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Abstract The paper summarizes author’s investigations in tuning a multithreaded
interval branch-and-prune algorithm for nonlinear systems and presents the
developed solver. New results for using the box-consistency enforcing operator and
a new variant of the initial exclusion phase are presented. Also, a new heuristic to
choose the coordinate for bisection is considered. Extensive numerical experiments
are analyzed to provide the satisfying version of the algorithm.

Keywords Interval methods · Nonlinear systems of equations · Heuristics ·
Low-discrepancy sequences · Multithreaded computations

1 Introduction

We consider the problem of finding all solutions of nonlinear systems of equations,
i.e., systems of the form:

f (x) = 0 , (1)

x ∈ [x, x] ,
where f : Rn → R

m, m ≤ n.
Such systems are ubiquitous in several branches of science and engineering. Many

of them are not well-determined, but underdetermined, i.e., having fewer equations
than unknowns (m < n), which means they have uncountably many solutions and
their solution sets do not consist of isolated points, but are manifolds. In particular,
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we encounter such systems in robotics [19], stability theory of dynamical systems
[35], differential equations solving [31] and multicriteria analysis [30].

Example As a specific example, we can consider solving the inverse kinematic prob-
lem of a serial planar nR-manipulator, i.e., a manipulator working in the XOY space
and consisting of n rotational joints. Assume, the kinematic chain starts in the point
(0, 0) and the effector is supposed to be placed in the point (1, 1) and oriented orthog-
onally (under the right angle) to the OY axis. This problem can be formulated as the
following system of equations:
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]
, i = 1, . . . , n .

We assume li = 1.0 for i = 1, . . . , n.
For n = 3 the problem is well determined – there are exactly two manipulator

configurations satisfying the constraints (see Fig. 1, on the left). But for n = 5, the set
of possible manipulator configurations is a manifold – it is of the measure continuum.
A few example configurations are presented on the right part of Fig. 1

Interval methods (see, e.g., [18, 20, 37]) are a well-known approach to find
all solutions of both kinds of systems. Their essence is to perform operations on
(possibly multidimensional) intervals (so-called boxes in R

n; see Fig. 2) instead of
specific numbers (vectors), so that, if a ∈ a and b ∈ b, then (a � b ∈ a � b), i.e., the
result of an operation on numbers belongs to the result of operation on intervals, con-
taining the arguments. This leads to interval arithmetic operations and definitions of
basic functions operating on intervals. We shall not define basic interval operations
here; the interested reader is referred to several papers and textbooks, e.g., [18, 20,
37].

Fig. 1 Left: both feasible 3R manipulator configurations, right: three examples of uncountably many
feasible 5R manipulator configurations
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In the previous series of papers ([22–29]) the author presented an interval solver
for such systems and investigated several acceleration tools. The solver is targeted at
underdetermined problems, yet it could be used for well-determined ones, also.

2 Generic algorithm

The solver is based on the branch-and-prune (B&P) schema that can be expressed by
pseudocode presented in Algorithm 1.

Algorithm 1 IBP

Require: L, f, ε

1: {L is the list of initial boxes – often containing a single box x(0)}
2: {Lver is the list of boxes verified to contain a segment of the solution manifold}
3: {Lpos is the list of boxes that possibly contain a segment of the solution

manifold}
4: Lver = Lpos = ∅
5: x = pop (L)
6: loop
7: process the box x, using the rejection/reduction tests
8: if (x does not contain solutions) then
9: discard x
10: else if (x is verified to contain a segment of the solution manifold) then
11: push (Lver , x)
12: else if (the tests resulted in two subboxes of x: x(1) andx(2)) then
13: x = x(1)

14: push (L, x(2))
15: cycle loop
16: else if (wid x < ε) then
17: {The box x is too small for bisection}
18: push (Lpos , x)
19: end if
20: if (x was discarded or x was stored) then
21: x = pop (L)
22: if (L was empty) then
23: {all boxes have been considered}
24: return Lver , Lpos

25: end if
26: else
27: bisect (x), obtaining x(1) and x(2)

28: x = x(1)

29: push (L, x(2))
30: end if
31: end loop
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Fig. 2 Bisection of an interval and two- and three-dimensional boxes

Operations “push” and “pop” in the algorithm, mean inserting and removing
elements to/from the set (the names will be used independently on how the set is
represented – as a stack, queue or a more sophisticated data structure).

The precision parameter ε can have various values. Usually, 10−7-10−6 are suf-
ficient values, but for hard problems (especially underdetermined ones), we have to
content ourselves with larger thresholds; or the computation will take too much time.

The bisection operation (or – to be more general – subdivision of a box) slices a
box into subboxes. Usually, one of the edges of the box is splitted in the midpoint
and that is the approach we use (see Fig. 2).

Algorithm 1 allows to find all solutions of the problem, yet it can be time-
consuming and memory-demanding. Because of this, it is very important to choose
proper “rejection/reduction tests” (mentioned in Algorithm 1) to tune the efficiency
as much as possible. Fortunately, the algorithm can be parallelized (see, e.g., [24]),
as processing different boxes can be performed independently. Obviously, the lists L,
Lver and Lpos have to be implemented in a multithreaded-safe way; so do other used
tools.

The “rejection/reduction tests”, mentioned above may vary. Several of them are
described in previous papers of the author, specifically [27–29], i.e.:

– various kinds of the interval Newton operator and switching between the
componentwise Newton operator (for larger boxes) and Gauss-Seidel with
inverse-midpoint preconditioner, for smaller ones,

– a sophisticated heuristic to choose the bisected component [27],
– an initial exclusion phase of the algorithm (deleting some regions, not containing

solutions) – based on Sobol sequences [28],
– an additional test based on quadratic approximation of a single equation and the

Hansen’s method [18] to solve quadratic equations with interval coefficients; see
[29].
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There are many other tools, also. Some of them are not suitable for multi-
threaded computations as they use, e.g., linear programming while popular linear
programming solvers are either inefficient (e.g., the solver used in the C-XSC library
[1]) or not MT-safe, e.g., the solver GLPK [5]. Hence, we do not consider some
popular tools, like LP-preconditioners of [20] or LP-narrowing.

As Algorithm 1 is, in general, time-consuming and memory-demanding, it is cru-
cial to provide a proper heuristic to choose and parameterize the rejection/reduction
tests efficient for a specific class of problems.

In mentioned papers, the author considered several tools and proposed some poli-
cies to apply them. Yet, as there are so many of these tools, specific cooperation
between them and tuning of the heuristics, remains to be determined.

3 Box consistency enforcing

One of the tools to improve the performance of Algorithm 1 are so-called consis-
tency operators. They have not been considered in previous papers of the author. As
reported, e.g., in [18], enforcing some partial consistencies can be very efficient on
large boxes.

There are several kinds of partial consistencies, the most commonly used being
box-consistency (BC), described, e.g., by [14] and hull-consistency (HC) – see, e.g.,
[10]. The latter requires complicated decomposition of the expression into a syntactic
tree, so we decided not to use it in the current version of our method (unless we
consider the quadratic approximation of [29] a very specific instance of HC). Hence,
box consistency can be enforced using the unidimensional Newton operator that is
easy to implement.

The idea of box consistency is to find the leftmost and rightmost “pseudo-
solutions” of a constraint [12], i.e., intervals

[
x∗
i , x∗+

i

]
, such that:

0 ∈ f
(
x1, x2, . . . , xi−1,

[
x∗
i , x∗+

i

]
, xi+1, . . . , xn

)
, (2)

where the interval x∗+
i is the next representable floating-point number, after x∗

i , i.e.,[
x∗
i , x∗+

i

]
is the smallest representable interval (such intervals are called canonical

intervals).
Formula (2) is valid for equations, but it can be adapted for inequalities and other

types of constraints, also.
The algorithm, we use is usually called BC3; as an analog of AC3 (AC stands

for “arc consistency”; see, e.g., [11]). Usually, the algorithm is formulated as sub-
sequent calls to recursive procedures “left narrow” and “right narrow”, computing
leftmost and rightmost pseudo-solutions. As specific implementations vary in several
details (see, e.g., [10, 12, 14, 15]), the author presents pseudocodes for his own imple-
mentation. Procedure “left narrow” is described by Algorithm 2 (“right narrow” is
analogous) and the overall BC3 procedure – by Algorithm 3.

Please note, we break the procedure if the progress is not sufficient. The parameter
εequal is used for this purpose and the proper condition is checked in line 10 of
Algorithm 3.
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Algorithm 2 Procedure left narrow

Require: x, f, i, ε, εequal

1: xlef t = [xi, x+
i ]

2: if (0 ∈ f(xlef t )) then
3: return xlef t , “found a pseudo-solution”
4: end if
5: compute the interval extension of gi = ∂f

∂xi
(x)

6: {Using the automatic differentiation arithmetic makes us compute the whole
interval gradient g, but only one component is going to be used}

7: update x = xlef t

8: compute xnew = xlef t − f(xlef t )

gi
{using ordinary or extended interval arithmetic}

9: if (xi ∩ xnew = ∅) then
10: return “no solution”
11: end if
12: if (dist(xi , xnew) < εequal) then
13: update xi = xi ∩ xnew

14: return xi , “found a pseudo-solution”
15: end if
16: update xi = xi ∩ xnew

17: if {(wid xi ≤ ε)} then
18: {The component xi too narrow for bisection}
19: return xi , “found a pseudo-solution”
20: end if
21: bisect xi , obtaining x(1)

i and x(2)
i

22: if (left narrow (x(1), f, i, ε) results in (x∗, “found a pseudo-solution”)) then
23: return x∗, “found a pseudo-solution”
24: end if
25: if (left narrow (x(2), f, i, ε) results in (x∗, “found a pseudo-solution”)) then
26: return x∗, “found a pseudo-solution”
27: end if
28: return “no solution”

The parameter εequal is used as the threshold value for braking the BC3 procedure
– we set εequal = 10−4. Such policy is not used in other known versions of the BC3
procedure; yet, it performs well in our algorithm and seems to improve the efficiency
(results proving it are not presented due to the lack of space).

Heuristic But for which boxes should we apply the BC3 procedure? For “suffi-
ciently large”, as pointed above. The heuristic we propose is described by Algorithm
4. It suffices that a single edge of the box is longer than the threshold value εbc3.
In Section 6 we consider two possible values of εbc3:

3
n
and 6

n
; results for 1.5

n
are

not presented as they occurred to be less promising. As for εNcmp , the value 1
n
was

used – twice larger than in [27] to emphasize the importance of the componentwise
operator, partially replaced by the BC3 procedure.
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Algorithm 3 Procedure bc3revise

Require: x, f, i, ε, εequal

1: repeat
2: store xold = x
3: modified = false
4: if (left narrow (x, f, i, ε) results in “no solutions”) then
5: return “no solutions”
6: end if
7: if (right narrow (x, f, i, ε) results in “no solutions”) then
8: return “no solutions”
9: end if
10: if (dist(xi , xold

i ) >= εequal) then
11: modified = true
12: end if
13: until (not modified)
14: return x

Operators Ncmp and GS are described, e.g., in [23, 25, 27]. For the sake of brevity,
formulae are as follows:

Ncmp(x, x̌, f, i, j) = x̌j − fi (x1, . . . , xj−1, x̌j , xj+1, . . . , xn)

∂ fi
∂xj

(x1, . . . , xn)
,

GS(x, x̌, f, i) = x̌i −
⎛

⎝Yi: · f(x̌1, . . . , x̌m, xm+1, . . . , xn) +

+
m∑

j=1,j 	=i

Yi: · J:j · (xj − x̌j )

⎞

⎠ /(Yi: · J:i ) .

The quantity x̌, in the above formulae, is chosen to be mid x.

Algorithm 4 Heuristic-BC3

Require: x, f, εbc3 then
1: if (∃i wid (x)i > εbc3) then
2: perform bc3revise procedure
3: end if
4: if (there are at least (n−m) components of x, for which wid (xi) > εNcmp) then
5: use the Ncmp operator
6: else
7: use the GS operator
8: end if
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4 Initial exclusion phase

This tool, proposed by the author, has been described in [26, 28]. Before starting the
B&P method (i.e., Algorithm 1), we perform the procedure described by Algorithm
5.

Algorithm 5 The initial exclusion phase

Step 1. Generate NSobol points, covering the unit box [0, 1]n. Generate NSobol points
t(i), covering the domain x(0), by affine transformation of points, generated in Step 1.
Step 2. Let Lexcl = ∅ be the list of boxes to exclude.
Step 3. For each i = 1, . . . , NSobol perform the following steps.
Step 4. Choose the equation number j and compute fj (t

(i)).
Step 5. If fj (t

(i)) ∈ [−ε, ε], increment i and – if i <= Nsobol – return to Step 4,
else go to Step 10.
Step 6. Generate the infeasible box x(i)

excl around t(i), using the approach of Shary
[36].
Step 7. Expand x(i)

excl , using the ε-inflation procedure; see, e.g., [20].

Step 8. Store x(i)
excl in the list Lexcl .

Step 9. Increment i and – if i <= Nsobol – return to Step 4.
Step 10. Compute the complement of box-set Lexcl .

Algorithm 5 does not specify several important features:

– how to compute the elements of sequence (t(i)),
– which equation number j to use for the point t(i); in [28] we used a round-

robin policy (the equation number j = i mod m was used), which was quite an
arbitrary assignment; an alternative is presented in one of the below paragraphs,

– how to compute the complement of the created box-set Lexcl in x(0).

Computing the Sobol sequence is a relatively complex task, but there exist
efficient and well-know algorithms (based on Gray code) and even open-source
implementations (e.g., [8]). Surprisingly, a more difficult problem is computing the
complement of the set of excluded boxes.

Using all equations for the exclusion Instead of arbitrary choosing a single equation
for each (t(i)) in Algorithm 5, we can use all of the equations. Modification of the
code is very simple and does not even require an additional loop.

For each point we start with the equation fj (x) = 0 for j = 1. After realizing – in
Step 7 – that we can no longer expand the box for this equation, we increment j and
proceed. The ε-inflation procedure is broken when j becomes m and no progress can
be obtained for the last equation. Eventually, we choose j for which the expanded
box had the largest Lebesgue measure.

Additionally, we can expand the box even further if the problem is sparse. For
each j the excluded box, all variables k such that

∂fj

∂xk
= 0 in the whole domain, can

be set to xk = x(0)
k . Let us call this technique sparsity-based expanding.
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Fig. 3 Result of exclusion of two boxes – the larger or the smaller box is excluded first

Complement of a box-set There exist a well-known procedure – described by [20]
– to compute the complement of a single box; we present it in Algorithm 6. The
complement of the box-set can be computed by Algorithm 7, yet the procedure is
inefficient. Not only, it does not parallelize well, but the resulting box-set may consist
of too many boxes – see Fig. 3 (also described in [28]).

Algorithm 6 Complement of the box xexcl in x

Require: xexcl, x, L

1: L = {}
2: if (xexcl ∩ x = ∅) then
3: push (L, x)
4: return
5: end if
6: for (i = 1, . . . , n) do
7: z = xexcl

i ∩ xi

8: if (z > xi)
9: create a box w such that wi = [xi, z], wj = xj when j 	= i

10: push (L, w)
11: end if
12: if (z < xi) then
13: create a box w such that wi = [z, xi ], wj = xj when j 	= i

14: push (L, w)
15: end if
16: xi = z
17: end for
18: return L

The problem is that we exclude the larger xexcl box from x first, but the larger
excluded box can have a smaller intersection (xexcl ∩ x) with x.

The simple improvement is to exclude from each box x the box that has the largest
intersection with it – so we exclude different boxes from different parts of the domain
at the same time, probably. Such a procedure can be parallelized, simply – using the
task-parallelism model, which is used in TBB [2]. The procedure is described by
Algorithm 8
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Algorithm 7 Old-exclusion-procedure

Require: x(0), Lexcl

1: sort Lexcl with respect to decreasing Lebesgue measure
2: L1 = {x(0)}
3: for all xexcl ∈ Lexcl do
4: compute the complement of xexcl in L1 and store in L2
5: L1 = L2
6: end for
7: return L1

Yet another feature, used in the ultimate version of the algorithm, is not to exclude
all boxes from Lexcl . When we obtain the given number of boxes in L – Ncutoff =
128 occurred to be a good choice – now boxes are not excluded, but x’s from the
remaining tasks are inserted into L directly. This trick might seem peculiar, but it
improves the performance, significantly.

Remark TBB templates tbb::parallel_do and tbb::parallel_do_feeder

are very suitable for the implementation. The former allows a concurrent execu-
tion of a do...while loop, i.e., executing the same procedure for an unknown
number (unlike parallel_for) of arguments. In our case: concurrent executions
of Algorithm 8. And adding additional tasks is performed by a dedicated “feeder”
object. Details can be found in [22] or, directly in TBB documentation [2].

Algorithm 8 New-exclusion-procedure

Require: task (x, Lexcl)
1: {Obviously, we start with the task (x(0), Lexcl ).}
2: {All tasks put the boxes (with synchronization) to the list L of Algorithm 1.}
3: choose xexcl from Lexcl , such that the Lebesgue measure of x ∩ xexcl is

maximized
4: if (this measure is lower than ε) then
5: {It is not beneficial to compute the complement of these boxes.}
6: return
7: end if
8: remove xexcl from Lexcl

9: compute the complement of xexcl in x and store in Ltask

10: if (L == {}) then
11: for all xnew ∈ Ltask do
12: push (L, xnew)
13: end for
14: return
15: end if
16: for all xnew ∈ Ltask do
17: create task (xnew, Lexcl)
18: end for
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5 Choosing the coordinate for bisection

In [27] the problem of choosing the proper variable for bisection has been discussed.
We emphasized the insufficiency of earlier approaches (see, e.g., [9]) and proposed
the heuristic, described by Algorithm 9.

Its main idea was not to bisect the component that is the longest or has the max-
imal smear, but the one that will cause the resulting boxes to be convenient for the
Newton operator to narrow. This led to the idea of choosing the component with
the minimal magnitude. On the other hand, bisecting such components only, would
result in loosing the convergence (also, it is not beneficial to have large differences
between the component length, so if the difference between the longest and short-
est component is too large, it is good to bisect the longest component). Hence we
obtain a relatively complicated policy, trying to take into account all these facts. It is
described by Algorithm 9.

Algorithm 9 Choosing the variable for bisection of x – heuristic from [27]

Require: x {We assume the procedure gets sufficient info about the results of the
Newton operator evaluation, also – see below}

1: FindMaxDiam(x, jmax , wmax)
2: FindMinDiam(x, jmin, wmin)
3: FindMaxDiamUnnarrowed(x, jmax unn, wmax unn) {Find the index and diameter

of the longest component not reduced by the last use of the Newton operator}
4: if (Newton reduced no components or wmax > 1.5 · wmax unn) then
5: return jmax

6: else if (wmax unn > 8 · wmin) then
7: return jmax unn

8: end if
9: FindSmallestMaxMag(x, j , w) {Find the component with the smallest maximal

magnitude of the Jacobi matrix in all rows}
10: if (w > 0.1) then
11: return j

12: else
13: return jmax unn

14: end if

The algorithm was designed for underdetermined problems, but experiments in
[27] have shown some improvements for well-determined problems, also.

A careful analysis shows, that the main reason of this improvement is avoid-
ing to choose the components, narrowed by the Newton operator (by a narrowed
component, we mean the one for which the operator had improved both bounds, i.e.,
xnew
i ⊂ int xi).
Should we choose the minimal magnitude components, indeed? For well-

determined problems, it is not beneficial, certainly – we should bisect components
with the maximal magnitude as they have the largest influence on the overestimation
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of the solved functions. For underdetermined problems, the situation is more compli-
cated. The above argument holds, but the component with the maximal magnitude is
the one that should be narrowed by the Newton operator (for underdetermined prob-
lems not all components are narrowed to verify the solution existence!). Experiments
with the MaxSumMag and MaxSmear heuristics (most of them are not presented due
to lack of space, see also [27]) show a very poor performance of such policies for
underdetermined problems.

Consequently, we propose to stick to choosing the maximal diameter for boxes
that are not narrowed yet. For boxes where some components have already been
narrowed, we can use the maximal sum magnitude heuristic, but only on unnarrowed
components. It occurred that for smaller boxes, it is better to switch to the maximal
diameter again (but, also, not bisecting the narrowed components).

For well-determined problems, the MaxSumMagnitude performs well, in general,
but an exception to it is the Brent10 problem. Hence, we switch to MaxDiamUnnar-
rowed on occasions.

Details are given by the pseudocode in Algorithm 10.

Algorithm 10 Choosing the variable for bisection of x – the new heuristic

Require: x {We assume the procedure gets sufficient info about the results of the
Newton operator evaluation, also – see below}

1: FindMaxDiamUnnarrowed(x, jmax unn, wmax unn)
2: FindMaxSumMagnitudeUnnarrowed(x, jmax mag , wmax mag)
3: if (Newton reduced no components) then
4: if (m < n (i.e., the problem is underdetermined) or wmax unn ≥ 16 ·

wmax mag) then
5: return jmax unn

6: else
7: return jmax mag

8: end if
9: else
10: if (wmax mag ≥ 0.1) then
11: return jmax mag

12: else
13: return jmax unn

14: end if
15: end if

6 Computational experiments

Numerical experiments were performed on a computer with 4 cores (allowing hyper-
threading), i.e., an Intel Core i7-3632QMwith 2.2GHz clock. The machine ran under
control of a 64-bit Manjaro 0.8.8 GNU/Linux operating system with the GCC 4.8.2,
glibc 2.18 and the Linux kernel 3.10.22-1-MANJARO.
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The solver is written in C++ and compiled using the GCC compiler. The C-XSC
library (version 2.5.3) [1] was used for interval computations. The parallelization (8
threads) was done with TBB 4.2, update 2 [2]. OpenBLAS 0.2.8 [3] was linked for
BLAS operations.

We used 8 threads, on the 4 cores, which means hyper-threading was used on
all cores. According to the author’s experiences, it reduces the computation time
by a factor of c.a. 0.9 with respect to having a single thread per core. Please note
that parallelization does not affect the number of iterations, but the execution time
only.

The following test problems were considered – four of them were underdeter-
mined (Academic, Hippopede, Puma6, 5R planar) and five – well-determined (Box3,
Bratu30, Brent10, Broyden16, Transistor).

The first of the underdetermined ones is a set of two equations – a quadratic one
and a linear one – in five variables [13]. It is called the Academic problem.

x2
1 + x2

2 + x2
3 + x2

4 + x2
5 − 1.0 = 0 , (3)

x1 + x2 + x3 + x4 + x5 = 0 ,

x1, x2 ∈ [−1, 1], x3 ∈ [−0.7, 0.7], x4 ∈ [−0.8, 0.8], x5 ∈ [−2, 2] .
Accuracy ε = 0.05

The second one is called the Hippopede problem [25, 32] – two equations in three
variables.

x2
1 + x2

2 − x3 = 0 , (4)

x2
2 + x2

3 − 1.1x3 = 0 .

x1 ∈ [−1.5, 1.5], x2 ∈ [−1, 1], x3 ∈ [0, 4] .
Accuracy ε = 10−7 was set.

The third problem, called Puma, arose in the inverse kinematics of a 3R robot and
is one of typical benchmarks for nonlinear system solvers [6].

x2
1 + x2

2 − 1 = 0 , x2
3 + x2

4 − 1 = 0 , (5)

x2
5 + x2

6 − 1 = 0 , x2
7 + x2

8 − 1 = 0 ,

0.004731x1x3 − 0.3578x2x3 − 0.1238x1 − 0.001637x2 − 0.9338x4 + x7 = 0 ,

0.2238x1x3 + 0.7623x2x3 + 0.2638x1 − 0.07745x2 − 0.6734x4 − 0.6022 = 0 ,

x6x8 + 0.3578x1 + 0.004731x2 = 0 ,

−0.7623x1 + 0.2238x2 + 0.3461 = 0 ,

x1, . . . , x8 ∈ [−1, 1] .
In the above form it is a well-determined (8 equations and 8 variables) problem

with 16 solutions that are easily found by several solvers. To make it underdetermined
the last equation was dropped – as in [25] – resulting in 7 equations with 8 variables.
Accuracy ε = 10−7 was set.

The fourth one is the inverse-kinematics problem of a planar redundant N-R
manipulator, the effector of which should be placed in position

(
1.0, 1.0, π

2

)
. We
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presented the problem in Section 1, already, but we repeat it here for the sake of
completeness:

N∑

i=1

li ·
i∏

j=1

cos

⎛

⎝
j∑

k=1

xk

⎞

⎠ − 1 = 0 , (6)

N∑

i=1

li ·
i∏

j=1

sin

⎛

⎝
j∑

k=1

xk

⎞

⎠ − 1 = 0 ,

N∑

i=1

xi − π

2
= 0 ,

xi ∈
[
−π

2
,
π

2

]
, i = 1, . . . , N .

We use this problem for N = 5, li = 1, i = 1, . . . , 5; the accuracy is set to
ε = 2 · 10−2.

The fifth problem is well-determined – it is called Box3 [6] and has three equations
in three variables.

exp(−0.1 · x1) − exp(−0.1 · x2) − x3 · (exp(−0.1) − exp(−1.0)) = 0 , (7)

exp(−0.2 · x1) − exp(−0.2 · x2) − x3 · (exp(−0.2) − exp(−2.0)) = 0 ,

exp(−0.3 · x1) − exp(−0.3 · x2) − x3 · (exp(−0.3) − exp(−3.0)) = 0 .

x1, x2 ∈ [−100.0, 100.0], x3 ∈ [0.1, 100.0] .
Accuracy ε was set to 10−5.

The sixth problem is well-determined, also and very sparse; it is called Bratu [6].

exp(x1)

N + 1
− 2x1 + x2 = 0 , (8)

xi−1 + exp(xi)

N + 1
− 2xi + xi+1 = 0, i = 2, . . . , N − 1 ,

xN−1 + exp(xN)

N + 1
− 2xN = 0 ,

xi ∈ [−108, 20], i = 1, . . . , N .

We consider this problem for size N = 30. Accuracy ε = 10−6 was set.
The seventh problem is called the Brent problem – it is a well-determined algebraic

problem, supposed to be “difficult” [4].

3x1 · (x2 − 2x1) + x2
2

4
= 0 , (9)

3xi · (xi+1 − 2xi + xi−1) + (xi+1 − xi−1)
2

4
= 0, i = 2, . . . , N − 1 ,

3xN · (20 − 2xN + xN−1) + (20 − xN−1)
2

4
= 0 ,

xi ∈ [−108, 108], i = 1, . . . , N .
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Presented results have been obtained for N = 10; accuracy was set to 10−7.
The eight one is the well-known Broyden-banded system [6, 25].

xi · (2 + 5x2
i ) + 1 −

∑

j∈Ji

xj · (1 + xj ) = 0, i = 1, . . . , N , (10)

Ji = {j | j 	= i and max{1, i − 5} ≤ j ≤ min{N, i + 1}} ,

xi ∈ [−100, 101], i = 1, . . . , N .

In this paper we consider the case of N = 16. The accuracy ε = 10−6 was set. And
the last one we call “Transistor” is taken from [34]. It is a system of 9 equations in 9
variables:

(1 − x1x2) · x3 ·
(
exp

(
x5 · (g1k − g3k · 10−3 · x7 − g5k · 10−3 · x8)

)
− 1

)
+

−g5k + g4k · x2 = 0, k = 1, . . . , 4 , (11)

(1 − x1x2) · x4 ·
(
exp

(
x6 · (g1k − g2k − g3k · 10−3 · x7 + g4k · 10−3 · x9)

)
− 1

)
+

−g5k · x1 + g4k = 0, k = 1, . . . , 4 ,

x1 · x3 − x2 · x4 = 0 .

xi ∈ [0, 10], i = 1, . . . , 9 .

The matrix of gmk parameters can be found, e.g., in [34] and [33]. Accuracy ε = 10−8

was used in our experiments.
The following notation is used in the tables:

– fun.evals, grad.evals, Hesse evals – numbers of functions evaluations, its gra-
dients and Hesse matrices evaluations (in the interval automatic differentiation
arithmetic),

– bisecs – the number of boxes bisections,
– preconds – the number of preconditioning matrix computations (i.e., performed

Gauss-Seidel steps),
– bis.Newt, del.Newt – numbers of boxes bisected/deleted by the Newton step,
– Sobol excl. – the number of boxes to be excluded generated by the initial

exclusion phase,
– Sobol resul. – the number of boxes resulting from the exclusion phase, i.e., the

size of the box-set L to be considered by the B&P method,
– bc3 – the number of calls of the consistency enforcing algorithm – Algorithm 3,
– bc3.rev. – the number of “first-level” calls (i.e., not counting the recursive ones)

of “left narrow” and “right narrow” procedures,
– del.bc3 – the number of boxes deleted by consistency enforcing,
– q.solv – the number of interval quadratic equations the algorithm was trying to

solve,
– q.del.delta – the number of boxes deleted, because the discriminant of the

quadratic equation was negative,
– q.del.disj. – the number of boxes deleted, because the solutions of a quadratic

equation were disjoint with the original box,
– q.bisecs – the number of boxes bisected by the quadratic equations solving

procedure,
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– pos.boxes, verif.boxes – number of elements in the computed lists of boxes
containing possible and verified solutions,

– Leb.pos., Leb.verif. – total Lebesgue measures of both sets,
– time – computation time in seconds.

The ultimate table – Table 14, showing results for the currently most efficient
algorithm version – has two additional rows, describing speedups with respect to two
reference versions:

– sp(basic) – with respect to version “basic+BLAS” (see below for the description
of both names),

– sp(PPAM) – with respect to version “PPAM2011”.

We present results for the following algorithm versions:

– basic – for each box we compute the Jacobi matrix and use the interval Gauss-
Seidel step with inverse-midpoint preconditioner; bisection over the variable
with maximal diameter; no additional tools,

– basic+BLAS – as above, but the inverse-midpoint preconditioner is computed
approximately and BLAS procedures are applied for matrix operations,

– PPAM2011 – the version presented in [27],
– PPAM2011+BC3(εbc3),
– PPAM2011+QH – the version presented in [27], with the Hansen’s quadratic test,

but no Sobol exclusion phase; see [29],
– PPAM2011+Sobol(k) – the version presented in [28], but with the new comple-

ment computing algorithm,
– PPAM2011+BC3(εbc3)+QH, PPAM2011+Sobol(k)+BC3(εbc3), etc. – various

combinations of the used tools.

Tables 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12 contain results for several simple
versions of the algorithm, using many variants of the used tools. The two ultimate
tables – Tables 13 and 14 contain the experiments for versions that –according to
previous experiments – occurred to be most promising (see the analysis in the next
section).

Remark 1 Please note that Table 1 contains two sets of results – the additional
row (“BLAS–time”) presents the computation times of the “basic+BLAS” algorithm
version. This is done to save space. Other quantities, i.e., numbers of function eval-
uations, gradients, etc. are not presented for this version as they are very similar to
results for the “basic” version. Very similar, but not identical – minor differences can
be observed for problems Hippopede, 5R planar and Box3. Details are available form
the author upon request.

Remark 2 Please note, results of the exclusion phase in its current version are not
deterministic. The number in the filed “Sobol resul.” may vary by a small factor and
also computational time may be a few seconds higher or lower (also the number of
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iterations, etc., obviously). We do not emphasize it in the tables (nor present any
statistical analysis of the phenomenon) as the uncertainty is minor.

7 Selected results obtained for Realpaver

For comparison, we present results for three test problems, obtained using another
solver, Realpaver [7]. It is one of mature interval solvers that can be considered
current state-of-the-art [17].

5R planar. For this underdetermined problem, Realpaver required 17 minutes (for
Bisection precision = 2.0, much less accurate than the presented solver) and
did not cover the whole solution set (“Property: non reliable process (some solutions
may be lost)”). This result was far worse than ours.

Brent10. For this well-determined problem Realpaver has found all solutions (1065)
in 55 seconds, but only when -number 2000 was enforced. For default settings, it
returned after 46 seconds with an incomplete list of boxes. Again, a worse result than
for the presented solver.

Transistor. For this problem, Realpaver outperformed our solver. For the settings
proposed by Realpaver authors (trisection and using weak 3B consistency; the bench-
mark is pre-defined in the configuration files of this solver), the solver requires 13
seconds, but does not verify the unique solution, but returns with a cluster of 3 boxes.
For the default settings, Realpaver verifies the unique solution, but it takes 30 seconds
– still a better result than our solver.

8 Analysis of results

Results, presented in Section 6 show that the performance impact of various tools
may vary to the high extent. Using a single tool (initial exclusion phase, box con-
sistency enforcing or Hansen’s quadratic test) often improves the performance of
the “PPAM2011” algorithm version. But applying two of the successful operations
may result in far a smaller improvement or even in a slowdown. Apparently, some
expensive tools might “redundant” when used together with other ones.

In particular, applying the Hansen’s quadratic test improves the performance of
the “PPAM2011” algorithm for problems Hippopede, Puma7 and Broyden16 (see
Tables 2 and 3). But when we apply both BC3(3.0/n) procedure and the quadratic
test, results will be worse than for BC3 only (see Tables 4 and 6). Probably, the
quadratic test (that requires Hesse matrix computation!) is applied for some boxes
that could be reduced by the BC3 procedure, but it is difficult to verify this conjecture.

On the other hand, the Hansen’s quadratic test improves the performance of all
versions for the Brent10 problem.
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In general, applying the BC3 procedure seems very worthwhile (improvements
are dramatic for problems Brent10, Broyden16 and – particularly – Bratu30 that can-
not be solved in a reasonable time without using the consistency operator), yet it is
completely useless for the Puma7 problem (reasons for this behavior remain to be
determined). The improvement for Box3 problem is minor, but irrefutable. Improve-
ments for problems Academic and 5R-planar are minor (or none), but this seems
to be related to the fact that these problems are underdetermined with the differ-
ence between the number of variables and equations of more than one (3 and 2,
respectively; see below).

For two problems – Box3 and Transistor – it occurred to be crucial, to choose
the proper coordinate for bisection, i.e., to use a heuristic related to MaxSmear, e.g.,
Algorithm 10.

The Transistor problem For this problem, only one algorithm version was able to
provide the results. It was the most efficient version – results are presented in
Table 14. Other experiments, not presented in this paper, show that for the Tran-
sistor problem, useful are only the following algorithm versions have the following
properties, mutually:

– they use box-consistency,
– they use Algorithm 10.

The ultimate version gives the correct solution (the single box, guaranteed to con-
tain the solution) in 89 seconds. Solvers, presented in [33] require 2359.5 seconds
for the version tuned for this specific problem and 135099 for a more general version
and in [16] – 444 seconds. These experiments have been performed on a Sun Ultra-2
running Solaris; according to [16], the clock frequency was 166MHz.

Our results are much better, but they are obtained on a far stronger machine, also.
For using Realpaver, the correct solution was computed far quicker, on our machine
– 30 seconds.

Apparently, the use of hull-consistency (that was used in [16] and also is incorpo-
rated in Realpaver) is pretty worthwhile. Unfortunately, hull-consistency enforcing
is not easy to implement, especially in multithreaded environments. It requires com-
plicated expression tree building and each thread should be able to traverse the tree
(forward and backward) independently (intervals of values of respective quantities in
the tree must be thread-specific). Still, the effort has to be done.

Underdetermined vs well-determined problems It is worth noting that tuning the
algorithm for underdetermined problems occurred to be much harder than for well-
determined ones. The Hippopede problem seems to be particularly “capricious” –
results change rapidly for minor changes of algorithm features.

If the dimension of the solution set is higher than one, i.e., the difference between
the number of variables and equations is higher than one, then tuning the algorithm
does not have a significant impact on the performance. Comparing all tables shows
that for such problems all algorithm versions perform similarly; it seems the ε we
have to choose for such problems to stop in a reasonable time is so large, that specific
features of various algorithm versions do not “have time” to affect the performance
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(or the time necessary to process all boxes containing solutions is too long). Exper-
iments presented in the paper – problems Academic and 5R planar – but also in
previous ones – problems Puma6 and Rheinboldt, see, e.g., [25–29] are consistent
with this observation.

Also, underdetermined problems seem to require different policies for bisection
than well-determined ones. In particular, heuristics based on smear computation, like
MaxSmear, MaxSumMagnitude (e.g., [9]) perform particularly bad on them. It seems
to be caused by the fact that not all of the components are going to be narrowed
for underdetermined problems, but only the ones with the high smear, so the other
components should be bisected, instead. If some components have been narrowed by
the Newton operator, we should not bisect them (MaxSumMagnitudeUnnarrowed),
but for boxes not narrowed yet, heuristics based on smear and magnitude cannot
be applied at all. On the other hand, components with small smear and magnitude
have minor impact on the system. So, it seems, bisecting the longest edge is the best
solution and that is what we do in Algorithm 10.

The currently-best version Overall, the version that performs best, currently,
occurred to be the one with the following features:

– the initial exclusion phase with n2 Sobol points generated, sparsity-based
expanding (see Section 4) and Ncutoff = 128,

– Algorithm 4 is used to decide whether to use BC3 or not, εbc3 = 6.0
n
,

– the variable for bisection chosen by heuristic, described in Algorithm 10.

Results for this version are presented in Table 14.

9 Conclusions

Interval branch-and-prune solvers can use a great deal of tools to narrow and dis-
card boxes. In this paper, the usefulness of some of them (proposed by the author
and by other researchers) has been investigated. A proper heuristic to choose and
parameterize the tools has been proposed.

In particular, we presented a novel initial exclusion phase and a new policy to
choose the variable for bisection. This policy distinguishes underdetermined and
well-determined problems, which seems another important novelty.

As test examples show, the proposed algorithm performs well and is successful for
some hard problems (e.g., the Brent problem).

Comparison with the Realpaver solver imply that our solver can outperform it
for underdetermined and non-typical (e.g., singular or ill-determined) problems, but
performs much worse for the Transistor problem.

It is probably far from optimal and further research is going to be performed – in
particular, applying machine learning techniques to self-tune the algorithm.

The source code of the presented version of the algorithm (and hopefully further
versions) is going to be available at the author’s page: https://www.researchgate.net/
profile/Bartlomiej Kubica?ev=hdr xprf.

https://www.researchgate.net/profile/Bartlomiej_{K}ubica?ev=hdr_{x}prf
https://www.researchgate.net/profile/Bartlomiej_{K}ubica?ev=hdr_{x}prf
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Future research Interesting results might be obtained, by applying AI methods to
self-tune the heuristics. Up to now, the only paper investigating such an approach
(but in a very limited version) is [15].

Also, hull consistency enforcing must be investigated (as we indicated earlier) –
this procedure appears very useful in experiments performed by other researchers. So
are the acceleration tools, proposed by Kolev [21].
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