Numer Algor (2015) 70:929-963
DOI 10.1007/s11075-015-9980-y

ORIGINAL PAPER

Presentation of a highly tuned multithreaded interval
solver for underdetermined and well-determined
nonlinear systems

Empirical evaluation of innovations

Bartlomiej Jacek Kubica

Received: 1 September 2014 / Accepted: 16 February 2015 / Published online: 24 March 2015
© The Author(s) 2015. This article is published with open access at Springerlink.com

Abstract The paper summarizes author’s investigations in tuning a multithreaded
interval branch-and-prune algorithm for nonlinear systems and presents the
developed solver. New results for using the box-consistency enforcing operator and
a new variant of the initial exclusion phase are presented. Also, a new heuristic to
choose the coordinate for bisection is considered. Extensive numerical experiments
are analyzed to provide the satisfying version of the algorithm.

Keywords Interval methods - Nonlinear systems of equations - Heuristics -
Low-discrepancy sequences - Multithreaded computations

1 Introduction

We consider the problem of finding all solutions of nonlinear systems of equations,
i.e., systems of the form:

fx)=0, 1)

x € [x,x],

where f: R" - R", m < n.

Such systems are ubiquitous in several branches of science and engineering. Many
of them are not well-determined, but underdetermined, i.e., having fewer equations
than unknowns (m < n), which means they have uncountably many solutions and
their solution sets do not consist of isolated points, but are manifolds. In particular,

B. J. Kubica (D<)

Institute of Control and Computation Engineering, Warsaw University of Technology,
Nowowiejska 15/19, 00-665 Warsaw, Poland

e-mail: bkubica@elka.pw.edu.pl

@ Springer


mailto:bkubica@elka.pw.edu.pl

930 Numer Algor (2015) 70:929-963

we encounter such systems in robotics [19], stability theory of dynamical systems
[35], differential equations solving [31] and multicriteria analysis [30].

Example As a specific example, we can consider solving the inverse kinematic prob-
lem of a serial planar n R-manipulator, i.e., a manipulator working in the X OY space
and consisting of n rotational joints. Assume, the kinematic chain starts in the point
(0, 0) and the effector is supposed to be placed in the point (1, 1) and oriented orthog-
onally (under the right angle) to the OY axis. This problem can be formulated as the
following system of equations:

n i J
Zli-ﬁcos Zxk —1=0,
j=1 k=1

i=1
J

anl,-.]L[sin Zxk —-1=0,
1

i=l  j=1 k=

n
b4
, 2
i=1
Tow )
X; € [— , ], i=1,...,n.
22
We assume /; = 1.0fori =1,...,n.

For n = 3 the problem is well determined — there are exactly two manipulator
configurations satisfying the constraints (see Fig. 1, on the left). But for n = 5, the set
of possible manipulator configurations is a manifold — it is of the measure continuum.
A few example configurations are presented on the right part of Fig. 1

Interval methods (see, e.g., [18, 20, 37]) are a well-known approach to find
all solutions of both kinds of systems. Their essence is to perform operations on
(possibly multidimensional) intervals (so-called boxes in R"; see Fig. 2) instead of
specific numbers (vectors), so that, if a € aand b € b, then (a ©b € a©b), i.e., the
result of an operation on numbers belongs to the result of operation on intervals, con-
taining the arguments. This leads to interval arithmetic operations and definitions of
basic functions operating on intervals. We shall not define basic interval operations
here; the interested reader is referred to several papers and textbooks, e.g., [18, 20,
37].

Fig. 1 Left: both feasible 3R manipulator configurations, right: three examples of uncountably many
feasible SR manipulator configurations

@ Springer



Numer Algor (2015) 70:929-963 931

In the previous series of papers ([22-29]) the author presented an interval solver
for such systems and investigated several acceleration tools. The solver is targeted at
underdetermined problems, yet it could be used for well-determined ones, also.

2 Generic algorithm

The solver is based on the branch-and-prune (B&P) schema that can be expressed by
pseudocode presented in Algorithm 1.

Algorithm 1 IBP

Require: L,f, ¢
1: {L is the list of initial boxes — often containing a single box x(?'}
2: {Lyer is the list of boxes verified to contain a segment of the solution manifold}
3: {Lpos is the list of boxes that possibly contain a segment of the solution
manifold}
4 Lyer = Lpos =
5: x=pop (L)
6: loop
7. process the box X, using the rejection/reduction tests
8: if (x does not contain solutions) then
9: discard x
10:  else if (x is verified to contain a segment of the solution manifold) then
11: push (Lyer, X)
12:  else if (the tests resulted in two subboxes of x: X1 andx®) then
13 x=x0
14: push (L, x?)

15: cycle loop

16: elseif (widx < ¢) then

17: {The box x is too small for bisection}
18: push (L o5, X)

19: end if

20: if (x was discarded or x was stored) then
21: x=pop (L)

22:  if (L was empty) then

23: {all boxes have been considered}

24: return Ly, Lpos

25: end if

26: else

27 bisect (x), obtaining x(I) and x@
28 x=x

29:  push (L, x?)

30: end if

31: end loop

@ Springer



932 Numer Algor (2015) 70:929-963

Fig. 2 Bisection of an interval and two- and three-dimensional boxes

Operations “push” and “pop” in the algorithm, mean inserting and removing
elements to/from the set (the names will be used independently on how the set is
represented — as a stack, queue or a more sophisticated data structure).

The precision parameter & can have various values. Usually, 1077-107° are suf-
ficient values, but for hard problems (especially underdetermined ones), we have to
content ourselves with larger thresholds; or the computation will take too much time.

The bisection operation (or — to be more general — subdivision of a box) slices a
box into subboxes. Usually, one of the edges of the box is splitted in the midpoint
and that is the approach we use (see Fig. 2).

Algorithm 1 allows to find all solutions of the problem, yet it can be time-
consuming and memory-demanding. Because of this, it is very important to choose
proper “rejection/reduction tests” (mentioned in Algorithm 1) to tune the efficiency
as much as possible. Fortunately, the algorithm can be parallelized (see, e.g., [24]),
as processing different boxes can be performed independently. Obviously, the lists L,
Lyer and L 46 have to be implemented in a multithreaded-safe way; so do other used
tools.

The “rejection/reduction tests”, mentioned above may vary. Several of them are
described in previous papers of the author, specifically [27-29], i.e.:

— various kinds of the interval Newton operator and switching between the
componentwise Newton operator (for larger boxes) and Gauss-Seidel with
inverse-midpoint preconditioner, for smaller ones,

— asophisticated heuristic to choose the bisected component [27],

— aninitial exclusion phase of the algorithm (deleting some regions, not containing
solutions) — based on Sobol sequences [28],

— an additional test based on quadratic approximation of a single equation and the
Hansen’s method [18] to solve quadratic equations with interval coefficients; see
[29].

@ Springer



Numer Algor (2015) 70:929-963 933

There are many other tools, also. Some of them are not suitable for multi-
threaded computations as they use, e.g., linear programming while popular linear
programming solvers are either inefficient (e.g., the solver used in the C-XSC library
[1]) or not MT-safe, e.g., the solver GLPK [5]. Hence, we do not consider some
popular tools, like LP-preconditioners of [20] or LP-narrowing.

As Algorithm 1 is, in general, time-consuming and memory-demanding, it is cru-
cial to provide a proper heuristic to choose and parameterize the rejection/reduction
tests efficient for a specific class of problems.

In mentioned papers, the author considered several tools and proposed some poli-
cies to apply them. Yet, as there are so many of these tools, specific cooperation
between them and tuning of the heuristics, remains to be determined.

3 Box consistency enforcing

One of the tools to improve the performance of Algorithm 1 are so-called consis-
tency operators. They have not been considered in previous papers of the author. As
reported, e.g., in [18], enforcing some partial consistencies can be very efficient on
large boxes.

There are several kinds of partial consistencies, the most commonly used being
box-consistency (BC), described, e.g., by [14] and hull-consistency (HC) — see, e.g.,
[10]. The latter requires complicated decomposition of the expression into a syntactic
tree, so we decided not to use it in the current version of our method (unless we
consider the quadratic approximation of [29] a very specific instance of HC). Hence,
box consistency can be enforced using the unidimensional Newton operator that is
easy to implement.

The idea of box consistency is to find the leftmost and rightmost “pseudo-
solutions” of a constraint [12], i.e., intervals [x}, x}*], such that:

0e f(X],Xz, ey X1, [x;“,x;H] ,X,'_H,...,Xn> . (2)

where the interval x; * is the next representable floating-point number, after x’,ie.,
[xl.*, x;“ +] is the smallest representable interval (such intervals are called canonical
intervals).

Formula (2) is valid for equations, but it can be adapted for inequalities and other
types of constraints, also.

The algorithm, we use is usually called BC3; as an analog of AC3 (AC stands
for “arc consistency”; see, e.g., [11]). Usually, the algorithm is formulated as sub-
sequent calls to recursive procedures “left narrow” and “right narrow”, computing
leftmost and rightmost pseudo-solutions. As specific implementations vary in several
details (see, e.g., [10, 12, 14, 15]), the author presents pseudocodes for his own imple-
mentation. Procedure “left narrow” is described by Algorithm 2 (“right narrow” is
analogous) and the overall BC3 procedure — by Algorithm 3.

Please note, we break the procedure if the progress is not sufficient. The parameter
€equal 18 used for this purpose and the proper condition is checked in line 10 of
Algorithm 3.

@ Springer



934 Numer Algor (2015) 70:929-963

Algorithm 2 Procedure left narrow

Require: x,f,1i, €, gc.qual
1o Xiefr = [x;, x;"]
2: if (0 € f(xer/)) then
3 returnx;, ., “found a pseudo-solution”
4: end if
5: compute the interval extension of g; = g ){l (x)
6: {Using the automatic differentiation arithmetic makes us compute the whole
interval gradient g, but only one component is going to be used}
7 update X = Xieft
_ fXiefr)
i

o {using ordinary or extended interval arithmetic}

8: compute Xpeyw = Xjefs
9: if (X; N Xpey = @) then
10:  return “no solution”
11: end if
12: if (dist(X;, Xpew) < Eequal) then
13: update X; = X; N Xpew
14:  return x;, “found a pseudo-solution”
15: end if
16: update X; = X; N Xpew
17: if {(widx; < ¢)} then
18:  {The component x; too narrow for bisection}
19:  return x;, “found a pseudo-solution”
20: end if
21: bisect x;, obtaining xl(.l) and xl(.z)
22: if (left narrow (x| f, i, &) results in (x*, “found a pseudo-solution™)) then
23:  return x*, “found a pseudo-solution”
24: end if
25: if (left narrow (x, f, i, €) results in (x*, “found a pseudo-solution”)) then
26:  return x*, “found a pseudo-solution”
27: end if
28: return “no solution”

The parameter €444/ is used as the threshold value for braking the BC3 procedure
— we set Eequal = 10~*. Such policy is not used in other known versions of the BC3
procedure; yet, it performs well in our algorithm and seems to improve the efficiency
(results proving it are not presented due to the lack of space).

Heuristic But for which boxes should we apply the BC3 procedure? For “suffi-
ciently large”, as pointed above. The heuristic we propose is described by Algorithm
4. It suffices that a single edge of the box is longer than the threshold value &p3.
In Section 6 we consider two possible values of &p.3: 2 and 2; results for 1,',5 are
not presented as they occurred to be less promising. As for &ycmp, the value ,]l was
used — twice larger than in [27] to emphasize the importance of the componentwise
operator, partially replaced by the BC3 procedure.

@ Springer



Numer Algor (2015) 70:929-963 935

Algorithm 3 Procedure be3revise

Require: x,f, i, €, cqual
1: repeat

store x4 = x

modified = false

if (left narrow (x, f, i, &) results in “no solutions”) then
return “no solutions”

end if

if (right narrow (x, f, i, &) results in “no solutions”) then
return “no solutions”

end if
if (dist(x;, X'9) >= £.quq) then

11: modified = true

12: end if

13: until (not modified)

14: return x

R A A S

H
=

Operators Ncmp and GS are described, e.g., in [23, 25, 27]. For the sake of brevity,
formulae are as follows:

f[(le"'7Xj7]a-xj7xj+]a"'aXn)

NCnlp(Xaiafviaj) :i]_
BXI]. (le "'7X}’l)

s

GS(Xa-i'afa l) - )\él - Yl 'f(ila"'v-)\é}’naxln#»]a"'7X}’l)+

+ Z Yi:'J:j'(Xj_)Ej) /Y- J) .

J=Lj#

The quantity X, in the above formulae, is chosen to be mid x.

Algorithm 4 Heuristic-BC3

Require: x, f, 5.3 then
1: if (3i wid (x); > €pc3) then
2:  perform bc3revise procedure
3: end if
4: if (there are at least (n —m) components of x, for which wid (x;) > &nemp) then
5: use the Ncmp operator
6: else
7 use the GS operator
8: end if

@ Springer



936 Numer Algor (2015) 70:929-963

4 Initial exclusion phase

This tool, proposed by the author, has been described in [26, 28]. Before starting the
B&P method (i.e., Algorithm 1), we perform the procedure described by Algorithm
5.

Algorithm 5 The initial exclusion phase

Step 1. Generate Ny, points, covering the unit box [0, 1]*. Generate Ng,po; points
t®, covering the domain x©, by affine transformation of points, generated in Step 1.
Step 2. Let L. = ¥ be the list of boxes to exclude.

Step 3. Foreachi = 1, ..., Nsopo perform the following steps.

Step 4. Choose the equation number j and compute f; (D).

Step 5. If fj(t(i)) € [—e¢, €], increment i and — if i <= Nyope — return to Step 4,
else go to Step 10.

Step 6. Generate the infeasible box x
[36].

Step 7. Expand x

excl’
Step 8. Store ng)cl in the list Leyc;.
Step 9. Increment i and — if i <= Njpo — return to Step 4.

Step 10. Compute the complement of box-set Lx;.

@)

excl

around ) using the approach of Shary

@ using the e-inflation procedure; see, e.g., [20].

Algorithm 5 does not specify several important features:

—  how to compute the elements of sequence (1)),

—  which equation number j to use for the point t%); in [28] we used a round-
robin policy (the equation number j =i mod m was used), which was quite an
arbitrary assignment; an alternative is presented in one of the below paragraphs,

— how to compute the complement of the created box-set L. in x©.

Computing the Sobol sequence is a relatively complex task, but there exist
efficient and well-know algorithms (based on Gray code) and even open-source
implementations (e.g., [8]). Surprisingly, a more difficult problem is computing the
complement of the set of excluded boxes.

Using all equations for the exclusion Instead of arbitrary choosing a single equation
for each (+/) in Algorithm 5, we can use all of the equations. Modification of the
code is very simple and does not even require an additional loop.

For each point we start with the equation f;(x) = 0 for j = 1. After realizing —in
Step 7 — that we can no longer expand the box for this equation, we increment j and
proceed. The e-inflation procedure is broken when j becomes m and no progress can
be obtained for the last equation. Eventually, we choose j for which the expanded
box had the largest Lebesgue measure.

Additionally, we can expand the box even further if the problem is sparse. For
fi _

each j the excluded box, all variables k such that oy = 0 in the whole domain, can

a
Xk
be set to x; = X]((O). Let us call this technique sparsity-based expanding.

@ Springer



Numer Algor (2015) 70:929-963 937

Fig. 3 Result of exclusion of two boxes — the larger or the smaller box is excluded first

Complement of a box-set There exist a well-known procedure — described by [20]
— to compute the complement of a single box; we present it in Algorithm 6. The
complement of the box-set can be computed by Algorithm 7, yet the procedure is
inefficient. Not only, it does not parallelize well, but the resulting box-set may consist
of too many boxes — see Fig. 3 (also described in [28]).

Algorithm 6 Complement of the box x**“/ in x

Require: x°* x, L

1. L={}

2 if (x**/ N x = ) then
push (L, x)
4 return
5. end if
6: for(i=1,...,n)do
7. Z= xf“l nNx;
8
9

hed

if (z > x;)
create a box w such that w; = [x;, z], w; = x; when j #i
10: push (L, w)

11:  endif

12:  if (z < x;) then

13: create a box w such that w; = [z, x;], w; = x; when j #i
14: push (L, w)

15:  end if

16: X, =12

17: end for

18: return L

The problem is that we exclude the larger x**¢/ box from x first, but the larger
excluded box can have a smaller intersection (x*<! N x) with x.

The simple improvement is to exclude from each box x the box that has the largest
intersection with it — so we exclude different boxes from different parts of the domain
at the same time, probably. Such a procedure can be parallelized, simply — using the
task-parallelism model, which is used in TBB [2]. The procedure is described by
Algorithm 8

@ Springer



938 Numer Algor (2015) 70:929-963

Algorithm 7 Old-exclusion-procedure

Require: X0 Loca
1: sort L.yo with respect to decreasing Lebesgue measure
2 L1 = {x©)
3. for all x**<! € L,..; do
4:  compute the complement of x**¢/ in L1 and store in L2
5: L1=1L2
6: end for
7. return L1

Yet another feature, used in the ultimate version of the algorithm, is not to exclude
all boxes from L.,.;. When we obtain the given number of boxes in L — Neysoff =
128 occurred to be a good choice — now boxes are not excluded, but x’s from the
remaining tasks are inserted into L directly. This trick might seem peculiar, but it
improves the performance, significantly.

Remark TBB templates tbb::parallel do and tbb::parallel do feeder
are very suitable for the implementation. The former allows a concurrent execu-
tion of a do...while loop, i.e., executing the same procedure for an unknown
number (unlike parallel for) of arguments. In our case: concurrent executions
of Algorithm 8. And adding additional tasks is performed by a dedicated “feeder”
object. Details can be found in [22] or, directly in TBB documentation [2].

Algorithm 8 New-exclusion-procedure

Require: task (X, Lexcr)
1: {Obviously, we start with the task (x©, L,x).}
2: {All tasks put the boxes (with synchronization) to the list L of Algorithm 1.}
3. choose x*¢! from L,y., such that the Lebesgue measure of x N xexel g
maximized
4:  if (this measure is lower than &) then
5 {It is not beneficial to compute the complement of these boxes.}
6: return
7. end if
8: remove X*! from L,y
9: compute the complement of x¢*! in x and store in L, gk
10: if (L == {}) then
11:  for all X"*¥ € L;, do
12: push (L, x*%)

13:  end for
14:  return
15: end if

16: for all xX*** € L; s do
17:  create task (x"¢%, Loxcl)
18: end for

@ Springer



Numer Algor (2015) 70:929-963 939

5 Choosing the coordinate for bisection

In [27] the problem of choosing the proper variable for bisection has been discussed.
We emphasized the insufficiency of earlier approaches (see, e.g., [9]) and proposed
the heuristic, described by Algorithm 9.

Its main idea was not to bisect the component that is the longest or has the max-
imal smear, but the one that will cause the resulting boxes to be convenient for the
Newton operator to narrow. This led to the idea of choosing the component with
the minimal magnitude. On the other hand, bisecting such components only, would
result in loosing the convergence (also, it is not beneficial to have large differences
between the component length, so if the difference between the longest and short-
est component is too large, it is good to bisect the longest component). Hence we
obtain a relatively complicated policy, trying to take into account all these facts. It is
described by Algorithm 9.

Algorithm 9 Choosing the variable for bisection of x — heuristic from [27]

Require: x {We assume the procedure gets sufficient info about the results of the
Newton operator evaluation, also — see below}
1: FindMaxDiam(X, jnaxs> Wmax)
2: FindMinDiam(X, jnin, Wmin)

3: FindMaxDiamUnnarrowed(X, jmax unn> Wmax unn) {Find the index and diameter
of the longest component not reduced by the last use of the Newton operator}

4: if (Newton reduced no components or Wyqx > 1.5 - Wiax unn) then

5: return j

6: else if (Wiax unn > 8 - wiyiy) then

7. return jyqx unn

8: end if

9: FindSmallestMaxMag(x, j, w) {Find the component with the smallest maximal

magnitude of the Jacobi matrix in all rows}
10: if (w > 0.1) then
11:  return j
12: else
13: return j,qx unn
14: end if

The algorithm was designed for underdetermined problems, but experiments in
[27] have shown some improvements for well-determined problems, also.

A careful analysis shows, that the main reason of this improvement is avoid-
ing to choose the components, narrowed by the Newton operator (by a narrowed
component, we mean the one for which the operator had improved both bounds, i.e.,
X% Cintx;).

Should we choose the minimal magnitude components, indeed? For well-
determined problems, it is not beneficial, certainly — we should bisect components
with the maximal magnitude as they have the largest influence on the overestimation

@ Springer



940 Numer Algor (2015) 70:929-963

of the solved functions. For underdetermined problems, the situation is more compli-
cated. The above argument holds, but the component with the maximal magnitude is
the one that should be narrowed by the Newton operator (for underdetermined prob-
lems not all components are narrowed to verify the solution existence!). Experiments
with the MaxSumMag and MaxSmear heuristics (most of them are not presented due
to lack of space, see also [27]) show a very poor performance of such policies for
underdetermined problems.

Consequently, we propose to stick to choosing the maximal diameter for boxes
that are not narrowed yet. For boxes where some components have already been
narrowed, we can use the maximal sum magnitude heuristic, but only on unnarrowed
components. It occurred that for smaller boxes, it is better to switch to the maximal
diameter again (but, also, not bisecting the narrowed components).

For well-determined problems, the MaxSumMagnitude performs well, in general,
but an exception to it is the Brent10 problem. Hence, we switch to MaxDiamUnnar-
rowed on occasions.

Details are given by the pseudocode in Algorithm 10.

Algorithm 10 Choosing the variable for bisection of x — the new heuristic

Require: x {We assume the procedure gets sufficient info about the results of the
Newton operator evaluation, also — see below}
FindMaxDiamUnnarrowed(X, jmax unn> Wmax unn)

1:

2: FindMaxSumMagnitudeUnnarrowed(X, jmax mag> Wmax mag)

3: if (Newton reduced no components) then

4: if (m < n (i.e., the problem is underdetermined) or wy,qxynn > 16 -
Whax mag) then

5 return jyqx unn

6: else

7: return jygx mag

8: end if

9: else

10:  if (Wimax mag > 0.1) then

11: return jyqx mag

12: else

13: return j,qx unn

14:  end if

15: end if

6 Computational experiments

Numerical experiments were performed on a computer with 4 cores (allowing hyper-
threading), i.e., an Intel Core i7-3632QM with 2.2GHz clock. The machine ran under
control of a 64-bit Manjaro 0.8.8 GNU/Linux operating system with the GCC 4.8.2,
glibc 2.18 and the Linux kernel 3.10.22-1-MANJARO.

@ Springer



Numer Algor (2015) 70:929-963 941

The solver is written in C++ and compiled using the GCC compiler. The C-XSC
library (version 2.5.3) [1] was used for interval computations. The parallelization (8
threads) was done with TBB 4.2, update 2 [2]. OpenBLAS 0.2.8 [3] was linked for
BLAS operations.

We used 8 threads, on the 4 cores, which means hyper-threading was used on
all cores. According to the author’s experiences, it reduces the computation time
by a factor of c.a. 0.9 with respect to having a single thread per core. Please note
that parallelization does not affect the number of iterations, but the execution time
only.

The following test problems were considered — four of them were underdeter-
mined (Academic, Hippopede, Puma6, SR planar) and five — well-determined (Box3,
Bratu30, Brent10, Broyden16, Transistor).

The first of the underdetermined ones is a set of two equations — a quadratic one
and a linear one — in five variables [13]. It is called the Academic problem.

x12+x%+x32+xf+x52—1.0=0, 3)

x1+x+x3+x4+x5=0,

x1,x2 € [—1,1], x3 € [-0.7,0.7], x4 € [-0.8,0.8], x5 € [-2,2].
Accuracy ¢ = 0.05

The second one is called the Hippopede problem [25, 32] — two equations in three
variables.

x]2+x§—x3=0, 4)
x%+x32— 1.1x3=0.
x1 € [-1.5,1.5], xp € [-1,1], x3 € [0,4].

Accuracy ¢ = 1077 was set.

The third problem, called Puma, arose in the inverse kinematics of a 3R robot and
is one of typical benchmarks for nonlinear system solvers [6].

X 4xF-1=0,x34+x-1=0, )

x52+xé—1=O, x72+x§—1=0,

0.004731x1x3 — 0.3578x2x3 — 0.1238x1 — 0.001637x2 — 0.9338x4 +x7 =0,

0.2238x1x3 + 0.7623x2x3 + 0.2638x1 — 0.07745x2 — 0.6734x4 — 0.6022 =0,

xexg + 0.3578x1 + 0.004731x, =0,

—0.7623x1 + 0.2238x2 + 0.3461 =0,

X1, ...,xg € [—1,1].

In the above form it is a well-determined (8 equations and 8 variables) problem
with 16 solutions that are easily found by several solvers. To make it underdetermined
the last equation was dropped — as in [25] — resulting in 7 equations with 8 variables.
Accuracy ¢ = 1077 was set.

The fourth one is the inverse-kinematics problem of a planar redundant N-R
manipulator, the effector of which should be placed in position (1.0, 1.0, 7 ) We

@ Springer



942 Numer Algor (2015) 70:929-963

presented the problem in Section 1, already, but we repeat it here for the sake of
completeness:

Yot [Jeos Y m|-1=0, (6)

T .
x,-e[—z, 2], i=1,...,N.

We use this problem for N = 5,; = 1,i = 1,...,5; the accuracy is set to
e=2-10"2.
The fifth problem is well-determined — it is called Box3 [6] and has three equations
in three variables.
exp(—0.1-x1) —exp(—0.1-x2) —x3 - (exp(—0.1) —exp(—1.0)) =0, (7)
exp(—0.2 - x1) —exp(—0.2 - x2) — x3 - (exp(—0.2) —exp(—2.0)) =0,
exp(—0.3 - x1) —exp(—0.3 - x2) — x3 - (exp(—0.3) —exp(—3.0)) =0.
x1, x2 € [—100.0, 100.0], x3 € [0.1, 100.0] .

Accuracy € was set to 107>,
The sixth problem is well-determined, also and very sparse; it is called Bratu [6].

exp(x1)
-2 =0, 8

N 41 X1+ x2 (8)
exp(x;) .

Xi—1+ Np-i—ll —2xi+x,~+1=0, i=2,....,.N—1,
exp(xy)

_ —2xy =0,
Nty g T

xi €[=108%,20], i=1,...,N.

We consider this problem for size N = 30. Accuracy ¢ = 10~° was set.
The seventh problem is called the Brent problem — it is a well-determined algebraic
problem, supposed to be “difficult” [4].

x2
Bxi - (=2 + ) =0, ©)
e )2
3x,--(xz'+1—2x,-+xl>1)+(x’+1 4x’*]) =0, i=2,...,N—1,
20 — xn_1)>
3xN'(2O_2xN+XN—1)+( zN 1) =0,

xi€[-10%,10%, i=1,...,N.

@ Springer



Numer Algor (2015) 70:929-963

Presented results have been obtained for N = 10; accuracy was set to 1077,
The eight one is the well-known Broyden-banded system [6, 25].

943

X QA+SxH+1-Y xj-(I+x)=0, i=1_...N, (10)

JeJi
Ji=1{j|j#iand max{l,i —5} < j <min{N,i +1}},
x; € [-100,101], i=1,...,N.

In this paper we consider the case of N = 16. The accuracy ¢ = 107 was set. And
the last one we call “Transistor” is taken from [34]. It is a system of 9 equations in 9

variables:

(I —x1x2) - x3 - (CXP (xs (g1 — &3k - 107 - x7 — g5 - 1072 -xs)) - 1) +

—gsk + gak - x2 =0, k=1,...,4, (1)
(I = x1x2) 'x4'<exp <X6~(81k—gzk—g3k 1073 - x7 + gag - 107 ~x9)) - 1>+
—&sk - X1 + g4k =0, k=1,..., 4,

x1-x3—x2-x4=0.
x; €[0,10], i=1,...,9.

The matrix of g,,; parameters can be found, e.g., in [34] and [33]. Accuracy ¢ = 10°8

was used in our experiments.

The following notation is used in the tables:

fun.evals, grad.evals, Hesse evals — numbers of functions evaluations, its gra-
dients and Hesse matrices evaluations (in the interval automatic differentiation
arithmetic),

bisecs — the number of boxes bisections,

preconds — the number of preconditioning matrix computations (i.e., performed
Gauss-Seidel steps),

bis.Newt, del.Newt — numbers of boxes bisected/deleted by the Newton step,
Sobol excl. — the number of boxes to be excluded generated by the initial
exclusion phase,

Sobol resul. — the number of boxes resulting from the exclusion phase, i.e., the
size of the box-set L to be considered by the B&P method,

bc3 — the number of calls of the consistency enforcing algorithm — Algorithm 3,
bc3.rev. — the number of “first-level” calls (i.e., not counting the recursive ones)
of “left narrow” and “right narrow” procedures,

del.bc3 — the number of boxes deleted by consistency enforcing,

g.solv — the number of interval quadratic equations the algorithm was trying to
solve,

g.del.delta — the number of boxes deleted, because the discriminant of the
quadratic equation was negative,

q.del.disj. — the number of boxes deleted, because the solutions of a quadratic
equation were disjoint with the original box,

g.bisecs — the number of boxes bisected by the quadratic equations solving
procedure,

@ Springer



944 Numer Algor (2015) 70:929-963

— pos.boxes, verif.boxes — number of elements in the computed lists of boxes
containing possible and verified solutions,

— Leb.pos., Leb.verif. — total Lebesgue measures of both sets,

— time — computation time in seconds.

The ultimate table — Table 14, showing results for the currently most efficient
algorithm version — has two additional rows, describing speedups with respect to two
reference versions:

— sp(basic) — with respect to version “basic+BLAS” (see below for the description
of both names),
sp(PPAM) — with respect to version “PPAM2011”.

We present results for the following algorithm versions:

— basic — for each box we compute the Jacobi matrix and use the interval Gauss-
Seidel step with inverse-midpoint preconditioner; bisection over the variable
with maximal diameter; no additional tools,

— basic+BLAS - as above, but the inverse-midpoint preconditioner is computed
approximately and BLAS procedures are applied for matrix operations,

— PPAM2011 - the version presented in [27],

—  PPAM2011+BC3(epe3),

— PPAM2011+QH - the version presented in [27], with the Hansen’s quadratic test,
but no Sobol exclusion phase; see [29],

— PPAM2011+Sobol(k) — the version presented in [28], but with the new comple-
ment computing algorithm,

—  PPAM2011+BC3(gpc3)+QH, PPAM2011+Sobol(k)+BC3(ep¢3), etc. — various
combinations of the used tools.

Tables 1, 2, 3, 4,5, 6,7, 8,9, 10, 11 and 12 contain results for several simple
versions of the algorithm, using many variants of the used tools. The two ultimate
tables — Tables 13 and 14 contain the experiments for versions that —according to
previous experiments — occurred to be most promising (see the analysis in the next
section).

Remark 1 Please note that Table 1 contains two sets of results — the additional
row (“BLAS-time”) presents the computation times of the “basic+BLAS” algorithm
version. This is done to save space. Other quantities, i.e., numbers of function eval-
uations, gradients, etc. are not presented for this version as they are very similar to
results for the “basic” version. Very similar, but not identical — minor differences can
be observed for problems Hippopede, 5R planar and Box3. Details are available form
the author upon request.

Remark 2 Please note, results of the exclusion phase in its current version are not
deterministic. The number in the filed “Sobol resul.” may vary by a small factor and
also computational time may be a few seconds higher or lower (also the number of

@ Springer



945

Numer Algor (2015) 70:929-963

00TsT<
00CST<
e/u
e/u
e/u
e/u
e/u
B/U
e/u

B/u

JO}SISUBI],

1v9C1
s8I¢T
¥1-9C

00

1

0
0CL198681
LEGSEESYT
CILIEYIVLY
0CTSLBLLEOE

9uaphorg

421!

09T

99-9¢

£8-9C

08

09t
986S1C69
656L56£9
0Ier08ceel
098SS1269

onuaIg

00TsT<
00CST<
B/u
e/u
e/u
B/u
B/u

B/u

B/u

B/u

ocmelg

[45rd
00

I

0
686079
(43330014
€CeLIve
L967981

gxogq

L9

8

L-96
10200070
SL8T
€L8EITC
C60¢€LBET
800L9L
SISYCo9y
9LC6191v

reuerd ¥g

881

0S¢

I1-9¢
9y-9C
CleoeL
8v06¥Ey
SO8EVI8I
SL68166
L8OTLSTY1
§€9900LC1

Lewng

0¢

Ic
6282000
91-9¢
ovcey
9€TEYTT
8V0SILL
6ESYIvY
YOT0ELLT
9600€vST

opadoddry

8

8

9-29
9S¥ST0°0
8L
99696
6L661SC
£8¢t9¢el
991651S
8566605

JTWAPLIY

wn-SvId
oun
JHRAQT]
‘ssod-qo]
SOX0Q JIIOA
sox0q’sod
spuodaxd
SUONO9SIq
S[eAd 9SS
s[eao peId

S[eAd "unjy

woqoid

UOISIOA WILIOF[E  O1Skq,, ) 10 s)nsa1 [euoneindwo) | Iqe],

pringer

NS



Numer Algor (2015) 70:929-963

946

00¢sT<
B/u
v/u
e/u
B/u
B/u
v/u
B/u

B/u

Jojsisuer],

Cl9
611-°¢

00

I

0

¥901vLyC
£60C8099
00csoveclc
COLYOYSLOL

91udphorg

L6
8L-9C
£8-9¢

918

6Ly
661717176¢
9I€LOTE
0C9¢€81CL
80CSYOLY

oTIuRIg

00T$T<
e/u
e/u
eu
e/u
e/u
U
e/u
e/u

ogmerg

8CC
00

I

0
SOTT0S
9TCs9¢
LTST161C
L66TCET

gxog

S9

9-9C
€12000°0
09¢S
£89¥¢0¢C
S88Y6611
0TseEryL
6ccr06tY
029920cs

reuerd ¥¢

€

Cl=¢
Ly-o¢
P06vEl
9LY691
091961¢
6SSSLIT
LTT8BILI
LESYSYST

Lewng

4
969¢00°0
L1-°1
CL91T
s6611
928165
1166C¢
8LIT9ET
8891811

opadoddryg

L

G2l
0¥0920°0
08
(47431
Y£6TSTC
LLITYCI
2900L6Y
ovcIeLs

JTUIAPEIY

oumn
JHRAQ]
‘ssod-qo]
SOX0Q JIIOA
sox0q’sod
spuodaxd
SUONO9SIq
S[eAd 9SS
s[eA9 peId

S[eAd "unjy

wa[qoig

UOTSIOA WILIOSTE [ TOTINVA,, U} 10J sinsar [euoneindwo) g [qel,

pringer

NS



947

Numer Algor (2015) 70:929-963

002ST<
e/u
e/u
e/u
e/u
e/u
e/u
e/u
B/U
e/u

B/u

JO}SISUBI],

¥99¢
(44579

00

1

0

LEOSTO1
IST16L9
8L8I116C
86V6LI1
0€er01L96
€8S9ILI0VE

9uaphorg

LE

LLT
18-°L

1¢€8

(454
COL8TLI
8091¢ce
189C¢L
£68269
£€9¢€C8CC
86500L0C

O1ua1g

0025T<
e/u
e/u
/U
e/u
e/u
e/u
e/u
e/u
e/u
e/u

ocmelg

0€-2¢
00

I

0
YOrCIol
9650V
(21454
oS
0LEL6OI
96LLE6I

gxogq

S9

9-9C
L12000°0
9¥4Y
£6€620C
191cSey
6996LETT
2067£99
¥20656
09scoCIv
1€9¢60vy

reuerd ¥g

61

(45514
Ly=21
PSLOTT
881L9¢
01SL
796C6L1
SLSYS6
LY8E
0S09L6€ET
[ A8 241!

Lewng

1
1L100°0
8I-°1
SIS6
S0e9
vLOT
€69
19LLT
13
991011
L689C1

opadoddry

8

9-29
L8SSTO0
901
80¥0€6
CL89CE
0691LcC
%4474
LOE99
1985805
011¢€88

JTWAPLIY

Elsiiil
JHURAQYT]
‘ssod-qo

SOX0Q JLIOA
sox0q sod

‘Alos'b
spuooaxd
il ibEN ]

S[eAQ 9SSOH

s[eA9 peId

S[eAd "unjy

woqoid

uorsioa wpos[e  HO+1 10NV, 9U} 103 sijnsa1 [euoneindwo)) ¢ dqel,

pringer

NS



00TsT<
e/u
e/u
e/u
v/u

Numer Algor (2015) 70:929-963

B/u
B/u
e/u
v/u
B/u

B/u

JIO}SISUBI],

948

9

00

8I1-°9¢

0

€
LETBILYSS
¥6181¢C
015886
€0vLIST
VLLLEBBBI
6CLOVY0STT

9uaphorg

(94

826
08-29

S8

80S
€161891
L91¢T
8Y1L6CI
PreovIl
celIolIe
LLOOYTTT

O1ua1g

863
00

[4

0
0€LYES
994

8¢

el
Iviocy
€681¢Tl

ocmelg

¥1-96
00

I

0
LSOSTI
€0L1
LOTO0TY
76689¢
6€0TCLI
16CCSS1

gxogq

€9

9-9¢C
120000
YLTS
£850€0C
068191
61758
020LYSTI
¥9950L
£eESroLy
65¢89¢HY

reuerd y¥¢

(33
11-9¢
Ly=oL

926161
886€L9
COILL
1901
LTES66T
0LL6LIT
SYevSsye
(485548 ¢4

Lewng

I
2000
61-31
006S
899¢
Scl
Sl
00s6¢
6L¥91
90¢€LL
618L8

apadoddry

8

9-96
¥€0920°0
43!
9L8ET6
Y6CI1
659
0LETTYC
€LTLYTI
T80ESIS
8EEVIOS

JTWAPBIY

owm
JHRAQI]
‘ssod-qo]
SOX0Q JIIOA
sox0q sod
"AQI'€0q
€99
spuooaid
SUOTO9SIq
S[eAd 9sSOH
s[eA9 peId

S[eAd "uny

woqoid

UOISIOA WIYILIOS e A cﬁ.km v €09+1102INVdd,, U3 Joj synsa1 [euoneindwo)  aqe],

pringer

NS



949

Numer Algor (2015) 70:929-963

00csT <
e/u
e/u
e/u
e/u
e/u
e/u
e/u
e/u
e/u

B/u

Jojsisuer],

LE9
10C-°¢

[ 4

1

4
cLyveceet
9¢8008
6877L0S¢
1SevesSy
69¢99¢L0T
LS6S9€€68

9uopAo1rg

[43
¥¢-ol
18-91

LI8

081
9€CS091
vl
LO0EY91
(44531341
LLLOYSLE
S901€ESST

oTIuRIg

86-9%
00

4

0
LL6TES
6v¢

4

0cl
01981%
990LTCl

ogmerg

01-9¢
00

!

0

L186L
1cs
66911
IsC1LT
COILOLT
CTLOLGYT

gxog

€9

9-9C
C12000°0
68¢CS
Te8ee0C
668181
LSL6
CSI8LSTI
OvrvelL
(48443594
SSLI%6IY

reuerd ¥¢

Le
11-°¢
Ly=3¢C

9Y0CLI
966¢1S
Yee0e
LSY
€69L8¢€C
VLYIVEL
81626961
00858161

Lewng

C
1¥200°0
81-29
[{33%4
80996
Y4

€
(4344
L00€ET
869596
L61068

opadoddry

8

G-o1
8055200
9¢l
¥08C16
09¢

13
8€0L8ET
166¥7LCI
8€¢001¢S
0199161

JTUIAPEIY

oun
JHOAQYT
‘ssod-qo]
S9X0Q"JLIOA
sox0q’sod
"AQI'¢0q
€99
spuodaxd
NIIREN]
S[eAd 9SS
S[eA9"peId

S[eAd "unjy

wa[qoig

uoIsIoA WyoS[e (1o )EIE+1 10TINVdd,, 343 10§ $Ynsai [euoneindwo) ¢ AqeL

pringer

NS



00csT <
e/u
v/u
e/u
e/u

Numer Algor (2015) 70:929-963

v/u
v/u
B/u
e/u
v/u
e/u
B/u

B/u

Jojsisuer],

950

LITIL

00

111-9%

0

[4
€901YLET
LLSEE6T88
S0Tre6e
yeoTeel
P€CsToT
98206¢C
YYLOCTYL6C
CTLB089SE0T

9Judphorg

91
LT3C
£8-99

618

(4014
168€9L
Y66CL91
1ele
99606
Sor6S
8LLITE
LLY68S8
LY88ST101

oTIuRIg

86-9p
00

[4

0

0
0ELYES
994

8¢

el

0¢
grlocy
€G8IECI

ogmerg

€1-9¢
00

1

0
60veeel
OPSSTI
€0L1
S6999%
08€9¢T
L¥9569
1L.8¢cee
SLYICTLL

gxog

<9

9-9C
9120000
981¢
LOEYTOT
89¢916¢
0£€9891
€968
8IELBLIT
1SLS0S9
Y98
TrL8LIOY
779665 1Y

reuerd y¢

123
11-9C
Ly-oL

99¢861
86169
osye
800LL
6901
LL6080€
8898CLI
SeLl
¥L0T9CST
YCTroLye

Lewnd

C
C1c000
81-9%
9EvLI
CTLOLOT
850¢
Sel

Sl
1274444
£8¢0vC
[430!
0L0986
£L£888

opadoddry

8

G-l
9609200
cl
020€c6
LL9S9
P8ITI
99Y
779601¢C
SEYO8TI
LolEl
LYLTI1S
8L¥9008

STUIOPEIY

own
FJUOA'QY]
‘ssod'qo]
S9X0Q"JLIOA
sox0q’sod
‘ATos’b
"AQI'¢0q
€9
spuooaxd
SuONO9SIq
S[eAQ 9SS
s[eA peId

S[eAd "unjy

wa[qoig

uorsIoA wyose JHO+ ¢ )€DE+1 [0TINVdd,, 33 10§ s)nsai [euonemdwo) 9 I[qeL,

pringer

NS



951

Numer Algor (2015) 70:929-963

00csT<
B/u

B/u

e/u

v/u

£ee

6

e/u

v/u

B/u

B/u

JO}SISUBI],

8189
L91-°%

00

1

0

¥6

91
LT089¢1¢E
OreeLyeL
89LT8¥0€ET
989767£688

9Juopho1g

8L

€L-96
¥8-21
018

86Y

w9

6
osvlece
CL1s0Se
OLT9TILS
re1Te8e

onIuaIg

00csT<
B/u
B/u
e/u
v/u
B/u
B/u
e/u
v/u
B/u

B/u

ogmerg

€C9L
00

I

0

6

€
08C8CS
€6018¢
TCe98Ce
VLLSLET

gxogq

€9

9-9¢C
620000
81YS
wolsel
0¢

S
IST6ITTI
96L09¢L
£1coesey
e8Y11¢CSS

reuerd y¥¢

L1

1121
8796
86801
0¢e81ce
(444

8
C889LST
66578
€1e8lIcel
0S9LOTTT

Lewng

4
§6€200°0
L1-°1
9¢19¢
6191¢I1
4!

€
68YCIS
L£0T8C
CSEOLTT
SS19201

apadoddry

L

9-°F
TE€T8C00
65
L£9088
9L

S
10L9S1¢
6SL8811
CC8SSLY
968L0OSS

JTWAPLIY

un
JUOAQY]
‘ssod-qo]
SOX0Q"JLIOA

sox0q sod

"[nsaI [0q0S

"[9X9 [0q0S
spuooaid
SUOTO9SIq
S[eAd 9sSOH
s[eA9 peId

S[eAd "uny

woqoid

UOTSIOA WLIOSTE  (1)[0QOS+] TOTINVdd,, 94} 10 SInsai [euoneindwo) £ dqel,

pringer

NS



00TsT<
B/u

Numer Algor (2015) 70:929-963

e/u
e/u
e/u

€LE

81
e/u

Te/u

e/u

B/u

JO}SISUBI],

952

916S

991-°1

00

1

0

09¢

[43
S¥66950C
95066¢£9
0CILSSSS0T
9¥L1680S08

9Juopho1g

€8

SLY
6L79L

918

L8Y

91

6l
9¢1129¢
907989¢
0€€61809
r80601

onIuaIg

00TsT<
e/u
e/u
v/u
e/u
e/u
B/u
e/u
v/u
B/u

B/u

ogmerg

Y229
00

I

0

133

9
YLT86Y
€19¢€9¢
€L818IC
098LceT

gxogq

19

9-9¢
£v£000°0
99¢¥y
605981
L6

0l
18927440
£6£120L
691L0VCY
YOLEEOSS

reuerd y¥¢

[43
11-9¢
Ly=o¢

T666L1
1€6799
LOTTT

91
0¥9150¢
9SOl
0L€2001C
¥890¥1¢

Lewng

€
§19200°0
81-°8
ILL8T
LETYTT
123

9
67858
SS6081
8C10961
LY880LI

apadoddry

L

9-9¢
9219200
c6
LTLOE6
Iel

0l
89116CC
9¢sTocl
811508
856C8S

JTWAPLIY

un
JUOAQY]
‘ssod-qo]
SOX0Q"JLIOA

sox0q sod

"[nsaI [0q0S

"[9X9 [0q0S
spuooaid
SUOTO9SIq
S[eAd 9sSOH
s[eA9 peId

S[eAd "uny

woqoid

UoISIoA WLIoS[e  (U7)[0q0S+] TOTINVAd,, 2U} 10F s)[nsar euoneindwo) § [qe],

pringer

NS



953

Numer Algor (2015) 70:929-963

00csT<
B/u

B/u

e/u

v/u

0s¢

LT

e/u

v/u

B/u

B/u

JO}SISUBI],

LEVS

6CC9¢

00

1

0

8¥0C

8
LSYTLO8T
18660SLS
9¢6183¢181
9L8STToYCL

9Juopho1g

LL

LL-E
8-y

68

89%

€06

6¢
14184
§9c0tsT
061717169S
8ET0V9LE

onIuaIg

00csT<
B/u
B/u
v/u
v/u
B/u
B/u
e/u
v/u
B/u

B/u

ogmerg

6C26
00

I

0

8¢

6
¥509¢CS
00508¢
61¢€8¢C
LYS08€T

gxogq

29

9-9¢C
¥€€000°0
00s¥
£789681
0¢€c

Sl
LLOSTO0T
LSTLETL
oceelley
LLS6LLOS

reuerd y¥¢

0¢

1121
Ly=2¢C
S6S991
1¥9919
LLLLT

1€4
8600L8¢
£96¢€S1
86STSSTT
8LST610C

Lewng

4
L6100°0
L1-°1
PLSET
V6111
123

6
Y091LY
L006ST
8651801
182929

apadoddry

L

G-o1
77€920°0
1€¢
LS81T6
129

Sl
0991Lce
£6896¢C1
0190€08
SE658S

JTWAPLIY

un
JUOAQY]
‘ssod-qo]
SOX0Q"JLIOA

sox0q sod

"[nsaI [0q0S

"[9X9 [0q0S
spuooaid
SUOTO9SIq
S[eAd 9sSOH
S[eA peIS3

S[eAd "uny

woqoid

UOISIoA WLIoSTe  (U)[0q0S+] TOTINVAd,, 2U} 10J s)[nsaz euoneindwo) ¢ [qeL,

pringer

NS



0025T<
e/u
B/U
e/u
e/u

Numer Algor (2015) 70:929-963

B/u
v/u
£eC

6
B/u
v/u
B/u

B/u

JO}SISUBI],

954

it
0S1-21

00

I

0
L6STL88CI
L9019¢

8¢

Sl

699879
1Ly0EY
0LS8118¢
188€961LC

9uaphorg

oy

8C9C
08-9¢

808

61¢S
T9E9LIT
990¢
(4114

o1
86ELOCT
SovLy1l
£906Tcee
9911€08¢

Y RUEHE:

09-2L
00

4

0
STITe9
Sog
€01

0¢

8¢

8¢I
L86YIS
VSrorl

ognerg

6-9S

00

1

0
YI10STIT
6691

6

€
L9201y
6¥069¢
L88TTLI
LOEISST

£xog

09

9-9¢C
6820000
la%Y
Or0r6l1
6C10S91
LEEO8

0¢

S
117860911
961¥799
6£LELYOY
C8LLIOEY

reuerd y¥¢

Ie
11-2L
Ly-o¢

OLVILL
8619
148494
9¢8

(444

8
9LET6LT
6SLSYST
8010SSCC
V8SLLTTT

Lewng

1
S¥e00°0
81-9%
£6801
SLO9S
OLT

0¢

11

€
Y€9LTT
1090¢T
61901
L0108

opadoddry

L

G-oL
YSL970°0
10
9L0168
99881
L901

(39

S
69TeeT
60SSYCl
6L86861
1CL6L8Y

JTWAPLIY

oun
JHRAQY]
‘ssod-qo]
SOX0Q JIIOA
sox0q’sod
"AQI'€0q

£q

‘INSa1 [0qOS

"[9X? [0q0S
spuodaxd
SUOT)OASIq
S[BAD 9SSOH
s[eao peId

S[eAd "unjy

woqoid

UOISIoA WPLIOSTE (' )EDF+()[0GOS+] T0TINVdd., U3 10§ $nsal [euoneindwo)  OF d[qBL

pringer

NS



955

Numer Algor (2015) 70:929-963

e/u
v/u
e/u
e/u
e/u
v/u

LSE

81
e/u
v/u
e/u

B/u

JO}SISUBI],

00cse< LTl
68-9¢

00

1

0
1vre8CCI T
ovieLy

8¢

Ie

y€9¢€Cs
P1L99¢
LOVETIEE
SYILSTOET

9Juophorg

Ly
6C21
891

08L

LES
6299¢CC
8165
0TvLl

0C
198v1¢l
6€10STI
196616¢£€
1€66¢SST

onuaIg

LSy
00

[4

0
CLL668
13014
091

09

SY

¥0¢
SCOSIL
T0190¢

ognjerg

8-

00

1

0

ev0l16
L901

€€

9
¥S0L9E
LO0TYT
L96S¢EST
£6809¢1

£xog

LS

9-9¢
6££000°0
0LSY
COLYS8I
6S91¢€L]
£v0S8

L6

0l
GL896801
9£EY8C9
966LEV8E
86185611

reuerd y¢

94
11-2¢
Ly-o1

981¢79¢
C89LS8
L9T0L
£81¢
LOTTI

91
TCTLB68E
00¥681¢
¥886¢1C¢
£€59971 ¢

Lewng

4
120€00°0
81-99
60171
OILITT
Sec

9C

€e

9
90¢€LTY
LTSOVT
0€0L00T
$60L06

opadoddry

L

G-98
$16920°0
96¥
01168
SEETT
Lyel
I

0l
STILTET
goeercl
0v0e86Y
8V 1881

JTWAPLIY

oun
JHRAQY]
‘ssod-qo]
S9X0Q JIIOA
sox0q’sod
AT €0q

£q

‘[nsa1 [0q0S

"[9X? [0q0S
spuodaxd
SUOT)OASIq
S[BAD 9SSOH
s[eao peId

S[eAd "unjy

woqoid

uotsIoA wpnose () EDE+HUT)I0QOS+I T0TINVAd,, 9 10§ sinsai [euonendwo) [T qeL

pringer

NS



002ST<
e/u
B/U
e/
e/u
e/
e/
1L€

LT
B/u

Numer Algor (2015) 70:929-963

B/u

B/u

B/u

JO}SISUBI],

956

811

68-9¢

00

I

0
80STCLEOL
Yoyevy

YL

Ly

685€0S
9Ts0sE
609¢160¢
9llocelce

9uaphorg

Ly
0€-9¢
£8-29

108

s
£58¥¥0C
9¢I8
0v6L8

0¢
68cCeel
806911
¥920011¢
£CC9TSYT

oruaIg

£8-9F
00

4

0
8CIILIIL
699

sol

06

8

08¢
69C9C6
CSL189C

ognerg

679

00

1

0
SSSYO1
9291

8¢

6
ce6lo6e
P€89¢T
880CH91
cI8ELY]

£xog

8¢

9-9¢C
££000°0
oISy
C60L881
TS8EOLI
§Te98
0¢e

Sl
89610111
65156£9
cricelee
€SL09LTY

reuerd y¥¢

oy

11-2¢
Ly=3¢C
1¥6¥9¢
Y¥861L
TTLTOT
0cly
¥918¢
1€4
6L9815¢
¥888L61
SSOSPY6C
SCSIvi6eT

Lewng

4
L2S00°0
81-99
Y89¥1
LyTe0l
SLT

13

LE

6
9L886¢
£0v6CT
£C16E6
SLLISS

opadoddry

L

G296
661,200
£0S
9666L8
6C077C
141!
891

Sl
LTTT0eT
144151!
Iveseoy
SEI8E8Y

JTWAPLIY

oun
JHRAQ]
‘ssod-qo]
S9X0Q JIIOA
sox0q’sod
AT €0q

£q

‘INSaI [0qOS

"[9X? [0q0S
spuodaxd
SUOT)OASIq
S[BAD 9SSOH
s[eao peId

S[eAd "unjy

wapqoxdg

uotsIoA wpnose () EDE+HUE)I0QOS+I TOTINVAd,, 9 10§ sinsat [euonendwo) 7T dIqeL

pringer

NS



957

Numer Algor (2015) 70:929-963

00TsT <
B/u
v/u
e/u
B/u
B/u
v/u
e/u
L6t
18
v/u
v/u
e/u
B/u

B/u

JIO}SISUBI],

78

821
00

I

0

61980L
988506¥¢C
89LY8
€91

994
1026101
1€0S¥9
091811
108986S¢
6LOLLYLY

9uaphorg

L1
0€-9¢
8-9C

(4%
104
C0SLT8
YOLEYSI
0081
Iee

001
650L6
£€8¢9
169L1E
S12€966
€CoevLTT

ouarg

19-91
00

[4

0

0
YoC8YL
8¢y
eLT
006

8L

161

0¢
L80S6S
LYCELLT

ognerg

8-9C

00

1

0
£Ce8SEl
CSL8Y
8LY

8¢

6
1eLYLY
9590¥¢
¥60L0L
91861¢C
S8S9T91

g£xog

09

9-9¢
80£000°0
LS6E
6108681
96£9801
[4%4%2%274
1€801
0¢

94
17611L01
012109
LOY688
89¢08¥LE
696£60LE

reuerd y¢

Se
11-2r
Ly-o¢

91560¢
6L5589
08y
glese
£6¢

VLY

9
06CLCIE
6SvovLl
SEVC
IL9YLSST
€0LTIVIST

Lewng

I
L9%00°0
81-9¢
12748
00L8S
8CI1
ge

€

LE

6
Sorsee
PeySel
VLS
90€09¢
LI8SIS

apadoddry

8

G-o¢
$9€520°0
€9¢
086856
£8L8S
£16¢
90¢

€81

4
LTegere
6£60cel
G88IT
11€8¢€S
S48

STWAPEIY

oun
JHRAQ]

‘ssod-qo]

SOX0Q JIIOA
sox0q'sod

‘Aos’b

AT €Oq

£q

"[nsaI [0q0S

‘[9X9 [0q0S
spuooaid
it ibEN ]
S[eAd 9SSOH
s[eA9 peId

S[eAd "uny

woqoid

uoIsI9A WPHOS[E HOH( ' )EDT+(;1)109OS+ T0TINVdd., 93 10§ $nsal [euoneindwo) €1 d[qeL

pringer

NS



Numer Algor (2015) 70:929-963

958

SIese<
Srege<
68

0S-9¢

00

I

0
658L06S
C608LL6Y
TCTLO9S
L6t

18
¥¥8209
0€LSOY
6200861
6066681C
88YIVIIST

JO}SISUBI],

ELYCL
86°LST

6y

L679S

00

I

0

8YYeESY
8€EBY VT
L90¢8
L91

9%4
10€LEY
906LLT
S69SL
LESSO9ET
SL6€999S

9uaphorg

ILs
GE'801
L1
8796
¢8-91
018

X4
Sreved
8C68SLI
Y261
86C

001
£81786
£V6£9
0Svore
192956
79891601

oruarg

0°00t8<
0°00¥8<
€

8L-91
00

4

0

0
6¥L89L
(124

I¢1

006

9¢

€91

0¢
98¢¥19
YSCST8l

ognerg

0¢
(4

(4875
00

68518
VLIES
80¢€C
8¢

6
L610¢€
87951
144394
9¢£01¢
81998¢

g£xog

LO'1

(!

19

9-9¢
€62000°0
66¢Y
LTI9161
LToTy1y
£865¢¢
LTIST
S6¢

4
VILYES01
0815809
61L106
CLTL96LE
1¥7S618LE

reuerd y¢

L0
909

£3

0r1-o1
Ly-o¢
L61881
86£0C9
(39214
149154
18¢

¥8¢

9
9¥96LT
C8LTYST
SSYe
129LS8CC
68SL1STT

Lewng

0¢
00¢

!
€¢r00°0
81-9¢
LEETT
96199
L901
33

€

LE

6
8Y19¢
19081
we
0L5029
SL899S

opadoddry

SL80
01

8

S-9p
99¢€920°0
(439
8710C6
16L8S
00€s
68¢C

6¢C

Y4
88EV0OVC
€L9Y8CI
8L8IT
6v9rSIS
981900¢

STWAPBIY

(Nvdd)ds
(o1seq)ds
oun
JLIOA'QY]
‘ssod-qo]
S9X0Q JLIOA
sox0q’sod
‘Alos’b

AT €Oq

€2q

"[nsaI [0q0S

"[9X? [0q0S
spuooaid
SuUONo3sIq
S[BAD 9SSOH
S[eA9"peId

S[eAd "uny

woqoid

UOISIOA WLIOS[E ANSHSIGMINFHOH( (1 )EDI+(;U)I0QOS+1 [0ZINVdd., 33 10§ S)[nsa1 [euoneindwo) p AqEL

pringer

NS



Numer Algor (2015) 70:929-963 959

iterations, etc., obviously). We do not emphasize it in the tables (nor present any
statistical analysis of the phenomenon) as the uncertainty is minor.

7 Selected results obtained for Realpaver

For comparison, we present results for three test problems, obtained using another
solver, Realpaver [7]. It is one of mature interval solvers that can be considered
current state-of-the-art [17].

5R planar. For this underdetermined problem, Realpaver required 17 minutes (for
Bisection precision = 2.0, much less accurate than the presented solver) and
did not cover the whole solution set (‘“Property: non reliable process (some solutions
may be lost)”). This result was far worse than ours.

Brentl10. For this well-determined problem Realpaver has found all solutions (1065)
in 55 seconds, but only when -number 2000 was enforced. For default settings, it
returned after 46 seconds with an incomplete list of boxes. Again, a worse result than
for the presented solver.

Transistor. For this problem, Realpaver outperformed our solver. For the settings
proposed by Realpaver authors (trisection and using weak 3B consistency; the bench-
mark is pre-defined in the configuration files of this solver), the solver requires 13
seconds, but does not verify the unique solution, but returns with a cluster of 3 boxes.
For the default settings, Realpaver verifies the unique solution, but it takes 30 seconds
— still a better result than our solver.

8 Analysis of results

Results, presented in Section 6 show that the performance impact of various tools
may vary to the high extent. Using a single tool (initial exclusion phase, box con-
sistency enforcing or Hansen’s quadratic test) often improves the performance of
the “PPAM2011” algorithm version. But applying two of the successful operations
may result in far a smaller improvement or even in a slowdown. Apparently, some
expensive tools might “redundant” when used together with other ones.

In particular, applying the Hansen’s quadratic test improves the performance of
the “PPAM2011” algorithm for problems Hippopede, Puma7 and Broydenl6 (see
Tables 2 and 3). But when we apply both BC3(3.0/n) procedure and the quadratic
test, results will be worse than for BC3 only (see Tables 4 and 6). Probably, the
quadratic test (that requires Hesse matrix computation!) is applied for some boxes
that could be reduced by the BC3 procedure, but it is difficult to verify this conjecture.

On the other hand, the Hansen’s quadratic test improves the performance of all
versions for the Brent10 problem.

@ Springer



960 Numer Algor (2015) 70:929-963

In general, applying the BC3 procedure seems very worthwhile (improvements
are dramatic for problems Brent10, Broyden16 and — particularly — Bratu30 that can-
not be solved in a reasonable time without using the consistency operator), yet it is
completely useless for the Puma7 problem (reasons for this behavior remain to be
determined). The improvement for Box3 problem is minor, but irrefutable. Improve-
ments for problems Academic and 5R-planar are minor (or none), but this seems
to be related to the fact that these problems are underdetermined with the differ-
ence between the number of variables and equations of more than one (3 and 2,
respectively; see below).

For two problems — Box3 and Transistor — it occurred to be crucial, to choose
the proper coordinate for bisection, i.e., to use a heuristic related to MaxSmear, e.g.,
Algorithm 10.

The Transistor problem For this problem, only one algorithm version was able to
provide the results. It was the most efficient version — results are presented in
Table 14. Other experiments, not presented in this paper, show that for the Tran-
sistor problem, useful are only the following algorithm versions have the following
properties, mutually:

— they use box-consistency,
— they use Algorithm 10.

The ultimate version gives the correct solution (the single box, guaranteed to con-
tain the solution) in 89 seconds. Solvers, presented in [33] require 2359.5 seconds
for the version tuned for this specific problem and 135099 for a more general version
and in [16] — 444 seconds. These experiments have been performed on a Sun Ultra-2
running Solaris; according to [16], the clock frequency was 166MHz.

Our results are much better, but they are obtained on a far stronger machine, also.
For using Realpaver, the correct solution was computed far quicker, on our machine
— 30 seconds.

Apparently, the use of hull-consistency (that was used in [16] and also is incorpo-
rated in Realpaver) is pretty worthwhile. Unfortunately, hull-consistency enforcing
is not easy to implement, especially in multithreaded environments. It requires com-
plicated expression tree building and each thread should be able to traverse the tree
(forward and backward) independently (intervals of values of respective quantities in
the tree must be thread-specific). Still, the effort has to be done.

Underdetermined vs well-determined problems 1t is worth noting that tuning the
algorithm for underdetermined problems occurred to be much harder than for well-
determined ones. The Hippopede problem seems to be particularly “capricious” —
results change rapidly for minor changes of algorithm features.

If the dimension of the solution set is higher than one, i.e., the difference between
the number of variables and equations is higher than one, then tuning the algorithm
does not have a significant impact on the performance. Comparing all tables shows
that for such problems all algorithm versions perform similarly; it seems the ¢ we
have to choose for such problems to stop in a reasonable time is so large, that specific
features of various algorithm versions do not “have time” to affect the performance

@ Springer



Numer Algor (2015) 70:929-963 961

(or the time necessary to process all boxes containing solutions is too long). Exper-
iments presented in the paper — problems Academic and 5R planar — but also in
previous ones — problems Puma6 and Rheinboldt, see, e.g., [25-29] are consistent
with this observation.

Also, underdetermined problems seem to require different policies for bisection
than well-determined ones. In particular, heuristics based on smear computation, like
MaxSmear, MaxSumMagnitude (e.g., [9]) perform particularly bad on them. It seems
to be caused by the fact that not all of the components are going to be narrowed
for underdetermined problems, but only the ones with the high smear, so the other
components should be bisected, instead. If some components have been narrowed by
the Newton operator, we should not bisect them (MaxSumMagnitudeUnnarrowed),
but for boxes not narrowed yet, heuristics based on smear and magnitude cannot
be applied at all. On the other hand, components with small smear and magnitude
have minor impact on the system. So, it seems, bisecting the longest edge is the best
solution and that is what we do in Algorithm 10.

The currently-best version Overall, the version that performs best, currently,
occurred to be the one with the following features:

— the initial exclusion phase with n> Sobol points generated, sparsity-based
expanding (see Section 4) and Neyropr = 128,

— Algorithm 4 is used to decide whether to use BC3 or not, g5.3 = 6,'10,

— the variable for bisection chosen by heuristic, described in Algorithm 10.

Results for this version are presented in Table 14.

9 Conclusions

Interval branch-and-prune solvers can use a great deal of tools to narrow and dis-
card boxes. In this paper, the usefulness of some of them (proposed by the author
and by other researchers) has been investigated. A proper heuristic to choose and
parameterize the tools has been proposed.

In particular, we presented a novel initial exclusion phase and a new policy to
choose the variable for bisection. This policy distinguishes underdetermined and
well-determined problems, which seems another important novelty.

As test examples show, the proposed algorithm performs well and is successful for
some hard problems (e.g., the Brent problem).

Comparison with the Realpaver solver imply that our solver can outperform it
for underdetermined and non-typical (e.g., singular or ill-determined) problems, but
performs much worse for the Transistor problem.

It is probably far from optimal and further research is going to be performed — in
particular, applying machine learning techniques to self-tune the algorithm.

The source code of the presented version of the algorithm (and hopefully further
versions) is going to be available at the author’s page: https://www.researchgate.net/
profile/Bartlomiej Kubica?ev=hdr xprf.

@ Springer


https://www.researchgate.net/profile/Bartlomiej_{K}ubica?ev=hdr_{x}prf
https://www.researchgate.net/profile/Bartlomiej_{K}ubica?ev=hdr_{x}prf

962 Numer Algor (2015) 70:929-963

Future research Interesting results might be obtained, by applying Al methods to
self-tune the heuristics. Up to now, the only paper investigating such an approach
(but in a very limited version) is [15].

Also, hull consistency enforcing must be investigated (as we indicated earlier) —
this procedure appears very useful in experiments performed by other researchers. So
are the acceleration tools, proposed by Kolev [21].

Acknowledgements The author would like to thank Adam Wozniak and Sergey P. Shary for inspiring
discussions.

Also, the author is grateful to the reviewers for helping to improve the paper by their valuable
suggestions.

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and
the source are credited.

References

. C++ extended scientific computing library. http://www.xsc.de (2013)

. Intel Threading Building Blocks. http://www.threadingbuildingblocks.org (2013)

. OpenBLAS library. http://xianyi.github.com/OpenBLAS/ (2013)

. Difficult benchmark problems. http://www-sop.inria.fr/coprin/logiciels/ ALIAS/Benches/node6.html

(2014)

. GNU linear programming kit.http://www.gnu.org/software/glpk/ (2014)

6. Non-polynomial nonlinear system benchmarks. https://www-sop.inria.fr/coprin/logiciels/ALIAS/
Benches/node2.html (2014)

7. Realpaver. nonlinear constraint solving &amp; rigorous global optimization. http://pagesperso.lina.
univ-nantes.fr/info/perso/permanents/granvil/realpaver/ (2014)

8. Sobol sequence generator. http://web.maths.unsw.edu.au/fkuo/sobol/ (2014)

9. Beelitz, T., Bischof, C.H., Lang, B.: A hybrid subdivision strategy for result-verifying nonlinear
solvers. Tech. Rep. 04/8, Bergische Universitidt Wuppertal (2004)

10. Benhamou, F., Goualard, F., Granvilliers, L., Puget, J.F.: Revising hull and box consistency. In:
International Conference on Logic Programming, pp. 230-244. The MIT Press (1999)

11. Benhamou, F., McAllester, D., Hentenryck, P.V.: CLP(intervals) revisited. In: Logic Programming,
Proceedings of the 1994 International Symposium, pp. 124—138. The MIT Press (1994)

12. van Emden, M.H.: Computing functional and relational box consistency by structured propagation in
atomic constraint systems. arXiv:preprint cs/0106008 (2001)

13. Goldsztejn, A., Jaulin, L.: Inner and outer approximations of existentially quantified equality
constraints. Lect. Notes Comput. Sci. 4204, 198-212 (2006)

14. Goualard, F.: On considering an interval constraint solving algorithm as a free-steering nonlinear
Gauss-Seidel procedure. In: Proceedings of the 2005 ACM Symposium on Applied Computing, SAC
’05, pp.1434-1438, ACM, New York, NY, USA (2005). URL http://doi.acm.org/10.1145/1066677.
1067004

15. Goualard, F., Jermann, C.: A reinforcement learning approach to interval constraint propagation.
Constraints 13(1-2), 206-226 (2008)

16. Granvilliers, L., Benhamou, F.: Progress in the solving of a circuit design problem. J. Glob. Optim.
20(2), 155-168 (2001)

17. Granvilliers, L., Benhamou, F.: Algorithm 852: Realpaver: an interval solver using constraint
satisfaction techniques. ACM Trans. Math. Softw. (TOMS) 32(1), 138-156 (2006)

18. Hansen, E., Walster, W.: Global Optimization Using Interval Analysis. Marcel Dekker, New York
(2004)

19. Ishii, D., Goldsztejn, A., Jermann, C.: Interval-based projection method for under-constrained

numerical systems. Constraints 17(4), 432-460 (2012)

LN =

wn

@ Springer


http://www.xsc.de
http://www.threadingbuildingblocks.org
http://xianyi.github.com/OpenBLAS/
http://www-sop.inria.fr/coprin/logiciels/ALIAS/Benches/node6.html
http://www.gnu.org/software/glpk/
https://www-sop.inria.fr/coprin/logiciels/ALIAS/Benches/node2.html
https://www-sop.inria.fr/coprin/logiciels/ALIAS/Benches/node2.html
http://pagesperso.lina.univ-nantes.fr/info/perso/permanents/granvil/realpaver/
http://pagesperso.lina.univ-nantes.fr/info/perso/permanents/granvil/realpaver/
http://web.maths.unsw.edu.au/ fkuo/sobol/
http://arxiv.org/abs/preprint cs/0106008
http://doi.acm.org/10.1145/1066677.1067004
http://doi.acm.org/10.1145/1066677.1067004

Numer Algor (2015) 70:929-963 963

20.
21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.
37.

Kearfott, R.B.: Rigorous Global Search: Continuous Problems. Kluwer, Dordrecht (1996)

Kolev, L.V.: An improved interval linearization for solving nonlinear problems. Numeri. Algorithm.
37(1-4), 213-224 (2004)

Kubica, B.J.: Intel TBB as a tool for parallelization of an interval solver of nonlinear equations
systems. Tech. Rep. 09-02, ICCE WUT (2009)

Kubica, B.J.: Performance inversion of interval Newton narrowing operators. Prace Naukowe
Politechniki Warszawskiej. Elektronika 169, 111-119 (2009). KAEiOG 2009 Proceedings

Kubica, B.J.: Shared-memory parallelization of an interval equations systems solver — comparison of
toos. Prace Naukowe Politechniki Warszawskiej. Elektronika 169, 121-128 (2009). KAEiOG, 2009
Proceedings

Kubica, B.J.: Interval methods for solving underdetermined nonlinear equations systems. Reliable
Computing 15, 207-217 (2011). SCAN 2008 Proceedings

Kubica, B.J.: Exclusion regions in the interval solver of underdetemined nonlinear systems. Tech.
Rep. 12-01, ICCE WUT (2012)

Kubica, B.J.: Tuning the multithreaded interval method for solving underdetermined systems of
nonlinear equations. Lect. Notes Comput. Sci. 7204, 467-476 (2012). PPAM 2011 Proceedings
Kubica, B.J.: Excluding regions using Sobol sequences in an interval branch-and-prune method for
nonlinear systems. Reliab. Comput. 19(4), 385-397 (2014). SCAN 2012 Proceedings

Kubica, B.J.: Using quadratic approximations in an interval method for solving underdetermined and
well-determined nonlinear systems. Lect. Notes Comput. Sci. 8385, 623-633 (2014). PPAM 2013
Proceedings

Kubica, B.J., WoZniak, A.: Using the second-order information in Pareto-set computations of a multi-
criteria problem. Lect. Notes Comput. Sci. 7134, 137-147 (2012). PARA 2010 Proceedings

Meyn, K.H.: Solution of underdetermined nonlinear equations by stationary iteration methods. Numer.
Math. 42, 161-172 (1983)

Neumaier, A.: The enclosure of solutions of parameter-dependent systems of equations. In: Reliability
in Computing, pp. 269-286. Academic Press (1988)

Puget, J.F., Hentenryck, P.V.: A constraint satisfaction approach to a circuit design problem. J. Glob.
Optim. 13(1), 75-93 (1998)

Ratschek, H., Rokne, J.: Experiments using interval analysis for solving a circuit design problem. J.
Glob. Optim. 3(4), 501-518 (1993)

Rheinboldt, W.C.: Computation of critical boundaries on equilibrium manifolds. SIAM J. Numer.
Anal. 19, 653-669 (1982)

Shary, S.P.: An interval linear tolerance problem. Autom. Remote. Control. 65, 1653-1666 (2004)
Shary, S.P.: Finite-dimensional Interval Analysis. XYZ. Electronic book (in Russian). (accessed
2014.05.15) (2013). URL http://www.nsc.ru/interval/Library/InteBooks/SharyBook.pdf

@ Springer


http://www.nsc.ru/interval/Library/InteBooks/SharyBook.pdf

	Presentation of a highly tuned multithreaded interval solver for underdetermined and well-determined nonlinear systems
	Abstract
	Introduction
	Example

	Generic algorithm
	Box consistency enforcing
	Heuristic

	Initial exclusion phase
	Using all equations for the exclusion
	Complement of a box-set
	Remark



	Choosing the coordinate for bisection
	Computational experiments
	Selected results obtained for Realpaver
	5R planar.
	Brent10.
	Transistor.



	Analysis of results
	The Transistor problem
	Underdetermined vs well-determined problems
	The currently-best version



	Conclusions
	Future research

	Acknowledgements
	Open Access
	References


