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Abstract A popular class of reconstruction filters that are used in signal and image
processing is based on cubic B-splines. One reason for their popularity is the fact
that they can be efficiently implemented. This is specifically true with modern GPUs
where cubic B-spline filtering can be implemented by means of linearly interpolat-
ing texture fetches so that the actual number of memory accesses can be significantly
reduced. The curve obtained from filtering with the cubic B-spline does in general
not interpolate the original data set. The latter can however be achieved by applying a
prefiltering step that transforms the original data set. We study the asymptotic behav-
ior of the reconstruction error of the cubic B-spline interpolation filter using a state
of the art method that is based on a Taylor series expansion and that was carefully
adjusted to accommodate the infinite support of this reconstruction filter.

Keywords Splines · Reconstruction · Asymptotic error

1 Introduction

Practical implementations of reconstruction algorithms from signal or image process-
ing rely on filters with a finite support. GPUs are a popular target platform for 2-d or
3-d image processing algorithms because of their high peak performance. GPUs pro-
vide hardware implementations for zeroth and first-order reconstruction in one, two,
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and three dimensions. While the theoretical time it takes the first-order reconstruction
algorithm to execute is 2D times as high (D here denotes dimension) compared to
the zeroth-order reconstruction algorithm, in practice both implementations incur the
same latency on contemporary GPUs. While zeroth and first-order reconstruction is
unambiguous - application of a zeroth-order filter in general results in a step function
while a first-order filter results in a set of connected line segments - there exist dif-
ferent ways to reconstruct a data set when using higher-order functions. Two popular
reconstruction filters based on piecewise cubic functions are the cubic B-spline [8]

β3
1 (x) =

⎧
⎪⎨

⎪⎩

2
3 − |x|2 + |x|3

2 : 0 ≤ |x| < 1
(2−|x|)3

6 : 1 ≤ |x| < 2
0 : 2 ≤ |x|

, (1)

as well as the Catmull-Rom spline [1]

c (x) =
⎧
⎨

⎩

2
3 |x|3 − 5

2 |x|2 + 1 : 0 ≤ |x| < 1
− 1

2 |x|3 + 5
2 |x|2 − 4|x| + 2 : 1 ≤ |x| < 2

0 : 2 ≤ |x|
. (2)

Reconstruction using one of the two filters in 1-d can be expressed as the
convolution sum

fx = w0(τ )fi−1 + w1(τ )fi + w2(τ )fi+1 + w3(τ )fi+2, (3)

where x ∈ R, i = �x�, τ = x−i, fi−1 through fi+2 are the samples that are available
from the original series, and fx is the reconstructed value. w0(τ ) through w3(τ )

represent weight functions that are obtained by either letting w0(τ ) = β3
1 (τ + 1),

w1(τ ) = β3
1 (τ ),w2(τ ) = β3

1 (τ−1), andw3(τ ) = β3
1 (τ−2) for the cubic B-spline, or

by letting w0(τ ) = c(τ +1), w1(τ ) = c(τ ), w2(τ ) = c(τ −1), and w3(τ ) = c(τ −2)
for the Catmull-Rom spline. Unlike for the Catmull-Rom spline, the convolution sum
from (3) can be reformulated as follows for the cubic B-spline [14]:

fx = g0 (τ ) fτ−h0(τ ) + g1 (τ ) fτ+h1(τ ), (4)

with

g0(τ ) = w0(τ ) + w1(τ ),

g1(τ ) = w2(τ ) + w3(τ ),

h0(τ ) = τ − 0.5 + w1(τ )

w0(τ ) + w1(τ )
,

h1(τ ) = τ + 1.5 + w3(τ )

w2(τ ) + w3(τ )
. (5)

This reformulation is only possible for functions which fulfill the convex combina-
tion property

afi + bfi+1 ⇔ (a + b)f i+b
a+b

, (6)

where a, b ∈ R, so that 0 ≤ b
a+b

≤ 1. Note that in (4), τ −h0(τ ) ∈ R and τ +h1(τ ) ∈
R, while i − 1 through i + 2 from (3) are natural numbers. GPUs provide memory
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accesses like the one on the right-hand side from (6) in hardware. With the above
reformulation, the number of memory accesses necessary for reconstruction using the
cubic B-spline filter can thus be reduced from 4D zeroth-order texture fetches to 2D

first-order texture fetches. This is advantageous because memory access operations
incur a much higher latency than e.g. arithmetic or comparison operations on von
Neumann architectures like GPUs. Unfortunately, the convex combination property
from (6) does not hold for the Catmull-Rom spline. However, the cubic B-spline does
in general not interpolate the original dataset, but only approximates it. For scientific
applications, this behavior is potentially undesirable, so that those applications resort
to interpolation using Catmull-Rom splines which incur 4D memory accesses.

An alternative approach is to prefilter the data set during a preprocessing step [17]
so that cubic B-spline filtering using the altered data set results in a curve that actually
reconstructs the original data set (cf. Fig. 1). Prefiltering is achieved by calculating
coefficients ck ∀k ∈ Z so that

fk =
∑

l∈Z
clb

3
1(x − l)

∣
∣
∣
x=k

, (7)

where b31(x) is the discrete cubic B-spline, i.e.

b31(k) = β3
1 (x)

∣
∣
∣
x=k

. (8)

Solving for ck thus yields the following convolution of the inverse discrete cubic
B-spline with the original series fk to obtain the new coefficients and that way an
appropriately prefiltered data set so that the cubic B-spline filter reconstructs the
original data set:

ck = (b31)
−1(k) ∗ fk. (9)

Fig. 1 Cubic B-spline interpolation with prefiltering. a The cubic B-spline only approximates the original
data set. b New coefficients ck are computed. c The new curve interpolates the original data set
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Because this filter reconstructs the original data set, the literature refers to it as
cubic B-spline interpolation [15–17]. This publication is concerned with the asymp-
totic error of the cubic B-spline interpolation reconstruction filter. The remainder of
the publication is structured as follows. In Section 2, we review related publications
that are concerned with numerical errors in scientific visualization applications. In
Section 3, we formally derive the error bound of the cubic B-spline interpolation fil-
ter. Section 4 concludes this publication. In the Appendix, we present some short
proofs that accompany the derivation of the asymptotic error bound from Section 3.

2 Related work

The recent popularity of cubic B-spline interpolation is based on the fact that the
filtering procedure can be implemented efficiently on GPUs [12, 14]. Ruijters and
Thévenaz [13] also presented an efficient implementation of the prefiltering step.
Nehab et al. [11] showed how the aforementioned implementation can be improved in
terms of memory access patterns and reported significant speedups. Their approach
employs various optimizations to the original algorithm, such as overlapping of the
causal and anticausal phases that the original implementation incorporates, or data
sharing between compute kernels without having to store temporary data in DDR
memory. Champagnat and Le Sant [2] proposed to truncate and normalize the infinite
prefilter to accelerate its application on the original data set. They evaluated their
approach using an error metric on a series of test images and found that the deviation
was negligible.

Error estimation is an important topic in the field of scientific visualization
because applications like those from medical imaging or engineering rely on algo-
rithms with a minimal error. Because with numerical methods one can usually not
avoid making errors, it is crucial that error bounds can be sufficiently estimated.
Error estimation and classification for 3-d imaging algorithms that rely heavily on
reconstruction were e.g. provided by Marschner and Lobb [7] or Etiene et al. [3].
Machiraju and Yagel [6] evaluated the error bound of reconstruction filters based on
filter size. Keys [4] derived the asymptotic error of the Catmull-Rom spline (which
his publication refers to as cubic convolution interpolation) as being of order O(T 3),
with T denoting the sampling distance.

Lu and Vaswani [5] suggested a method to reconstruct sparse signals, i.e. here
the reconstruction filter was not considered to introduce additional errors, but rather
than that a carefully crafted filter can help to reduce the error that is incurred by an
incomplete signal.

While we focus on the asymptotic behavior of the reconstruction error, image
reconstruction may also suffer from precision issues. Ruijters et al. [12] noted pre-
cision problems with cubic B-spline filtering, which especially emerged with the
original implementation proposed by Sigg and Hadwiger [14]. The latter precalcu-
lated the terms from (5) for a set of finite coordinates rather than calculating them
on-the-fly.
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Our contribution adapts the approach of Mller et al. [9, 10] to estimate the asymp-
totic error of cubic B-spline interpolation based on the sampling distance, so that
their method is reviewed in more detail. We consider the general convolution of a
reconstruction filter h with a set of samples fk to obtain the reconstructed signal

fx =
∑

k∈Z
fkh

( x

T
− k

)
, (10)

where T again denotes the sampling distance. By letting T → 0, the signal is recon-
structed using more samples and thus, the asymptotic error is reduced. Since T is
determined during the data acquisition phase rather than being a variable during
reconstruction, the method byMller et al. accounts for the reliability of a filter h given
a fixed resolution of the image or grid that accommodates the original data series.
Assuming that the first N + 1 derivatives of fk exist, the Taylor series expansion in
f about x

fk =
N∑

n=0

f
(n)
x

n! (kT − x)n + f
(N+1)
ξ

(N + 1)! (kT − x)(N+1), (11)

where x ≤ ξ ≤ kT and f (n) denotes the nth order derivate of fx , is substituted into
(10) as follows:

fx =
N∑

n=0

anf
(n)
x + rN (12)

with coefficients

an = 1

n!
∑

k∈Z
(kT − x)nh

( x

T
− k

)
(13)

and the residual term

rN = 1

(N + 1)!
∑

k∈Z
f

(N+1)
ξ (kT − x)(N+1)h

( x

T
− k

)
(14)

of which the latter in the following no longer needs to be considered. The coefficients
an are further simplified to:

an = T n

n!
M∑

k=−M

(k − τ)nh(τ − k) (15)

by letting τ = x
T

−� x
T

� be a normalized offset and considering only filters with finite
extent M . By expanding (12) as follows:

fx = a0f
(0)
x + a1f

(1)
x + a2f

(2)
x + · · · + aNf (N)

x + rN (16)

one can see that in the case of ideal reconstruction, the residual term rN as well as all
coefficients an should be zero, except for a0, which should be one. The authors then
classified the reconstruction filter h by choosing the largest N so that all an, 1 ≤
n ≤ N evaluate to zero. The reconstruction filter h is said to be a kth degree error
filter (k-EF) if the asymptotic behavior of the error is proportional to O(T k). With
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T → 0, higher values for k are in general preferred. The authors evaluated several
cubic filters and reported that the cubic B-spline from (1) is a 2-EF, and that the
Catmull-Rom spline from (2) is a 3-EF.

3 Asymptotic error of the cubic B-spline interpolation filter

In the ensuing section, we show how the approach by Mller et al. can be adapted
to derive the asymptotic error behavior of the cubic B-spline interpolation filter.
Because this filter has quasi infinite support, the approach by the authors is however
not applicable directly, so that the formal proof of the filter’s error bound is preceded
by a general discussion on how to adapt the approach by Mller et al. to accommodate
this specific filter.

3.1 Preliminary considerations

Equation 13 can in general only be solved if the sum over k ∈ Z has finite support
like in (15), or if the sum tends towards a constant expression. However, neither
is the case with the cubic B-spline interpolation filter. This becomes obvious when
considering the following observations.

In order to apply the method by Mller et al. to the cubic B-spline interpolation
filter with its prefiltering step, one has to substitute the prefiltered coefficients ck into
(10) and to substitute the cubic B-spline for the filter h:

fx =
∑

k∈Z
ckβ

3
1

( x

T
− k

)
. (17)

Due to the fact that the ck are calculated by convolving each sample from the original
series with the inverse discrete cubic B-spline (cf. (9)), (17) becomes

fx =
∑

k∈Z
((b31)

−1(k) ∗ fk)β
3
1

( x

T
− k

)
. (18)

In order to apply Mller et al.’s approach, the original data series must be isolated to
allow for Taylor series expansion in f about x. This is achieved by exploiting the
associativity of the convolution operation with scalar multiplication as follows:

fx =
∑

k∈Z
fk

∑

l∈Z
(b31)

−1(l)β3
1

( x

T
− l − k

)
. (19)

Unser [16] showed that the inverse discrete cubic B-spline is given by

(b31)
−1(l) = −6α

(1 − α2)
α|l| (20)

with l ∈ Z and α = √
3 − 2, so that (19) becomes

fx =
∑

k∈Z
fk

∑

l∈Z

−6α

(1 − α2)
α|l|β3

1

( x

T
− l − k

)
. (21)
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Now, simplifying so that coefficients like those from (15) are obtained is no longer
possible because the sum over l ∈ Z has infinite support and does not tend towards a
constant expression. Thus, the expression

h(x) = −6α

(1 − α2)

∑

l∈Z
α|l|β3

1

( x

T
− l − k

)
(22)

with k ∈ Z represents a filter with an infinite support. Note that this notion of infinity
is only theoretical because only parts of the filter are actually applied at reconstruc-
tion time, while the “infinite” part of the filter is applied during a preprocessing step.
Furthermore, the prefiltering procedure is typically applied to a finite set of samples
like the pixels of an image or the data items at the cells of a general grid. Although
the sum from (22) cannot simply be adapted to represent a filter with a finite extent
from −M to M , the following considerations allow to estimate the summands and
are used during the formal derivation in the following subsection.

While the sum over l ∈ Z from (22) has infinite support, the extent of the cubic B-

spline β3
1

(
x
T

− l − k
)
is finite. Specifically, only four summands of the infinite sum

will not equal zero following from the definition of the cubic B-spline. Let τ ∈ [0, 1)
be an offset which is defined as above, and let further, without loss of generality,
T = 1. We notice that the cubic B-spline may in general only evaluate to a value
other than zero for the cases β(τ − 2), β(τ − 1), β(τ), and β(τ + 1). We further
observe the following circumstances from (22):

β3
1 (τ − 2) �= 0 ⇒ −l − k = −2, (23)

β3
1 (τ − 1) �= 0 ⇒ −l − k = −1, (24)

β3
1 (τ ) �= 0 ⇒ −l − k = 0, (25)

β3
1 (τ + 1) �= 0 ⇒ −l − k = 1. (26)

We solve the right-hand sides of (23) through (26) for k respectively so that we can
conveniently refer to them during the course of the ensuing calculations:

− l − k = −2 ⇔ k = 2 − l, (27)

−l − k = −1 ⇔ k = 1 − l, (28)

−l − k = 0 ⇔ k = −l, (29)

−l − k = 1 ⇔ k = −1 − l. (30)

For the same reasons, we also tabulate:

β3
1 (τ − 2) = 1

6
τ 3, (31)

β3
1 (τ − 1) = −1

2
τ 3 + 1

2
τ 2 + 1

2
τ + 1

6
, (32)

β3
1 (τ ) = 1

2
τ 3 − τ 2 + 2

3
, (33)

β3
1 (τ + 1) = −1

6
τ 3 + 1

2
τ 2 − 1

2
τ + 1

6
. (34)
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From the definition of the cubic B-spline, we also know that

∑

k∈Z
β3
1 (k + τ)

!= 1. (35)

This knowledge is useful to fully comprehend the simplifications necessary to carry
out the following derivation.

3.2 Derivation of the asymptotic error

By again letting τ = x
T

− � x
T

�, we obtain the general coefficients an ∀n ∈ N from
(15) for the cubic B-spline interpolation filter as follows:

an = T n

n!
∑

k∈Z
(k − τ)n

∑

l∈Z

−6α

(1 − α2)
α|l|β3

1 (τ − l − k)

= T n

n!
−6α

(1 − α2)

∑

l∈Z
α|l| ∑

k∈Z
(k − τ)nβ3

1 (τ − l − k) (36)

Since having identified the four cases for which the cubic B-spline may take on values
other than zero, the sum over k ∈ Z from (36) can be simplified as follows:

an = T n

n!
−6α

(1 − α2)

∑

l∈Z
α|l|

[

(−1 − l
︸ ︷︷ ︸
Eq. 30

−τ)n
(

− 1

6
τ 3 + 1

2
τ 2 − 1

2
τ + 1

6

)

︸ ︷︷ ︸
Eq. 34

+( −l
︸︷︷︸
Eq. 29

−τ)n
(
1

2
τ 3 − τ 2 + 2

3

)

︸ ︷︷ ︸
Eq. 33

+(1 − l
︸︷︷︸
Eq. 28

−τ)n
(

− 1

2
τ 3 + 1

2
τ 2 + 1

2
τ + 1

6

)

︸ ︷︷ ︸
Eq. 32

+(2 − l
︸︷︷︸
Eq. 27

−τ)n
(
1

6
τ 3

)

︸ ︷︷ ︸
Eq. 31

]

(37)

We now calculate the coefficients to find the first n so that an �= 0. For n = 0, the
whole sum over k ∈ Z evaluates to one and we find that:

a0 = −6α

(1 − α2)

[∑

l∈Z
α|l|

]

= −6α

(1 − α2)

[
2

1 − α
− 1

]

= 1. (38)
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In the Appendix, we proof that the terms in the square brackets are equivalent.
After simplifying the sum over k ∈ Z, the Taylor series coefficient for n = 1 is

determined as follows:

a1 = T
−6α

(1 − α2)

[

−
∑

l∈Z
α|l|l

]

= T
−6α

(1 − α2)
0 = 0. (39)

We show that the term in the square brackets evaluates to zero in the Appendix.
For n = 2, calculating the coefficient yields

a2 = T 2

2

−6α

(1 − α2)

[ ∑

l∈Z
α|l|

(

l2 + 1

3

)]

= T 2

2

−6α

(1 − α2)

[ ∑

l∈Z
α|l|l2 + 1

3

∑

l∈Z
α|l|

]

= T 2

2

−6α

(1 − α2)

[

− 1

3
√
3

+ 1

3

[
2

1 − α
− 1

]]

= 0. (40)

We once again delay the proof that
∑

l∈Z α|l|l2 = − 1
3
√
3
for α = √

3 − 2 to the

Appendix. The equality
∑

l∈Z α|l| = 2
1−α

− 1 was already used for the derivation of
a0 and can also be found in the Appendix.

Since a2 also evaluates to zero for arbitrary τ , we proceed to compute the
coefficient for n = 3:

a3 = T 3

6

−6α

(1 − α2)

[ ∑

l∈Z
α|l|(−l3 − l)

]

= T 3

6

−6α

(1 − α2)

[

−
∑

l∈Z
α|l|l3 −

∑

l∈Z
α|l|l

]

= 0. (41)

Again the whole term in the square brackets evaluates to zero, so that the whole
expression is zero. The equality

∑
l∈Z α|l|l = 0 was already used above, and∑

l∈Z α|l|l3 = 0 is shown in the Appendix.
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We find that the asymptotic error of the cubic B-spline interpolation filter is also
not bounded by O(T 3) and proceed to the case n = 4:

a4 = T 4

24

−6α

(1 − α2)

[ ∑

l∈Z
α|l|

(

l4 + 2l2 − τ 4 + 2τ 3 − τ 2 + 1

3

)]

= T 4

24

−6α

(1 − α2)

[ ∑

l∈Z
l4α|l| + 2

∑

l∈Z
l2α|l| +

(

− τ 4 + 2τ 3 − τ 2 + 1

3

)∑

l∈Z
α|l|

]

= T 4

24

−6α

(1 − α2)

[
1

3
√
3

− 2
1

3
√
3

+
(

− τ 4 + 2τ 3 − τ 2 + 1

3

)[
2

1 − α
− 1

]]

= T 4

24

−6α

(1 − α2)

[

− 1

3
√
3

]

+ T 4

24

−6α

(1 − α2)

[
2

1 − α
− 1

]

(

− τ 4 + 2τ 3 − τ 2 + 1

3

)

= T 4

24

(

− 1

3

)

+ T 4

24

(

− τ 4 + 2τ 3 − τ 2 + 1

3

)

= T 4

24

(

− τ 4 + 2τ 3 − τ 2
)

. (42)

We proof the fact that
∑

l∈Z l4α|l| = 1
3
√
3
in the Appendix. The various sim-

ilar equations are already known from above and are, as already stated, also
derived in the Appendix. One can easily show that the fourth-order polynomial
from (42) has only one real root in the interval [0, 1) for the special case where
τ = 0. We have thus shown that cubic B-spline interpolation in general is
a 4-EF.

4 Conclusion

Cubic B-spline interpolation using prefiltering is a popular means to provide high-
quality reconstruction, which is desirable e.g. when transforming 2-d or 3-d images.
We studied the asymptotic error behavior of cubic B-spline interpolation using the
method proposed by Möller et al., which is based on the Taylor series expansion
of the convolution of the original data set with the reconstruction filter. The origi-
nal method is however not suitable for filters with an infinite support. We showed
how to adjust the method by Möller et al. to derive the asymptotic error of cubic
B-spline interpolation using prefiltering and conclude that this reconstruction filter
is a 4-EF.

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and
the source are credited.
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Appendix

In order to derive the Taylor series coefficients for the cubic B-spline interpolation
from (21), we show the following identities that we used to estimate the sum over
l ∈ Z.
For the following proofs we make use of the closed-form solution of the infinite
geometric series for 0 ≤ a < 1

∞∑

l=0

al = 1

1 − a
. (43)

We now want to show the identity from (38). Let in the following α = √
3 − 2, i.e.

0 ≤ α < 1. From the definition of the geometric series follows that

∑

l∈Z
α|l| = 2

[
1

1 − α

]

− 1. (44)

In order to comprehend (39), we further need to show that
∑

l∈Z α|l|l = 0. Therefore
we observe that

∞∑

l=0

α|l|l =
∞∑

l=0

α
d

dα
α|l| = α

d

dα

∞∑

l=0

α|l| = α
d

dα

1

1 − α
= α

(1 − α)2
(45)

and

0∑

l=−∞
α|l|l = −

∞∑

l=0

α
d

dα
α|l| = −α

d

dα

∞∑

l=0

α|l| = −α
d

dα

1

1 − α
= − α

(1 − α)2

(46)
so that

∑

l∈Z
α|l|l =

[ ∞∑

l=0

α|l|l
]

+
[ 0∑

l=−∞
α|l|l

]

− α00 = 0. (47)

In order to show (40), we need to proof that
∑

l∈Z α|l|l2 = − 1
3
√
3
. This can be

seen by observing that

∞∑

l=0

α|l|l2 = α
d

dα
α

d

dα

∞∑

l=0

α|l| = α
d

dα

α

(1 − α)2
= α(1 + α)

(1 − α)3
. (48)

We also notice that from symmetry

∞∑

l=0

α|l|l2 =
0∑

l=−∞
α|l|l2 (49)

and conclude that
∑

l∈Z
α|l|l2 = 2

[
α(1 + α)

(1 − α)3

]

− α002 = − 1

3
√
3
. (50)
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Equation 41 relies on the fact that
∑

l∈Z α|l|l3 evaluates to zero. Therefore we
show

∞∑

l=0

α|l|l3 = α
d

dα
α

d

dα
α

d

dα

∞∑

l=0

α|l| = α
d

dα
α

d

dα

α

(1 − α)2

= α
d

dα

α(1 + α)

(1 − α)3
= α(α2 + 4α + 1)

(1 − α)4
. (51)

It can easily be seen from

0∑

l=∞
α|l|l3 = −

∞∑

l=0

α|l|l3 = −α(α2 + 4α + 1)

(1 − α)4
(52)

that
∑

l∈Z
α|l|l3 =

[
α(α2 + 4α + 1)

(1 − α)4

]

+
[

− α(α2 + 4α + 1)

(1 − α)4

]

− α003 = 0. (53)

The last identity that we need to show in order to proof (42) is
∑

l∈Z α|l|l4 = 1
3
√
3
.

Similar to the previous cases we notice that
∞∑

l=0

α|l|l4 = α
d

dα
α

d

dα
α

d

dα
α

d

dα

∞∑

l=0

α|l| = α
d

dα
α

d

dα
α

d

dα

α

(1 − α)2

= α
d

dα
α

d

dα

α(1 + α)

(1 − α)3
= α

d

dα

α(α2 + 4α + 1)

(1 − α)4

= α(α3 + 11α2 + 11α + 1)

(1 − α)5
(54)

From symmetry follows that

∞∑

l=0

α|l|l4 =
0∑

l=−∞
α|l|l4 (55)

so that
∑

l∈Z
α|l|l4 = 2

[
α(α3 + 11α2 + 11α + 1)

(1 − α)5

]

− α004 = 1

3
√
3
. (56)
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