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Abstract In this paper, we present the combination of the inexact Newton
method and the generalized Newton method for solving nonsmooth equations
F(x) = 0, characterizing the local convergence in terms of the perturba-
tions and residuals. We assume that both iteration matrices taken from the
B-differential and vectors F(x(k)) are perturbed at each step. Some results
are motivated by the approach of Cătinaş regarding to smooth equations. We
study the conditions, which determine admissible magnitude of perturbations
to preserve the convergence of method. Finally, the utility of these results
is considered based on some variant of the perturbed inexact generalized
Newton method for solving some general optimization problems.
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1 Introduction

We consider the system of nonlinear equations

F(x) = 0, (1)
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e-mail: smietan@math.uni.lodz.pl



90 Numer Algor (2013) 63:89–106

where F is a given Lipschitz continuous function from Rn into Rn . In the whole
paper we assume that there exists x∗ ∈ Rn such that F(x∗) = 0.

A locally convergent iterative Newton method has the general form

x(k+1) = x(k) + s(k),

where the step s(k) is a solution of some particular linear system. The classical
Newton method (using the usual Jacobian of F at x(k)) for solving smooth
equations is locally and quadratically convergent to x∗ under the standard
assumptions: existence of a solution, continuously differentiability of F and
nonsingularity of the Jacobian at the solution point (to guarantee that the
increment s(k) exists in the neighborhood of the solution).

The superlinearly convergent generalized Newton method, which was intro-
duced by Qi [26], has the following form

Vks(k) = −F
(
x(k)

)
, Vk ∈ ∂B F

(
x(k)

)
,

where ∂B F(x(k)) is the B-differential of F at x(k) and the matrix Vk is
taken arbitrarily from ∂B F

(
x(k)

)
. The iterative process is the classical Newton

method if F is differentiable, because ∂B F(x) = {F ′(x)}, where F ′(x) denotes
the Jacobian of F at x.

In turn, the inexact Newton method for solving smooth equations intro-
duced by Dembo, Eisenstat and Steihaug in [8] is given by

F ′ (x(k)
)

s(k) = −F
(
x(k)

) + rk

with

‖rk‖ ≤ ηk
∥∥F

(
x(k)

)∥∥ ,

where {ηk} is the forcing sequence such that 0 ≤ ηk < 1. From the computa-
tional point of view, we can treat the error term rk as the perturbation of F
at x(k).

The combination of the inexact Newton method and the quasi-Newton
method for solving smooth equations has been described in several papers,
e.g. [1, 2, 14]. Furthermore, the nonsmooth versions of the inexact generalized
Newton method were considered among the others in [3, 15, 23, 34, 37].
Both the generalized Newton methods and the inexact Newton methods for
solving nonsmooth equations are locally and superlinearly convergent to the
solution under mild conditions. The main goal of this paper is to analyze
the convergence of the perturbed version of the inexact generalized Newton
method. Is the behavior of this method the same and what conditions on the
perturbations do we have to guarantee for a good convergence?

Ypma [36] analyzed the rounding errors of the sequence of iterates gener-
ated by the undamped Newton-like method as the perturbations incorporated
in linear system, however he did not give the explicit formulas regarding to
the perturbations and residuals. The sufficient condition for local convergence
of the perturbed Newton-like method for solving smooth equations was
proved, but under rather strong assumptions imposed on F. Next, Cătinaş [4]
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extended the local convergence theory of the inexact Newton method in the
smooth case

[
F ′ (x(k)

) + �k
]

s(k) = [−F
(
x(k)

) + δk
] + r̂k, (2)

characterizing the rate of convergence in terms of perturbations and residuals.
In the iteration above, �k and δk represent the perturbations, respectively to
the Jacobians and the function evaluations, while r̂k are the residuals of the
approximate solutions s(k) of the corresponding linear systems. The method
(2) is linearly convergent for continuously differentiable equations defined
by functions with nonsingular Jacobian at the solution point. The superlinear
convergence is possible to attain with some strong condition imposed on
perturbations. Cătinaş showed also that the inexact, inexact perturbed and
quasi-Newton methods for solving smooth equations are equivalent models
based on the characterization of convergence orders [5].

In this paper, we analyze the perturbed inexact generalized Newton method
in the form

(
Vk + Ṽk

)
s(k) =

[
−F

(
x(k)

) + F̃
(
x(k)

)] + r̃k,

where Ṽk is some perturbation matrix, F̃ is the perturbation of function F and
r̃k denotes the residual. Some results were obtained based on known theorems
from [4, 15] and [7], however some extension of the relevant statements to the
nonsmooth case was one of the main objectives of paper inspired by perturbed
approach.

Really, application of the considered methods is much wider than solving
nonsmooth equations and equations which arise from the reformulation of
nonlinear complementarity problems and variational inequalities. There exist
numerous schemes which allow generalization methods for solving univariate
global optimization problems to the multidimensional case (including one-
point based, diagonal, simplicial, space-filling curves and other popular ap-
proaches, see e.g. [11, 19]). Because in many problems functions may not pos-
sess a sufficient degree of smoothness, algorithms for solving nondifferentiable
unconstrained problems can be important tools to solve them. For example,
the univariate constrained minimization problem with inequality constraints
can be simply reduced to the unconstrained one by using the penalty scheme
fP(x) = f0(x) + P max{g1(x), g2(x), ..., gm(x), 0} with the penalty coefficient P
(see [10]).

Chemical engineering, electronics and electrotechnics are among the fields
where such methods can be used successfully (including [20, 30, 32]). The
effective Newton-like methods for solving some multidimensional optimiza-
tion problems with nonsmooth gradient were also introduced for LC1 opti-
mization problem (e.g. in [24, 27]) and for convex SC1 minimization prob-
lem (e.g. in [18]). Some examples of source problems for the latter one
are nonlinear minimax problem with a convex-concave saddle function and
some nonlinear stochastic program. In turn, di Pillo (including in [21, 22])
presented some constructions of the unconstrained optimization problem with
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the objective function, which may not be twice differentiable, by using penalty
functions or Lagrange multiplier functions. Moreover, the promising results of
solving unconstrained optimization problems by using the perturbed Newton-
like method presented by Grapsa, Antonelou and Kostopulos [13] were an
additional motivation for the study of the perturbed approach.

The paper is organized as follows. In Section 2, we recall some notions and
we summarize some properties, which are needed for the rest of this paper.
In Section 3, we analyze the convergence of the perturbed inexact generalized
Newton method and we study some convergence conditions. In Section 4, we
give other approach to the characterization of the convergence rate based on
some general perturbation lemma. In Section 5, we apply the specific version
of the perturbed method to solve some particular system of equations arising
from nonlinear optimization problem and we present some numerical results.

2 Preliminaries

Throughout this paper, we regard vectors in Rn as a column vector. We use
the Euclidean norm on Rn denoted by ‖·‖ , together with its induced operator
norm. However, it is easy to verify that results are independent of this choice.
For a differentiable function F : Rn → Rn, F ′(x) denotes the usual Jacobian
matrix of the partial derivatives whenever x is a point, at which the necessary
partial derivatives exist and DF denotes the set where F is differentiable.

Let the function F be a Lipschitz continuous in the traditional sense, i.e.
there exists L ≥ 0 such that, for any x, y ∈ D ⊂ Rn, it holds that

‖F(x) − F(y)‖ ≤ L ‖x − y‖ .

According to Rademacher’s Theorem [29], the Lipschitz continuity of F
implies that F is differentiable almost everywhere. Then, the set

∂B F(x) =
{

lim
xi→x

F ′(xi), xi ∈ DF

}

is called the B-differential (the Bouligand subdifferential) of F at x (introduced
by Qi [26]). The generalized Jacobian of F at x in the sense of Clarke [6] is

∂ F(x) = conv ∂B F(x),

where conv denotes the convex hull.
We say that F is BD-regular at x, if all V ∈ ∂B F(x) are nonsingular.

Remark The above property is also called the strongly BD-regularity in some
papers.

Proposition 1 (Martínez and Qi [15], Proposition 1) If F is BD-regular at x,
then μ = max{∥∥V−1

∥
∥ : V ∈ ∂B F(x)} exists and, for any given ε > 0, there exists

a neighborhood N(x) of x such that F is BD-regular at N(x) and
∥∥V−1

∥∥ is
uniformly bounded by μ + ε for all Vy ∈ ∂B F(y) and all y in N(x).
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In the whole work we assume that F satisfies the following conditions:

(i) F : D → Rn, where D ⊂ Rn is an open set, is Lipschitz continuous;
(ii) There exists an x∗ ∈ D such that F(x∗) = 0, i.e. x∗ is a solution of (1);

(iii) N(x∗, r) = {x ∈ Rn : ‖x − x∗‖ ≤ r} ⊂ D is some neighborhood of x∗ and
x∗ is the only solution of (1) in N(x∗, r).

3 Convergence of the perturbed inexact generalized Newton method

First, we show the local convergence of the Newton-like method x(k+1) = x(k) +
s(k), where the step s(k) satisfies

Vks(k) = −F
(
x(k)

) + rk, Vk ∈ ∂B F
(
x(k)

)
, (3)

with

‖rk‖ ≤ ηk
∥
∥F

(
x(k)

)∥∥ , (4)

for some sequences {rk} ⊂ Rn and {ηk} ⊂ R such that ηk ≤ η̄ < 1. Naturally,
this is the inexact generalized Newton method. The fundamental version of
such method for solving nonsmooth equations was presented by Martínez and
Qi [15]. The superlinear convergence of the method using the B-differential
has been proved under semismoothness and BD-regularity assumptions. Pu
and Tian [23] presented some practical version of method (with the generalized
Jacobian), which is also superlinearly convergent. Some substantial extension
of method with the B-differential was also given in [35], where additionally
a globally convergent hybrid method with Armijo line search was presented.
In turn, Bonettini and Tinti [3] proposed a nonmonotone variant of the
inexact generalized Newton method with backtracking strategy for solving
semismooth equations. Moreover, in [34] we introduce some parameterized
version of the method described by (3) and (4) with the fixed forcing terms ηk

for solving constrained nonsmooth equations.
Besides the usually considered assumptions we need some additional condi-

tion to guarantee the local convergence of the method. We can use one of the
following:

Assumption A1 We say that Lipschitz continuous function F satisfies A1 at
x, if, for any given γ > 0, there exists a constant r > 0, such that for any y ∈
N (x, r) and any Vy ∈ ∂B F(y), it holds

∥
∥F(y) − F(x) − Vy(y − x)

∥
∥ ≤ γ ‖y − x‖ . (5)

Assumption A2 We say that Lipschitz continuous function F satisfies A2 at
x, if there exists constant r > 0 such that, for any y ∈ N (x, r) and any Vy ∈
∂B F(y), it holds

F(y) − F(x) − Vy(y − x) = o(‖y − x‖). (6)
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Remark

(i) Clearly, it is easy to notice that the condition (6) is really stronger than
(5). On the other hand, the Assumption A2 is also weaker than strongly
monotonicity and BD-regularity of F at x required together (see [23]).
Moreover, if we use the condition stronger than Assumption A1 at x∗,
then we obtain the higher convergence order of the method.

(ii) Semismoothness (introduced by Mifflin [16]), C-differentiability (intro-
duced by Qi [28]) and H-differentiability (introduced by Gowda and
Ravindran [12]) are properties that imply A2. However, Gowda and
Ravindran [12] showed that either the Clarke generalized Jacobian
of a Lipschitz continuous function, the B-differential of a semismooth
function (in particular, piecewise affine or piecewise smooth) and
C-differential of a C-differentiable function are particular instances of
the H-differential.

Now, we can state the following theorem, which gives the sufficient condi-
tions for the local convergence of the inexact generalized Newton method for
solving nonsmooth equations.

Theorem 2 Assume that F is BD-regular at x∗ and F satisf ies Assumption A1
at x∗. Then, there exists a positive number r > 0 such that, if x(0) ∈ N(x∗, r) then
the sequence generated by the method (3) satisfying (4) with 0 ≤ ηk ≤ η̄ < 1 for
k = 0, 1, ... is well-def ined and converges linearly to x∗.

Moreover, if F satisf ies Assumption A2 at x∗ and ηk → 0 as k → ∞, then
{x(k)} converges superlinearly to x∗.

Proof Since F is Lipschitz continuous, there exists constant L ≥ 0 such that

‖F(x)‖ ≤ L
∥∥x − x∗∥∥ (7)

for any x ∈ D.
Now, we claim that, for any given γ > 0, there exist positive numbers r and

μ′ such that, for any y ∈ N(x∗, r) and any Vy ∈ ∂B F(y), we have
∥
∥F(y) − F(x∗) − V∗(y − x∗)

∥
∥ ≤ γ

∥
∥y − x∗∥∥ (8)

and
∥
∥∥V−1

y

∥
∥∥ ≤ μ′. (9)

Inequality (8) is implied by Assumption A1. Inequality (9) is obtained by
BD-regularity of F at x∗ and Proposition 1.

Furthermore, since

x(k+1) − x∗ = x(k) − x∗ + V−1
k

(−F
(
x(k)

) + rk
)

= V−1
k · [

rk + Vk
(
x(k) − x∗) − (

F
(
x(k)

) − F
(
x∗))] ,
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taking norms, we obtain
∥∥x(k+1) − x∗∥∥ ≤ ∥∥V−1

k

∥∥ · (‖rk‖ + ∥∥F
(
x(k)

) − F
(
x∗) − Vk

(
x(k) − x∗)∥∥)

≤ μ′ (ηk
∥
∥F

(
x(k)

)∥∥ + γ
∥
∥x(k) − x∗∥∥)

≤ μ′ (ηkL + γ )
∥
∥x(k) − x∗∥∥)

.

using (9), (4), (8) and (7). If ηk ≤ η̄ < 1
Lμ′ and γ < 1

μ′ − η̄L, then the method
(3) with condition (4) is linearly convergent to x∗. Clearly, the sequence
generated by the considered method is well-defined in the neighborhood of
x∗, i.e. for x(k) ∈ N(x∗, r).

Assumption A2 and convergence {ηk} to 0 obviously imply the superlinear
convergence based on the above considerations. ��

The above theorem is the generalized nonsmooth version of theorem
presented by Dembo et al. in [8] for the smooth inexact Newton method.
However, in [8] the convergence of the method has been obtained only in the
special norm ‖y‖∗ = ∥

∥F ′(x∗)y
∥
∥. In contrast, our results are norm-independent.

On the other hand, the similar theorem was proved in [15], however only for
the semismooth equations.

Now, we consider the perturbed inexact generalized Newton method in the
following form

(
Vk + Ṽk

)
s(k) =

[
−F

(
x(k)

) + F̃
(
x(k)

)] + r̃k, (10)

where Ṽk is an n × n perturbation matrix, F̃ : Rn → Rn is a perturbation of
function F and r̃k denotes a residual of the approximate solution s(k) of the
linear systems

(
Vk + Ṽk

)
s(k) = −F

(
x(k)

) + F̃
(
x(k)

)
. (11)

If we assume that the systems (11) are solved exactly, i.e. r̃k = 0 for all k =
0, 1, ..., then the perturbed inexact generalized Newton method simplifies to
the perturbed exact one. Some other approach to the exact version of the
perturbed method will be consider in the next section.

Using the previous theorem, we can easy prove the following convergence
property of the method (10) (similarly as in [5]).

Theorem 3 Assume that F is BD-regular at x∗ and F satisf ies Assumption A1
at x∗. Moreover, we suppose that the perturbations Ṽk are such that the matrices
Vk + Ṽk are nonsingular for k = 0, 1, .... Then, there exists ε > 0 such that, if
x(0) ∈ N(x∗, ε) and

∥∥
∥
∥Ṽk

(
Vk + Ṽk

)−1
F

(
x(k)

) +
[

I − Ṽk

(
Vk + Ṽk

)−1
] (

F̃
(
x(k)

) + r̃k

)∥∥
∥
∥

≤ ηk
∥
∥F

(
x(k)

)∥∥
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for k = 0, 1, ..., then the sequence {x(k)} generated by the method (10) is linearly
convergent to x∗.

Moreover, if ηk → 0 as k → ∞, then {x(k)} converges superlinearly to x∗.

Proof The perturbed inexact generalized Newton method (10) can be viewed
as the inexact generalized Newton method without perturbation, i.e. the
method, in which

s(k) =
(

Vk + Ṽk

)−1 [
−F

(
x(k)

) + F̃
(
x(k)

) + r̃k

]
.

So, we have

Vks(k) = −Ṽks(k) − F
(
x(k)

) + F̃
(
x(k)

) + r̃k

= Ṽk

(
Vk + Ṽk

)−1
F

(
x(k)

) − F
(
x(k)

)

−Ṽk

(
Vk + Ṽk

)−1 [
F̃

(
x(k)

) + r̃k

]
+ F̃

(
x(k)

) + r̃k

= Ṽk

(
Vk + Ṽk

)−1
F

(
x(k)

) − F
(
x(k)

)

+
[

I − Ṽk

(
Vk + Ṽk

)−1
] [

F̃(x(k)) + r̃k

]
.

Taking

rk = Ṽk

(
Vk + Ṽk

)−1
F

(
x(k)

) +
[

I − Ṽk

(
Vk + Ṽk

)−1
] [

F̃
(
x(k)

) + r̃k

]
, (12)

we obtain the conclusion from Theorem 2. ��

Similarly as Cătinaş [4] we can formulate the following corollary for our
perturbed nonsmooth method.

Corollary 4 Suppose that the assumptions of Theorem 3 are fulf illed. Then,
there exists ε > 0 such that, if x(0) ∈ N(x∗, ε) and

∥
∥∥
∥Ṽk

(
Vk + Ṽk

)−1
∥
∥∥
∥ ≤ q1 < 1 for k = 0, 1, 2, ...,

∥∥
∥F̃(x(k))

∥∥
∥ + ∥

∥r̃k
∥
∥ ≤ ηk

1 + q1

∥
∥F

(
x(k)

)∥∥ ,

where ηk ≤ q2 < 1 − q1, k = 0, 1, 2, ...,

then the sequence generated by method (10) is linearly convergent to x∗ with the
asymptotic error constant q1 + q2, i.e.

∥
∥x(k+1) − x∗∥∥ ≤ (q1 + q2)

∥
∥x(k) − x∗∥∥ .

Moreover, if ηk → 0 as k → ∞, then {x(k)} converges superlinearly to x∗.
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Proof The proof is the immediate consequence of the previous theorem. ��

Theorem 3 shows that the perturbed inexact generalized Newton method
is locally convergent. The convergence rate of the method can be also char-
acterized in terms of the rate of the relative residuals. Dembo et al. [8]
proved that the usual inexact Newton method for solving smooth equations
is superlinearly convergent to the solution of nonlinear equation if and only if
‖rk‖ = o(

∥
∥F(x(k))

∥
∥) as k → ∞. The same equivalence holds for our perturbed

nonsmooth method, however under Assumption A2, because A1 is not strong
enough. However, if we assume A2 at x∗, then we simultaneously obtain the
higher convergence rate without the additional condition for the sequence of
forcing terms {ηk}.

To prove the superlinear convergence of our method, the following lemma
(which is similar to Lemma 2 in [34]) will be needed.

Lemma 5 Let

l = max

{
2β,

1

2β
+ ∥

∥Vy
∥
∥
}

,

where

β = max
y∈N(x∗)

∥
∥∥V−1

y

∥
∥∥ ,

Vy ∈ ∂B F(y) and N(x∗) is some neighborhood of x∗. If F is BD-regular at x∗
and satisf ies Assumption A2 at x∗ then

1

l

∥
∥y − x∗∥∥ ≤ ‖F (y)‖ ≤ l

∥
∥y − x∗∥∥

for all y ∈ N(x∗).

Proof The proof is almost the same as the one for Lemma 2 in [34]. ��

First, we characterize the convergence order of the inexact generalized
Newton method:

Theorem 6 Assume that F is BD-regular at x∗ and F satisf ies Assumption A2
at x∗. If the sequence generated by method (3) satisfying (4) with 0 ≤ ηk ≤ η̄ < 1
for k = 0, 1, , ... converges to x∗, then the convergence is superlinear if and only
if

‖rk‖ = o
(∥∥F

(
x(k)

)∥∥)
as k → ∞.

Proof Assume that the sequence {x(k)} converges superlinearly to x∗ as k →
∞. Since

rk = F
(
x(k)

) − F(x∗) − Vk
(
x(k) − x∗) + Vk

(
x(k+1) − x∗) ,
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taking norms, we obtain

‖rk‖ ≤ ∥
∥F

(
x(k)

) − F
(
x∗) − Vk

(
x(k) − x∗)∥∥ + ‖Vk‖

∥
∥x(k+1) − x∗∥∥

= o(||x(k) − x∗||)
by A2 and the assumption that x(k) → x∗ superlinearly.

Hence, we have that

‖rk‖ = o
(∥∥x(k) − x∗∥∥) = o

(∥∥F
(
x(k)

)∥∥)
as k → ∞,

by Lemma 5.
Conversely, assume that ‖rk‖ = o(||F(x(k)||). As in the proof of Theorem 2,

∥∥x(k+1) − x∗∥∥ ≤ ∥∥V−1
k

∥∥ · [‖rk‖ + ∥∥F
(
x(k)

) − F
(
x∗) − Vk

(
x(k) − x∗)∥∥]

= ∥∥V−1
k

∥∥ · [
o

(∥∥F
(
x(k)

)∥∥) + o
(∥∥x(k) − x∗∥∥)]

by the assumption that ‖rk‖ = o(||F(x(k))||) and A2. Hence, it holds
∥
∥x(k+1) − x∗∥∥ = o

(∥∥x(k) − x∗∥∥)
as k → ∞

by BD-regularity of F at x∗, Proposition 1 and Lemma 5. ��

Clearly, the last theorem characterizes the convergence order of the inexact
generalized Newton method in terms of the convergence rate of the relative
residuals. In other words, in terms of the steps s(k), the sequence {x(k)}
converges superlinearly to x∗ if and only if

‖rk‖ = o
(∥∥s(k)

∥
∥)

as k → ∞.

Now, we can establish the final result for the perturbed version of the inexact
generalized Newton method. The next theorem gives both necessary and
sufficient condition for superlinear convergence of the method.

Theorem 7 Assume that F is BD-regular at x∗ and F satisf ies Assumption A2
at x∗. Moreover, we suppose that the perturbations Ṽk are such that the matrices
Vk + Ṽk are nonsingular for k = 0, 1, .... Then, if the sequence {x(k)} generated
by (10) converges to x∗, then the convergence is superlinear if and only if

∥
∥
∥∥Ṽk

(
Vk + Ṽk

)−1
F

(
x(k)

) +
[

I − Ṽk

(
Vk + Ṽk

)−1
] (

F̃
(
x(k)

) + r̃k

)∥
∥
∥∥

= o
(∥∥F

(
x(k)

)∥∥)
as k → ∞.

Proof The proof is obvious based on the previous theorem, using (12). ��

Similarly as Cătinaş [4], we can formulate the corollary which characterizes
the convergence order of the perturbed inexact generalized Newton method
through the convergence of perturbations and residuals.
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Corollary 8 Suppose that the assumptions of Theorem 7 are fulf illed. Moreover,
we assume that Ṽk → 0, F̃(x(k)) → 0 and r̃k → 0 as k → ∞. If the sequence
{x(k)} generated by (10) converges to x∗ and

∥∥
∥F̃

(
x(k)

)∥∥
∥ = o

(∥∥F
(
x(k)

)∥∥)
and

∥
∥r̃k

∥
∥ = o

(∥∥F
(
x(k)

)∥∥)
as k → ∞,

then the convergence is superlinear.

At the end, it should be noticed that in method (10) invertibility of the
perturbed matrices taken from the B-differential is not explicitly requested
at each iteration step. Therefore, Theorem 7 may be restated by requirement
that only the corresponding iterates were well-defined, i.e. the linear systems
(11) have to be solvable. Following this idea introduced by Cătinaş [5],
Theorem 6 can be retrieved from the following extension of the second part of
Theorem 7.

Theorem 9 Assume that the method (10) is well-def ined and convergent to x∗.
Then, the convergence is superlinear if and only if

∥∥
∥−Ṽks(k) + F̃

(
x(k)

) + r̃k

∥∥
∥ = o

(∥∥F
(
x(k)

)∥∥)
.

Proof Writing the method (10) as the method (11) with residuals rk =
−Ṽks(k) + F̃(x(k)) + r̃k, we obtain needed result from Theorem 6. ��

4 Another approach to the convergence of the perturbed generalized Newton
method

It should be emphasized that Corollary 8 gives the convergence characteri-
zation of the inexact method, when the residuals and perturbations converge
to zero. Recall from the previous section: if we assume in advance that all
residuals are equal to zero in (10), then we obtain the (exact) perturbed
generalized Newton method (11). Clearly, suitable theorems and corollaries
are also true for such version of method, if we really provide that residuals are
zeros.

In this section, we present other approach to the convergence of the
perturbed generalized Newton method, which is motivated by some known
perturbation lemma. The result is the very general extension of Lemma 11.2.2.
presented by Ortega and Rheinboldt [17]. On the other hand, our lemma is
also the nonsmooth version of the perturbation lemma, which was proved
by Cores and Tapia [7]. However, the conditions for the perturbations in
the Newton method for solving smooth equations were given in [7], so we
analyze convergence rate of the method (11). To obtain the widest possible
generalization, we consider perturbations of both iteration matrix taken from
the B-differential and the right-hand side of the Newton linear system.
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Assumption A3 We say that F satisfies A3 at x with degree p, if there exists
constant r > 0 such that, for any y ∈ N (x, r) and any Vy ∈ ∂B F(y), it holds

F(y) − F(x) − Vy(y − x) = O
(‖y − x‖p) . (13)

Remark

(i) Recall, that a function g(x) is big O of ‖x − x∗‖, i.e. g(x) = O(‖x − x∗‖),
if there exist a positive constant C and a neighborhood N(x∗) of x∗ such
that

‖g(x)‖ ≤ C
∥
∥x − x∗∥∥ for all x ∈ N(x∗).

(ii) Clearly, the Assumption A3 is stronger than A2.
(iii) p-order semismoothness (introduced by Qi and Sun [25]) is property,

which implies A3. In turn, strongly C-differentiability (introduced by Qi
[27]) is property, which implies A3 with degree 2. Additionally, note that
if the B-derivative of F is Lipschitzian then F is strongly semismooth (see
[25], Proposition 3.5), which also implies A3 with order 2.

Lemma 10 Assume that the function F satisf ies A3 with degree p in an open
convex set D containing x∗, F is BD-regular at x∗ and in a neighborhood D∗ ⊂
D of the solution x∗ we have

∥
∥∥F̃(x)

∥
∥∥ = O

(∥∥x − x∗∥∥q)
for some q > 0,

∥
∥∥Ṽx

∥
∥∥ = O

(∥∥x − x∗∥∥r)
for some r > 0

for all Ṽx ∈ ∂B F(x). Then, there exist a neighborhood N(x∗) of x∗ contained in
D∗ and positive constants C1, C2, C3, C4 such that, for all x ∈ N(x∗) and x(k+1)

given by (11), we have
∥
∥x(k+1) − x∗∥∥ ≤ C1

∥
∥x(k) − x∗∥∥p+1 + C2

∥
∥x(k) − x∗∥∥q

+ C3

∥
∥x(k) − x∗∥∥r+1 + C4

∥
∥x(k) − x∗∥∥q+r

. (14)

Proof First, choose N(x∗, r) (i.e. r > 0) such that, for all x ∈ N(x∗, r), we have
∥∥V−1

x

∥∥
∥
∥
∥Ṽx

∥
∥
∥ ≤ δ < 1 for some δ > 0.

Now, from Theorem 3.6 by Stewart [33] we have that, for x ∈ N(x∗, r), the
matrix Vx + Ṽx is invertible and

[
Vx + Ṽx

]−1 = [I + Wx] V−1
x ,

for some Wx satisfying

‖Wx‖ ≤
∥
∥V−1

x

∥
∥

∥∥
∥Ṽx

∥∥
∥

1 − ∥∥V−1
x
∥∥

∥
∥
∥Ṽx

∥
∥
∥
. (15)
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If we denote Wk = Wx(k) , we obtain

x(k+1) − x∗ = x(k) − x∗ − (I + Wk) V−1
k

[
F

(
x(k)

) + F̃
(
x(k)

)]
.

Hence, it follows that
∥
∥x(k+1) − x∗∥∥

=
∥∥
∥x(k) − x∗ − (I + Wk) V−1

k

[
F

(
x(k)

) + F̃
(
x(k)

)]∥∥
∥

≤ ∥∥V−1
k

∥∥
∥
∥
∥Vk

(
x(k) − x∗) − (I + Wk)

[
F

(
x(k)

) + F̃
(
x(k)

)]∥∥
∥

= ∥∥V−1
k

∥∥
∥
∥
∥Vk

(
x(k) − x∗) − F

(
x(k)

) − F̃
(
x(k)

) − Wk F
(
x(k)

) − Wk F̃
(
x(k)

)∥∥
∥

≤ ∥
∥V−1

k

∥
∥

[∥
∥F

(
x∗) − F

(
x(k)

) − Vk
(
x(k) − x∗)∥∥ +

∥
∥∥F̃

(
x(k)

)∥∥∥

+ ‖Wk‖
∥
∥F

(
x∗) − F

(
x(k)

)∥∥ + ‖Wk‖
∥
∥∥F̃

(
x(k)

)∥∥∥
]
.

Inequality (14) follows from the last inequality, assumption A3 with degree p,
Lipschitz continuity of F and (15). ��

Remark Hereby, we will obtain at least superlinear convergence of the
perturbed method (11) with p > 0, q > 1 and r > 0 and exactly quadratic
convergence, if p = 1, q = 2 and r = 1.

5 Application in optimization and numerical results

Consider the general unconstrained optimization problem

min
x∈Rn

g(x), (16)

where g : Rn → R is assumed to be a differentiable function and x =
(x1, ..., xn)

T ∈ Rn. As it is known, all the local minimizers of the objective
function g are stationary points. At these points the gradient ∇g(x) = F(x) =
( f1(x), ..., fn(x))

T vanishes, i.e.

∇g(x) = F(x) = 0. (17)

If the Hessian matrix H(x) of g is symmetric and positive definite then solving
the problem (16) is equivalent to solving the problem (17). In the smooth cases,
the Newton method given by the iterative formula

x(k+1) = x(k) − H
(
x(k)

)−1
F

(
x(k)

)

is the successful algorithm for solving problem (16) (see e.g. [17] and [9]).
However, if the gradient ∇g(x) is only Lipschitz continuous function then the
Hessian matrix does not exist and the classical Newton method does not work.
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Inspired by the promising results of Grapsa et al. [13], we deal the non-
smooth version of the perturbed Newton method, which is the particular case
of the method described in this paper.

Consider the mapping W = (w1, ..., wn)
T : D → Rn in the form

wi(x) = fi(x) +
n∑

j=1

t jx j, i = 1, ..., n,

where T = (t1, ...tn)T is the vector of the perturbed parameters t j, j = 1, ..., n,
which satisfies the equality with the inner product

〈x, T〉 = 0. (18)

If (Vk) j denotes the jth column-vector of the matrix Vk taken from the
B-differential of F at x(k), i.e. Vk ∈ ∂B F(x(k)), then the perturbed parameters
can be given by

t j =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

f j(x(k))
∥
∥(Vk) j

∥
∥2

2

for j = 1, ..., n − 1

− 1

x(k)
n

∑n−1
i=1 tix

(k)

i for j = n and x(k)
n �= 0

. (19)

Then, it is easy to notice that the condition (18) holds.
Now, we present the adoption of the Newton-like method for solving

nonsmooth equation W(x) = 0. The fundamental version of the new iterative
scheme is given by

x(k+1) = x(k) −
(

Vk + Ṽk

)−1
W

(
x(k)

)
, (20)

where Vk ∈ ∂B F(x(k)), Ṽk is the perturbation matrix with (Ṽk)ij = t j, j = 1, ..., n

for all i = 1, ..., n. Note that
∥
∥∥Ṽk

∥
∥∥ → 0 as k → 0 by the definition of t j.

Directly by observing that Ṽk are given based on (19), we obtain that
||Ṽx|| = O (‖x − x∗‖). Hence, the Lemma 10 implies quadratic convergence of
the method (20), if the gradient ∇g satisfies Assumption A3 with degree 1.

Clearly, if we assume that the solution of the Newton equation is not exact,
then we may obtain the inexact version of perturbed generalized Newton
method with residuals

x(k+1) = x(k) −
(

Vk + Ṽk

)−1
W

(
x(k)

) + r̃k,

which is some particular case of the method (10). Hence, the superlinear
convergence is achieved, when

∥
∥
∥∥Ṽk

(
Vk + Ṽk

)−1
F

(
x(k)

) +
[

I − Ṽk

(
Vk + Ṽk

)−1
]

r̃k

∥
∥
∥∥ = o

(∥∥F
(
x(k)

)∥∥)
.

Moreover, the perturbation matrices can also be regarded as tool to overcome
singularity of the iteration matrices Vk, when the starting point x(0) is too far
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from a solution. The BD-regularity assumption guarantees the nonsingularity
of Vk only in some neighborhood of x∗ (see Proposition 1).

Finally, we consider the constrained optimization problem
⎧
⎪⎨

⎪⎩

min
x∈Rn

g(x)

gi(x) ≤ 0, i = 1, ..., m
, (21)

where g : Rn → R and gi : Rn → R, i = 1, ..., m, are twice differentiable. To
define the equivalent unconstrained problem (16), we can use the penalty
scheme as follows

min
x∈Rn

gP(x) := g(x) + P
m∑

i=1

(max{0, gi(x)})2 + ‖∇g(x)‖2 , (22)

which is some version of the di Pillo-Grippo type Lagrange multiplier function
gP : Rn+m → R (as e.g. in [22]). Problems (21) and (22) are equivalent under
some conditions. The new objective function may not be twice differentiable,
but has LC1 gradient and satisfies A2 at x, where gi(x) = 0.

In order to study the behavior of the nonsmooth perturbed method, we
solve several problems. The new algorithm was implemented in C++. All
calculations are carried out in double precision and on a computer with Intel
Core i7 3.20GHz processor and 8GB RAM using Dev-C++. The termination
criterion is always

∥
∥x(k+1) − x(k)

∥
∥

2 ≤ 10−8 or
∥
∥F(x(k))

∥
∥

2 ≤ 10−10 is not reached
after 1000 iterations, where ‖·‖2 denotes the Euclidean norm. The forcing
terms are chosen as follows: ηk = 0.5 for all k or ηk = (10k)−1. Moreover, all
tests were conducted with various initial points.

Solving the problem (21) with the following functions (Examples 1–3, [31]),
we use (22) with various penalty coefficients P.

Example 1

g(x) = (x1 − 2)2 + (x2 − 1)2,

g1(x) = x2
1 − x2,

g2(x) = x2
2 − x1.

Example 2

g(x) = −(9 − (x1 − 3)2)x3
2

27
√

3
,

g1(x) = − x1√
3

+ x2,

g2(x) = −x1 − √
3x2,

g3(x) = x1 + √
3x2 − 6.
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Table 1 Numerical results for all examples

Example P ηk x(0) N x(0) N

1 10 const (0.5, 0.5) 11 (1, 1) 12
1 10 decr (0.5, 0.5) 9 (1, 1) 9
1 10 const (10, 10) × (−10,−10) ×
1 10 decr (10, 10) × (−10,−10) ×
1 100 const (0.5, 0.5) 14 (1, 1) 17
1 100 decr (0.5, 0.5) 12 (1, 1) 13
2 10 const (2, 0.5) 7 (4, 1) 9
2 10 decr (2, 0.5) 5 (4, 1) 6
2 10 const (6, 1.5) 11 (10, 5) ×
2 10 decr (6, 1.5) 8 (10, 5) ×
2 100 const (2, 0.5) 6 (4, 1) 9
2 100 decr (2, 0.5) 5 (4, 1) 7
3 10 const (0, 0, 0, 0) 19 (0, 0.5, 1.5,−0.5) 23
3 10 decr (0, 0, 0, 0) 14 (0, 0.5, 1.5,−0.5) 19
3 10 const (1, 1, 1, 1) × (0, 0.8, 1.8,−0.8) 34
3 10 decr (1, 1, 1, 1) × (0, 0.8, 1.8,−0.8) 21
3 100 const (0, 0, 0, 0) × (0, 0.5, 1.5,−0.5) ×
3 100 decr (0, 0, 0, 0) 17 (0, 0.5, 1.5,−0.5) ×

Example 3

g(x) = x2
1 + x2

2 + 2x2
3 + x2

4 − 5(x1 + x2) − 21x3 + 7x4,

g1(x) = x2
1 + x2

2 + x2
3 + x2

4 + x1 − x2 − x3 − x4 − 8,

g2(x) = x2
1 + 2x2

2 + x2
3 + 2x2

4 − x1 − x4 − 9,

g3(x) = 2x2
1 + x2

2 + x2
3 + 2x1 − x2 − x4 − 5.

Table 1 presents results that we obtained solving all examples. Initial points
x(0), forcing terms ηk (const denotes the constant sequence and decr denotes
the decreasing sequence), penalty coefficient P and the number of iterations
N are shown in this table. × denotes the failure.

6 Conclusions

In this paper, we study the perturbed version of the inexact generalized New-
ton method for solving nonsmooth equations. Importance of the perturbed
inexact Newton approach lies in how easy convergence analysis can be applied
to study specific methods. Many of the existing versions of the Newton-like
methods can be treated as the particular case of (10), e.g. when the matrices
from the B-differential are perturbed or the Newton linear equation is solved
insufficiently exactly. Clearly, the results of Cătina ş allowed us to extend the
local convergence analysis of perturbed method to the nonsmooth case and
we were able to characterize the convergence order for the method in the
relatively general form. Additionally, we showed that the inexact generalized
Newton and the perturbed inexact generalized Newton methods are closely
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related in some natural way, because one can be used to characterize the
convergence order of the other.

In the general nonsmooth case, the BD-regularity and semismoothness are
sufficient to obtain superlinear convergence of various special versions of the
generalized Newton method, while the CD-regularity or strongly semismooth-
ness gives even quadratic convergence. Results of our studies are consistent
with these well-known facts, which were confirmed by Theorems 3, 7 and
Lemma 10.

Results of the numerical tests show that the new perturbed version of the
inexact generalized Newton method can be effectively used to solve not only
nonsmooth equations but also non-twice differentiable optimization problems.
However, a degenerate behavior can be observed for some combinations of pa-
rameters and initial points (Example 3). In turn, use of the decreasing forcing
sequence can improve convergence behavior and it is easy to observe that the
choice of penalty coefficient has relevant effect on speed of convergence in
terms of the number of iterations.

Open Access This article is distributed under the terms of the Creative Commons Attribution
License which permits any use, distribution, and reproduction in any medium, provided the
original author(s) and the source are credited.
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