and we recover the exact solution (53). Again, the solution to an
appropriately selected auxiliary operator has given us an exact solution in one
iteration.

4.4 An ODE with solutions in terms of nonlinear combinations of Lambert W
functions

Let us consider the initial value problem

x′ exp(x′) − t = 0 subject to x(0) = 1 , for t ≥ 0 . (59)

This solution admits a closed-form exact solution

xexact(t) = LambertW(t)2 − LambertW(t) + 1

LambertW(t)
t , (60)

where LambertW(t) denotes the Lambert W function [36]. Although there is an exact
solution, having an analytical solution in terms of simpler base functions may cast
more light on the behavior of the solution.

Let us expand F(x ′, x, t) about x′ = 0, x = 1, t = 0 to get

x′ − t = O((x′)2) . (61)

Therefore, define the operators L[x] = x′ − t , N[x] = x′ exp(x′) − t and construct
the homotopy

0 = H [x] = (1 − q)(x′ − t) − hq(x′ exp(x′) − t) . (62)

The zeroth order deformation equations give

x′
0 − t = 0 , (63)

x0(0) = 1 , (64)

which gives the initial approximation

x0(t) = 1

2
t2 + 1 . (65)

Generally, the higher-order deformation equations give

x′
k − t = fk(t) , (66)

xk(0) = 0 , (67)
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where fk(t) involves the lower order terms in the homotopy series. Therefore, we
obtain

xk(t) = Ck +
∫ t

0
(s + fk(s))ds , (68)

and using the boundary condition xk(0) = 0, we have

xk(t) =
∫ t

0
(s + fk(s))ds . (69)

Choosing h = −1 and iterating through the process, we find

x(t) = x0(t) +
∞∑

k=1

xk(t) = 1 + 1

2
t2 − 1

3
t3 + 3

8
t4 − 8

15
t5 + 125

144
t6 + O(t7) . (70)

This is exactly the Taylor series (centered at t = 0) for the exact solution (60).

5 Conclusions

We have considered the application of the optimal homotopy analysis method
(OHAM) to the solution of implicitly defined ordinary differential equations. Such
equations may be fully nonlinear and hence may admit solutions which have only
finitely many derivatives. Since the HAM solution need only be smooth in the
homotopy parameter, rather than in the independent variables of the original prob-
lem, HAM allows us to obtain solutions even when higher-order derivatives of
the solutions may fail to exist. Indeed, one benefit of the HAM for the solution
of non-analytic solutions of differential equations was discussed recently in [20].
Furthermore, optimal selection of the convergence control parameter can aide in
obtaining solutions with low error, yielding more accurate approximations.

One interesting feature of applying HAM or OHAM to the implicitly defined
nonlinear ODEs was that we could sometimes obtain an optimal solution after few
iterations or even one iteration of the method. This was particularly true in cases
where an auxiliary nonlinear operator was employed, highlighting the need for fur-
ther study on using auxiliary nonlinear operators in the HAM, in contrast to the
commonly used choice of an auxiliary linear operator. The utility of using auxiliary
nonlinear operators was previously discussed in [37] in the context of solution to a
generalized Drinfel’d - Sokolov equation.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, dis-
tribution, and reproduction in any medium, provided you give appropriate credit to the original author(s)
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