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Abstract The absolute nodal coordinate formula-
tion (ANCF) is a nonlinear finite element approach
proposed for the large deformation dynamics anal-
ysis of beam- and plate/shell-type structures. In the
ANCF approach, elastic forces can be defined using
three-dimensional elasticity-based continuummechan-
ics. This approach is often straightforward, and itmakes
it possible to use advanced material models in the
ANCF framework. However, it has been pointed out in
several studies that continuum ANCF-based elements
with a full three-dimensional elasticity description can
suffer from locking phenomena. In this study, a com-
parison between various combinations of locking alle-
viation techniques and their applicability to different
ANCF beam variants is studied using numerical exam-
ples. Furthermore, the enhanced deformation gradient
(EDG) technique, which has been proposed recently in
finite element literature, is demonstrated for high-order
ANCF beam elements. Based on the numerical tests,
none of the currently available techniques are suitable
for all types of ANCF elements. The paper also shows
that the efficiency and accuracy of the techniques are
case-dependent. For theANCFbeamelement involving
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higher-order terms with respect to trapezoidal mode,
however, the EDG-based techniques are preferable to
reduce locking phenomena.
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elasticity

1 Introduction

The absolute nodal coordinate formulation (ANCF) is a
nonlinear finite element approach proposed byShabana
in [28] for beam- and plate/shell-type structures under-
going large deformation dynamics. Today, the ANCF
elements are often used within the multibody commu-
nity to solve various two- and three-dimensional defor-
mation problems [13]. The key idea of ANCF elements
is to use absolute nodal positions and their gradients
in the kinematic description. Similar approaches were
proposed by Rhim and Lee [27] (termed the vectorial
approach) for nonlinear static problems involving finite
elements and, recently, in the work [4].

The gradient vectors, the slope vectors in the trans-
verse directions, are used to define cross-sectional
deformations. They make it possible to use three-
dimensional elasticity descriptions for the ANCF ele-
ments. However, ANCF elements based on full three-
dimensional elasticity are often unable to rightfully rep-
resent the deformation caused by the coupling of axial
and transverse normal strains [31]. As a result, an inac-
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curate response results when Poisson’s ratio is not zero.
This problem is often referred to as the Poisson locking
effect [7,24,27] etc.

The theoretical example of that is given in [18] and
[32] as follows. Pure bending deformation leads to the
trapezoidal shape of an initially rectangular cross sec-
tion. However, someANCF elements cannot reproduce
the trapezoidal shape,which leads to additional stresses
during the bending deformations. As a result, it pro-
duces an inaccurate response when Poisson’s ratio dif-
fers from zero.

Additionally, as shown in [10], ANCF-based ele-
ments can suffer from other locking phenomena such
as curvature thickness locking and shear locking. The
first can be attributed to the element kinematics vol-
ume description and related to elements with the linear
cross-section interpolation description. That interpola-
tion leads to the norm reduction in the vectors, which
define the cross-sectional thickness, when the ending
cross sections are not parallel, and the shrinking of the
intermediate cross sections. Another locking problem
is shear locking, which happens with a linearly varying
bending moment. In this case, some higher-order ele-
ments demonstrate quadratic shear strain distribution,
which is not correct. As a result, the shear strain compo-
nent will be assigned an inflated energy value, leading
to smaller displacement predictions. These phenomena
might influence results and require separate, careful
studies. Therefore, they have not been considered here.
Moreover, beam elements can also demonstrate stiffer
behavior, which is attributed to geometric nonlineari-
ties and can be wrongly interpreted as locking [8]. That
aspect has been also omitted here.

The higher-order ANCF elements proposed in [15,
16,29] can be used to reduce locking phenomena due to
the limited cross-section deformation description of the
ANCF element. The idea of a higher-order ANCF is to
enrich the polynomial basis with higher-order polyno-
mials by using the components of higher-order deriva-
tives as additional nodal coordinates to represent more
deformationmodes and by describing the cross-section
deformation more precisely.

Another option is to use one of the locking alle-
viation techniques. So far, several methods have been
proposed such as the Enhanced Assumed Strain (EAS)
method [30], the Enhanced Continuum Mechanics
formulation (ECM) [12,17,22], and the Strain Split
Method (SSM) [24]. The idea of the ECMapproach lies
in the concept of reduced integration. In this approach,

the matrix of elastic coefficients is divided into two
parts so that the first part presents Poisson coupling
between the normal strains and the second part only
involves thickness deformation. The strain splitmethod
is similar to the ECM, also considering the constitu-
tive model split. However, in the case of the ECM, the
same strain matrix is used for full and reduced integra-
tion parts. On the contrary, in the SSM, the different
strain matrices are used. However, the main limitation
of the mentioned approaches is applicable to only the
Kirchhoff–Saint-Venant material model, which signif-
icantly limits their usage. The EAS approach was first
proposed by Simo and Rifai [30]. The basic idea was
to enrich the element strain field to improve its non-
uniform strain conditions. The main advantage of the
EAS is that it can be used in all material models. How-
ever, it increases the degrees of freedom of the ele-
ments.

In the study, the usability of locking alleviation
techniques for lower-order, fully parameterized and
higher-order continuum-based ANCF beam elements
is demonstrated via various benchmark problems. Fur-
thermore, the enhanced deformation gradient method
(EDG), recently proposed by Pfefferkorn and Betsch
[25], is implemented in theANCF framework and com-
pared to other techniques. The EDG is similar to the
EAS but in the EDG, the strain field is enriched via
deformation gradients instead of via direct modifica-
tion of the strain field. Therefore, it possesses the same
advantages as the EAS approach. All approaches with
the additional requirements imposed on them for rep-
resentative purpose are collected in Table 1 below.

The introduced ANCF elements and corresponding
locking alleviation methods are verified against ana-
lytical or experimental results, and their convergence
speeds are compared. As a result, the most suitable
compositions, those that alleviate locking and demon-
strate solutions closest to analytical or experimental
results, should be found by testing various combi-
nations of the locking alleviation techniques and the
ANCF elements.

2 Kinematics of ANCF beam elements

This section explains, the kinematics of the spatial
ANCF beam elements. Let r = r (x, y, z) be the posi-
tion vector field at the current configuration, and r the
position vector in the initial configuration being. The
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Table 1 Methods’ imposed requirements

Methods

Requirements Cont ECM SSM EAS EDG

Additional variables – – – � �
Split of coefficient matrix – � � – –

Table 2 Proposed elements with their nodal degrees of free-
dom and the monomial basis, where the shorthand notation
β = {1, x, y, z, xy, xz, x2} is used
Elements Nodal degrees of freedom Basis

3333 r, ry, rz β ∪ {x2y, x2z}
3243 r, rx , ry, rz β ∪ {x3}
3343 r, ry, rz, ryz β ∪ {x2y, x2y, yz, x2yz}

connection between these vectors is:

r = r + uh, (1)

where vector uh a displacement vector. The paper con-
siders three different elements: gradient deficient 3333
[22], fully parametrized 3243, and high-order 3343 [7].
These four numbers in the element name abcd have the
following meaning: a is the dimension of the element,
b denotes the number of nodes, c is the number of vec-
tors used in the approximations, andd is the polynomial
basis used to approximate all three dimensions [7]. The
ANCF 3243 element has been under extensive investi-
gation, and the Poisson locking phenomenon is known
and well-documented in the literature. [11,20,31] are
examples. Moreover, this problem has been discussed
earlier in the work [27], where a similar vectorial
approach has been presented. The ANCF 3333 element
also suffers from Poisson locking, which was the main
problem with this formulation [21,22]. In the case of
bending, trapezoidal deformation of rectangular cross
sections is unavailable, because this deformation mode
is not included as one of the subject ANCF element
shape functions. This leads to stiff behavior, which is
the cause of the Poisson locking. The ANCF 3343 ele-
ment was introduced in [7], where it was also shown
that it suffers from severe Poisson locking. Figures 1
and 2 show the kinematics of the subject elements. The
nodal degrees of freedom used, and the polynomial
basis are also summarized in Table 2. The directional
derivatives are defined as rα = ∂r

∂α
, α = {x, y, z}.

The elements are isoparametric; therefore, they can
be described with the local bi-normalized coordinate
system ξ = {ξ, η, ζ } presented in Fig. 1, with the
ranges for the local coordinates being [−1, 1].

As an example of the three-node gradient deficient
beam 3333, the vector q of nodal degrees of freedom
can be written as:

q[3333] =
[
r(1)

T
r(1)

T

η r(1)
T

ζ r(2)
T
r(2)

T

η r(2)
T

ζ r(3)
T
r(3)

T

η r(3)
T

ζ

]T
.

The shape function matrixNm for this element takes
the form:

Nm(ξ, η, ζ ) = [N1I N2I N3I ... N9I] , (2)

where I is a 3 × 3 identity matrix and

N1 = 1

2
ξ(ξ − 1)N2 = 1

4
lyξη(ξ − 1)

N3 = 1

4
lzξζ(ξ − 1)

N4 = 1 − ξ2N5 = 1

2
lyη(1 − ξ2)

N6 = 1

2
lzζ(1 − ξ2)

N7 = 1

2
ξ(ξ + 1)N8 = 1

4
lyξη(ξ + 1)

N9 = 1

4
lzξζ(ξ + 1),

where lx , ly , and lz are the physical dimensions of the
element. Therefore, the finite elements can express the
body motion in the form:

r(ξ, η, ζ ) = r(ξ, η, ζ ) + uh = Nm (ξ, η, ζ ) q, (3)

3 Equations of motion

In this section, the equations of motion for the used
elements are derived based on the principle of virtual
work.

δWext + δWelast + δWinert = 0, (4)

whereWext is the virtual work by external forces,Welast

is the virtual work by elastic forces, and Winert is the
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Fig. 1 Beam element with
the position vector r of an
arbitrary particle p in the
current and reference
configurations

Fig. 2 Illustration of the elements occurring in this study, including their nodal degrees of freedom

virtual work by inertial forces. The variation of virtual
work by inertial forces with respect to the nodal coor-
dinates can be written as follows.

δWinert = −q̈T
∫

V
ρNT

mNmdV · δq, (5)

where ρ is the mass density, and V is the volume of
the element in the reference configuration. The integral
expression is usually called the mass matrix, which has
a constant meaning from Eq. (2).

M =
∫

V
ρNT

mNmdV . (6)

The variation of external forces takes the following
form:

δWext =
∫

V
bT δrdV =

∫

V
bTNmdV · δq, (7)

where vector b is the vector of body forces.

4 Virtual work of elastic forces

The following paragraphs present, in detail, the elastic
forces for each alleviation method.

4.1 Standard continuum-based method

Going forward, the general continuum mechanics
based approach with full three-dimensional elasticity
will be referred to “Cont.” This description suffers from
Poisson locking.Modificationsmade to strain energy to
avoid lockingwill be presented in the following subsec-
tions. The variation of Welast with respect to the nodal
coordinates is

δWCont
elast =

∫

V
S : δEdV =

∫

V
S : ∂E

∂q
dV · δq (8)
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where S is the second Piola-Kirchhoff stress, and E is
the Green–Lagrange strain, which is given as

E = 1

2

(
FT · F − I

)
. (9)

From (3), the deformation gradient F is

F = ∂r
∂ξ

(
∂r
∂ξ

)−1

= ∂r
∂ξ

J−1, (10)

where J is the Jacobian matrix providing the transfor-
mation between the physical and local coordinate sys-
tems. The expression for the second Piola-Kirchhoff
stress tensor is of the form

S = λItr(E) + 2GE, (11)

where λ and G are Lame elastic coefficients, which
relate to Young’s modulus E and Poisson’s coefficient
ν as

λ = Eν

(1 + ν)(1 − 2ν)
, G = E

2(1 + ν)
.

The expression (8) can also be represented via Voigt
notation, where stresses and strains have the following
vector forms.

σ = [S11 S22 S33 2S23 2S13 2S12],
ε = [E11 E22 E33 2E23 2E13 2E12].
The stress–strain relation (11) can be rewritten as

σ = Dε, (12)

where the elasticity matrix D is defined as

D =

⎡
⎢⎢⎢⎢⎢⎢⎣

λ + 2G λ λ 0 0 0
λ λ + 2G λ 0 0 0
λ λ λ + 2G 0 0 0
0 0 0 G 0 0
0 0 0 0 Gks2 0
0 0 0 0 0 Gks3

⎤
⎥⎥⎥⎥⎥⎥⎦

, (13)

with shear correction factors ks2 , ks3 . Then, the expres-
sion (8) has the form

δWCont
elast = 1

2

(∫

V
εTDεdV

)
· δq. (14)

Recalling that the element is isoparametric,

δWCont
elast = 1

2

(∫ 1

−1

∫ 1

−1

∫ 1

−1
εTDε det(J )dξdηdζ

)
· δq.

(15)

An advantage of the expression (15) is that integra-
tion can be performed using the Gaussian integration;
furthermore, this procedure can be applied directly and
independently for the three integrations.

4.2 Enhanced continuum method—ECM

The elements based on the method presented in Sub-
sect. 4.1 suffer from Poisson locking, except for some
high-order ones, where the rich polynomial basis alle-
viates the effect naturally [7]. The ECMoffers locking-
free solutions based on splitting of the elasticity matrix
D. This approach was first suggested for ANCF ele-
ment in [12].

D = D0 + Dv, (16)

where Dv is responsible for the Poisson effect only

Dv =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

λ2

λ+G λ λ 0 0 0

λ λ2

λ+G λ 0 0 0

λ λ λ2

λ+G 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (17)

In Eq. (16), diagonal matrix D0 is as

D0 = diag
(
E, E, E,G,Gks2 ,Gks3

)
. (18)

The strain energy variation following (16) can be
also split into parts:

δWECM
elast = 1

2

(∫ 1

−1

∫ 1

−1

∫ 1

−1
εTD0ε det(J )dξdηdζ

+A
∫ 1

−1
εTDvε

∂r
∂ξ

dξ

)
· δq, (19)

where A = lylz is the cross-sectional area. Thismethod
can be considered as selective reduced integration [22],
and from Eq. (19), it is clear that the Poisson effect is
considered only on the beam axis {η, ζ } = {0, 0}.

4.3 Enhanced assumed strain method—EAS

Simo and Rifai [30] proposed the enhanced assumed
strain approach as a generalization of the method of
incompatible modes. The key idea behind this method
is improving the performance of the element with addi-
tional variables of strains via improvement of the non-
uniform strain conditions. The enhanced strain field can
be written in the following form:

E = Ecom + Eenh,

whereEcom is the compatible strain field obtained from
(9) and Eenh is the enhanced strain field, which is
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defined per element. The enhanced strain field must
be L2 orthogonal to the discrete stress∫

V
S : EenhdV = 0.

This eliminates the independent stress. Then, the varia-
tion of theHu–Washizu functional type in the reference
configuration, assuming that α is a vector of additional
enhanced strain variables, gives the following system
[24]:

δWEAS
elast = ∫

V S : ∂E
∂q dV · δq,

∫
V S : ∂E

∂α
dV · δα = 0.

(20)

The solution operations are performed as follows.
From the first equation of (20), the problem is solved
for q. Then, once q is defined, the additional enhanced
strain variables α are updated from the second equation
of (20). The only part left here is the discretization of
Eenh field. It is assumed that

Eenh = Mm(ξ)α, (21)

Mm is a shape function matrix. To alleviate the Poisson
locking in this work, the linear enhanced interpolation
in the element transverse directions is considered as the
following.

Eenh = Mm2α =
⎡
⎣
0 0 0
0 ηα1 0
0 0 ζα2

⎤
⎦ . (22)

Additionally, the second Mm matrix is assumed to
be:

Mm4 =
⎡
⎣
0 0 0
0 ηα1 ζα3

0 ηα4 ζα2

⎤
⎦ . (23)

In the numerical experiments, EASmethodsmethod
solutions that performed better using (22) are referred
to as E AS − 2. The solutions that performed better
using (23) are referred to as E AS − 4.

4.4 Enhanced deformation gradient method—EDG

The enhanced deformation gradient method was pre-
viously introduced by Pfefferkorn and Betsch [25]. It
is similar to the EAS. The main difference is that the
enhanced field is not added to the strain field directly,
but via enrichment of the deformation gradient F as:

F = Fcom + Fenh,

where Fcom is the compatible part of the deformation
gradient obtained in (10). On the other hand, the pre-
sentation of Fenh might have different forms, various
transformations are considered in [25]. In the case of the
ANCF elements, however, they lead to approximately
the same results. In this work, the form presented in
[26] with small modification will be used as:

Fenh = F0

⎡
⎣
0 0 0
0 ηα1 0
0 0 ζα2

⎤
⎦ . (24)

Additionally, as given in Sect. 4.3, the second ver-
sion of the Fcom with four variables is as follows:

Fenh = F0

⎡
⎣
0 0 0
0 ηα1 ζα3

0 ηα4 ζα2

⎤
⎦ , (25)

Using the referencing system from Sect. 4.3, they are
designated as EDG-2 and EDG-4, respectively. Again,
as in EAS approach, the system for the derivation of
δWelast has the following form:

δWEDG
elast = ∫

V S : ∂E
∂q dV · δq,

∫
V S : ∂E

∂α
dV · δα = 0.

(26)

4.5 Strain split method—SSM

The strain splitmethodwasfirst presented andexplained
in detail in [24]. One of its main advantages is that
it can cure locking without introducing the additional
variables described in Sects. 4.3 and 4.4. The key con-
cept of this technique is that—the axial and transverse
strains of high-order terms are split via decomposition
of the Green–Lagrange strain tensor (9) and the con-
stitutive law (13). According to [24,33], the gradient
deformation tensor (10) can be separated as

F = Fc + Fk, (27)

where

Fc =
[
∂rc
∂ξ

∂r
∂η

∂r
∂ζ

]
J−1, (28)

with rc = r|η,ζ=0 and

Fk =
[
lyη

2

∂r
∂ηξ

+ lzζ

2

∂r
∂ζξ

0 0

]
J−1. (29)

Then, with help of (28) and (29), Green–Lagrange
strain can be written as

ESSM = Ec + Ek, (30)
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where

Ec = 1

2

(
FcT · Fc − I

)
, (31)

Ek = 1

2

(
FcT · Fk + FkT · Fc + FkT · Fk

)
. (32)

UsingVoigt notation, the second Piola-Kirchhoff stress
can be defined as

SSSM = Dεc + D0εk, (33)

where

εc = [Ec
11 E

c
22 E

c
33 2E

c
23 2E

c
13 2E

c
12],

εk = [Ek
11 E

k
22 E

k
33 2E

k
23 2E

k
13 2Ek

12].
Finally, the expression for the virtual work of elastic
force takes the form

δW SSM
elast =

∫

V
SSSM : ∂ESSM

∂q
dV · δq, (34)

5 Results of bending tests

The following paragraphs analyze the performance of
the techniques described in Sect. 4. Several often gra-
dient deficient, fully parameterized, and high-order
ANCF elements are used. Their initial models, based
on standard continuum approach, suffer from Poisson
locking. They are referred to in the tables as “Cont.”

Several benchmark problems related to the bending,
presented in Fig. 3, are considered. In these tests, the
boundary condition is defined by fixing all the nodal
degrees of freedom at the clamped end.

Additionally, ANCF element 3363 is considered
based on the conclusions from [7]. This element
demonstrated reasonable results during deformation
tests and maintained usable convergence rates.

5.1 Small displacement cantilever problem

The beam structure under investigation has a rectangu-
lar cross section with widthW = 0.1, height H = 0.5,
and length L = 2. E = 2.07 × 1011 N

m2 and Pois-
son’s ratio ν = 0.3. The small deformations case is
tested first. To this end, the vertical tip load is set to
Fy = 62.5 × 103N .

The convergence rate against absolute error compar-
ison for all the above-mentioned elements and modifi-
cations is provided below. The absolute error is calcu-
lated in relation to the reference solutions presented in
[7].

Fig. 3 Schematic illustration of the bending beam experiment

Table 3 Modifications of gradient-deficient element, ANCF
3333, for small bending test

Approach Displacement Error %

Cont 0.0006056 25.2266

ECM 0.0008099 0.0004

SSM 0.0007914 0.0228

EAS-2 0.0007347 9.2788

EAS-4 0.0007348 9.2788

EDG-2 0.0007348 9.2788

EDG-4 0.0007348 9.2788

3363 0.0007981 1.4587

Reference 0.0008099

Table 4 Modifications of the fully parameterized element,
ANCF 3243, for small bending test

Approach Displacement Error %

Cont 0.0006055 25.2439

ECM 0.0008097 0.0229

SSM 0.0007947 1.8733

EAS-2 0.0007346 9.2974

EAS-4 0.0007346 9.2974

EDG-2 0.0007346 9.2974

EDG-4 0.0007346 9.2974

3363 0.0007981 1.4587

Reference 0.0008099
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Table 5 Modifications of the high-order element, ANCF 3343,
for small bending test

Approach Displacement Error %

Cont 0.0007296 9.9148

ECM 0.0008099 0.0004

SSM 0.0007914 2.2812

EAS-2 0.0008013 1.0622

EAS-4 0.0008018 1.0008

EDG-2 0.0008013 1.0622

EDG-4 0.0008023 0.9385

3363 0.0007981 1.4587

Reference 0.0008099

102 103

Degrees of freedom

10-8

10-6

10-4

10-2

100

R
el

at
iv

e 
er

ro
r

Cont
ECM
SSM
EAS-2
EDG-2
EAS-4
EDG-4
3363

Fig. 4 Convergence rate for the gradient-deficient element,
ANCF 3333, in the small bending test
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Fig. 5 Convergence rate for the fully parameterized element,
ANCF 3243, in the small bending test
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Fig. 6 Convergence rate for the high-order element, ANCF
3343, in the small bending test

The tests of the beam subjected to small bending
load revealed that best results for all element types are
obtained using theECMapproach. SeeTables 3, 4 and 5
and Figs. 4, 5 and 6. The ECM also provides the high-
est convergence rate among all approaches. However,
the results presented by the other approaches for the
high-order element agreewithin reasonable limits, with
the reference solution (about 1% error) and even out-
perform the high-ordered ANCF 3363 element. Addi-
tionally, including 2 or 4 degrees of freedoms into the
kinematics-based locking alleviation techniques results
in minimal differences for small cantilever bending
problems regardless of element type. Moreover, SSM
performance deteriorates as the number of vectors per
node increases.

5.2 Large displacement cantilever problem

The large displacement cantilever problem is analyzed
in this section.Thevertical tip load is set to Fy = 62.5×
106N . Other geometrical and physical characteristics
are the same as in Sect. 5.1.

Tables 6 and 7 show that for the large bending tests,
the best results for the gradient-deficient and the fully
parameterized elements are again provided by theECM
approach. Figures 7 and 8 also illustrate its high conver-
gence rate. However, for this task, it does not perform
as well as element 3363. In the case of the high-order
element, fromTable 8 aswell as fromFig. 9, the EDG-4
gives the smallest error alongside the best convergence
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Table 6 Modifications of the gradient-deficient element, ANCF
3333, for large bending test

Approach Displacement Error %

Cont 0.56419 20.6804

ECM 0.71643 0.7215

SSM 0.70084 1.4701

EAS-2 0.66183 6.9554

EAS-4 0.66182 6.9554

EDG-2 0.66221 6.9014

EDG-4 0.66221 6.9014

3363 0.70803 0.4598

Reference 0.71130

Table 7 Modifications of the fully parameterized element,
ANCF 3243, for large bending test

Approach Displacement Error %

Cont 0.56328 20.8104

ECM 0.71641 0.7181

SSM 0.70391 1.0395

EAS-2 0.66169 6.9741

EAS-4 0.66169 6.9741

EDG-2 0.66207 6.9217

EDG-4 0.66207 6.9217

3363 0.70803 0.4598

Reference 0.71130
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Fig. 7 Convergence rate for the gradient-deficient element,
ANCF 3333, in the large bending test
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Fig. 8 Convergence rate for the fully parameterized element,
ANCF 3243, in the large bending test

Table 8 Modifications of the high-order element, ANCF 3343,
for large bending test

Approach Displacement Error %

Cont 0.65782 7.5187

ECM 0.71514 0.5403

SSM 0.70085 1.4687

EAS-2 0.70869 0.3669

EAS-4 0.70903 0.3193

EDG-2 0.70893 0.3328

EDG-4 0.70961 0.2375

3363 0.70803 0.4598

Reference 0.71130
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Fig. 9 Convergence rate for the high-order element, ANCF
3343, in the large bending test
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rate and performs better than that provided by the 3363
ANCF element.

5.3 The Princeton beam experiment

The following paragraphs consider the Princeton beam
experiment. This problem was originally conducted in
[5], presented in [6], and already usedwithin theANCF
framework by Bauchau et al. [2] and Ebel et al. [7]. In
this study, beam length L = 0.508 m. Its rectangular
cross section was set to height H = 12.377×10−3 and
widthW = 3.2024×10−3 m. For such a cross section,
the torsional correction factor was set to kt = 0.198
[9]. All shear correction factors were set to 1 [7]. The
physical characteristics were set as follows. Young’s
modulus E = 71.7 × 109 N

m2 and Poisson’s ratio ν =
0.31. In this example, several tip loads, equal to F pb

1 =
8.896 and F pb

2 = 13.345 N, were analyzed. An angle
β was defined as the angle between the force vector
and the y-axis, meaning that with β = 0◦ the force
acted in the negative y-direction as shown in Fig. 3.
The angle varied from β ∈ [0◦, 90◦]. The results were
compared against commercial software solutions using
BEAM188 and Solid185 elements.

For the calculation, 32 ANCF elements were used.
The higher number of the elements leads to similar
results, also following from convergence speed tests
shown in Figs. 4, 5, 6, 7, 8 and 9. The reference results
for theANSYSsolutionswere obtainedusing128beam
elements (in the case of higher element number, see
Appendix Appendix A1), and 500 × 12 × 4 for the
model from the solid elements.

The displacements in z- and y-directions of the beam
under F pb

1 tip load were considered.
Figure 10a and b reveals that none of the modifi-

cations for the gradient deficient element fully passed
the test. Bending along the z-axis was well-represented
with the ECM and SSM approaches, with results sim-
ilar to the ANSYS beam, ANCF 3363, and solid ele-
ment solutions. Although the bending along the sec-
ond axis was not represented well, both these modi-
fications resulted in poorer performance than demon-
strated by the ANSYS software and ANCF 3363 ele-
ment (Fig. 11). Additionally, all the kinematic-based
approaches, EDG and EAS, provided similar inaccu-
rate results without differences to the number of addi-
tional DOFs.

Again, as for the gradient deficient element, in the
case of the fully parameterized element, none of the
modifications could correctly capture all deformations,
as shown in Fig. 11. The ECM and SSM approaches
gave appropriate displacement results only along the
z-axis. Furthermore, the SSM approach provided solu-
tions similar to those provided by the solid element, and
the ECMgave results similar to those obtained from the
ANSYS and ANCF 3363 beam elements.

For the high-order element, ANCF 3343, the best
results were provided by EDG-4 and the ECM
approaches, as shown in Fig. 12. The ECM ele-
ment demonstrated better agreement with the ANSYS
beam element solution, but EDG-4 demonstrated better
agreement with the ANSYS 3D solution. Additionally,
in the case of the EAS approach, there were no sig-
nificant differences between EAS-2 and EAS-4. The
displacements given under F pb

2 tip load were as fol-
lows.

Similarly to the previous loading case, Figs. 13
and 14 reveal that none of the approaches cured the
problems associated with bidirectional bending for
low-order and fully parameterized elements.

In the case of the high-order element, ANCF 3343,
the best results in the z- and y-axes came from the
ECM and EDG-4 approaches. The EDG-4 approach
is closer to the solid element-based solution, and the
ECM is closer to the beam-based commercial solution
(Fig. 15).

Interestingly, regardless of the number of additional
degrees of freedom, there were no significant differ-
ences in the EAS-based solutions despite element type.

6 Eigenfrequencies of the simply supported beam

The next numerical test was an eigenfrequencies analy-
sis, whichwas used for ANCF beams inmultiple works
[3,7,12,14,19,22,23] etc. There are multiple reasons
for deciding to consider the eigenfrequency analysis.
For example, Orzechowski and Shabana [23] men-
tioned that examining the eigenvalues might provide
some explanations for locking behavior. Ebel et al. [7]
stated that the eigenfrequency analysis can be used as
a linearized dynamics test, because it offers the advan-
tage of coordinate-free frequency and vibration mode
comparisons. In [14], the eigenfrequency analysis was
used to see if beam elements could capture the Poisson
modes. The solution of the nonlinear problem depends
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Fig. 10 Displacements of the Princeton beam experiment of the gradient-deficient element, ANCF 3333, with modifications under F pb
1
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Fig. 11 Displacements of the Princeton beam experiment of the fully parameterized element, ANCF 3243, with modifications under
F pb
1

on the set of deformation shapes assumed for the mod-
els. In this study, the example of a simply supported
beam used in [3,7,12,19,22] was analyzed.

A beam having a rectangular cross section with
width W = 0.4, height H = 0.4, length L = 2,
Young’s modulus E = 1 × 109 N

m2 , density ρ =
7850 kg

m3 , Poisson’s ratio ν = 0.3 was analyzed. Each
model was made up of 128 elements, as was done
for several modifications for the gradient-deficient ele-
ments in [7]. In this test, the boundary conditions of an
simply supported beam was undertaken.

The analytic solutions mentioned in Tables 9, 10,
and 11were based on the solutions and derivations pro-
vided in the works [1,17].

Of the solutions obtained for gradient-deficient,
fully parameterized, and high-order elements, only the
ECM modification was in full agreement with ana-
lytical solutions. Tables 9, 10, and 11 show that only
ECMmodification is in fully agreement with analytical
solutions. Additionally, for the kinematic-based lock-
ing alleviation techniques, EAS and EDG, the number
of additional DOFs did not significantly influence the
final results.
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Fig. 12 Chord-wise displacements of the Princeton beam experiment of the high-order element, ANCF 3343, with modifications under
F pb
1
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Fig. 13 Chord-wise displacements of the Princeton beam experiment of the gradient-deficient element, ANCF 3333, with modifications
under F pb

2

7 Conclusion

Locking alleviation techniques for ANCF elements
was the subject of this research. The authors con-
sidered all known techniques for continuum-based
ANCF elements including the enhanced assumed strain
method, the enhanced continuummechanics approach,
the strain split method, and a newly proposed enhanced
deformation gradient method. These methods were
applied to low-order, fully parameterized and high-
orderANCFbeamelements.All possible combinations

were investigated and compared. None of the modi-
fications performed better than the others for all the
presented tasks.

For small bending cases, the best results were
obtained via the ECM approach for all element types.
However, the results presented by other approaches for
the high-order element were within reasonable limits
and outperform the 3363 element excepting the SSM
approach.When the large bending case was considered
for the low-order and fully parameterized elements, the
ECMapproach again provided the best solutions. How-
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Fig. 14 Chord-wise displacements of the Princeton beam experiment of the fully parameterized element, ANCF 3243, with modifica-
tions under F pb
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Fig. 15 Chord-wise displacements of the Princeton beam experiment of the high-order element, ANCF 3343, with modifications under
F pb
2

ever, in the case of the high-order element, the results
of the EDG-4 approach were closest to the reference
with the highest convergence rate. During the Prince-
ton beam experiments, where the bidirectional load-
ing cases are considered, the appropriate results were
demonstrated by the ECM and EDG-4 approaches for
only the high-order ANCF element. Furthermore, the
EDG-4 provided solutions in good agreement with the
solid element, and the ECM showed good correlation
with beam-based commercial software solutions. The
EAS-2 and EAS-4 methods did not differ significantly

regardless of considered bending loading cases and ele-
ment types, which lead to the conclusion that between
them, the EAS-2 is the preferable choice, because it
is less computationally intensive. For eigenfrequency
analysis, the best performance was ultimately demon-
strated by the ECM approach.

Among the considered modifications, the locking
problem can be completely cured only for the high-
order element and only using the ECM and EDG-4
approaches. However, the ECM approach is limited
and does not allow working with material models other
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Table 9 Eigenfrequencies of the simply supported beam for selected modes rad
s of ANCF 3333 , gradient-deficient element example

Mode 3363 ECM Cont EAS-4 EAS-2 SSM EDG-4 EDG-2 Analytic

1 bend 95.41 95.63 110.27 100.54 100.54 97.77 100.54 100.54 95.63

2 bend 329.63 332.23 378.68 351.21 351.21 355.01 351.21 351.21 332.23

3 bend 625.10 635.70 717.13 675.39 675.39 708.48 675.39 675.39 635.70

1 tors 347.69 320.50 347.70 347.70 347.70 453.25 347.69 347.69 319.35

2 tors 695.39 641.00 695.39 695.39 695.39 906.50 695.39 695.39 638.70

1 axis 246.61 280.28 279.33 279.33 279.33 279.38 279.33 279.33 280.32

Table 10 Eigenfrequencies of the simply supported beam for selected modes rad
s of ANCF 3243 , fully parameterized element example

Mode 3363 ECM Cont EAS-4 EAS-2 SSM EDG-4 EDG-2 Analytic

1 bend 95.41 95.64 110.28 100.54 100.54 137.59 100.54 100.54 95.63

2 bend 329.63 332.26 378.71 351.23 351.23 494.49 351.23 351.23 332.23

3 bend 625.10 635.78 717.22 675.47 675.47 976.99 675.47 675.47 635.70

1 tors 347.69 320.51 347.70 347.70 347.70 641.01 347.70 347.70 319.35

2 tors 695.39 641.05 695.46 695.46 695.46 1282.12 695.46 695.46 638.70

1 axis 246.61 280.45 280.17 279.98 279.98 359.73 279.98 279.98 280.32

Table 11 Eigenfrequencies of the simply supported beam for selected modes rad
s of ANCF 3343 , high-order element example

Mode 3363 ECM Cont EAS-4 EAS-2 SSM EDG-4 EDG-2 Analytic

1 bend 95.41 95.63 102.86 96.95 97.42 97.77 96.3 97.41 95.63

2 bend 329.63 332.23 358.16 340.87 342.22 355.01 339.03 342.22 332.23

3 bend 625.10 635.70 686.53 659.35 661.44 708.48 656.522 661.44 635.70

1 tors 347.69 320.50 347.70 347.69 347.69 453.25 347.694 347.69 319.35

2 tors 695.39 641.00 659.39 695.39 695.39 906.5 695.39 695.39 638.70

1 axis 246.61 280.28 279.33 279.33 279.33 279.38 280.18 279.33 280.32

than Kirchhoff–Saint-Venant. Therefore, the 3343 ele-
ment with EDG-4 modification is the most universal
solution. Further comparison with the element denoted
3363, and assuming as the optimal solution for vari-
ous problems in [7], shows that 3343 with the EDG-4
element provides better results with the requirement of
fewer DOFs. Therefore, the newly proposed approach,
namely EDG-4, is a good tool to improve the per-
formance of the high-order ANCF continuum-based
beam element in the alleviation of Poisson locking in
conventional load cases. Further research with practi-
cal applications to ensure the performance of the 3343
might be interesting. Additional higher-order deforma-
tion modes could be beneficial in recreating deforma-

tions caused by centrifugal forces such as rotor dynam-
ics.
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Appendix A1 On ANSYS converge problems

In Sect. 5.3, the authors mentioned some convergence
problems within ANSYS commercial software and put
the element number as 128. As a matter of fact, with
increasing element number, the solutions stopped to
converge to analytical solution and started significantly
stepwise increasing, as shown in Fig. 16. The authors
wanted to demonstrate this convergence problem for
the case of Princeton beam experiment from Sect. 5.3,
for two rotational angles β = 0◦ and β = 30◦ in the
case F pb

2 .
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Fig. 16 Displacements from the Princeton beam experiment
with dependency on the element number for β = 0◦ and β = 30◦

The problem was not limited by the beam presented
in Sect. 5.3, and this feature was observed for any rod
model. Such high division can be considered as unnec-
essary exaggeration, but for the deformation analysis of

the large beams’ displacements or contact beam prob-
lems, this feature should be taken into account.
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