Correction to: Slow-fast analysis of a modified Leslie-Gower model with Holling type I functional response

Tapan Saha • Pallav Jyoti Pal • Malay Banerjee

Published online: 9 May 2022
© The Author(s), under exclusive licence to Springer Nature B.V. 2022

Correction to: Nonlinear Dyn

https://doi.org/10.1007/s11071-022-07370-1
The article was published with errors in equations (35), (36) and (37). To derive the standard slow-fast normal form near the folded singularity Q, we use the transformation $X=x-x_{3}, Y=y-y_{3}, \mu=b-b^{*}$ and the linear scaling $X^{\prime}=-\frac{1}{k \sqrt{a}} X, Y^{\prime}=-\frac{1}{k a} Y, t^{\prime}=\sqrt{a} t$. The equations (35a)-(35b) then should appear as

$$
\begin{align*}
\frac{d X^{\prime}}{d t^{\prime}}= & -Y^{\prime} h_{1}\left(X^{\prime}, Y^{\prime}, \mu^{\prime}\right)+X^{\prime 2} h_{2}\left(X^{\prime}, Y^{\prime}, \mu^{\prime}\right) \\
& +\epsilon h_{3}\left(X^{\prime}, Y^{\prime}, \mu^{\prime}\right) \tag{35a}\\
\frac{d Y^{\prime}}{d t^{\prime}}= & \epsilon\left(X^{\prime} h_{4}\left(X^{\prime}, Y^{\prime}, \mu^{\prime}\right)-\mu^{\prime} h_{5}\left(X^{\prime}, Y^{\prime}, \mu^{\prime}\right)\right. \\
& \left.+Y^{\prime} h_{6}\left(X^{\prime}, Y^{\prime}, \mu^{\prime}\right)\right) \tag{35b}
\end{align*}
$$

The online version of the original article can be found under https://doi.org/10.1007/s11071-022-07370-1.

T. Saha

Department of Mathematics, Presidency University, Kolkata 700073, India
e-mail: tapan.maths@presiuniv.ac.in
P.J. Pal (\triangle)

Department of Mathematics, Krishna Chandra College, Hetampur, Birbhum 731124, India
e-mail: pallav.pjp@gmail.com
M. Banerjee

Department of Mathematics and Statistics, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
e-mail: malayb@iitk.ac.in
where $h_{1}=1, h_{2}=1, h_{3}=0, h_{4}=1+4 a^{\frac{3}{2}} X^{\prime}+$ $\mathcal{O}\left(\left|X^{\prime}, Y^{\prime}, \mu^{\prime}\right|^{2}\right), h_{5}=1+\mathcal{O}\left(X^{\prime}, Y^{\prime}, \mu^{\prime}\right), h_{6}=-\frac{1}{\sqrt{a}}+$ $\mathcal{O}\left(X^{\prime}, Y^{\prime}, \mu^{\prime}\right), \mu^{\prime}=\frac{\mu}{k a^{\frac{3}{2}}}$. Correspondingly, the corrected equations (36a)-(36f) will be as follows

$$
\begin{align*}
& a_{1}=\frac{\partial h_{3}}{\partial X^{\prime}}(0,0,0)=0, \tag{36a}\\
& a_{2}=\frac{\partial h_{1}}{\partial X^{\prime}}(0,0,0)=0, \tag{36b}\\
& a_{3}=\frac{\partial h_{2}}{\partial X^{\prime}}(0,0,0)=0, \tag{36c}\\
& a_{4}=\frac{\partial h_{4}}{\partial X^{\prime}}(0,0,0)=4 a^{\frac{3}{2}}, \tag{36d}\\
& a_{5}=h_{6}(0,0,0)=-\frac{1}{\sqrt{a}}, \tag{36e}\\
& A=-a_{2}+3 a_{3}-2 a_{4}-2 a_{5}=\frac{8 b^{*}}{k \sqrt{a}}(1+2 a)>0 . \tag{36f}
\end{align*}
$$

The singular Hopf bifurcation and maximal canard curves are then given by $\mu=\mu_{H}(\sqrt{\epsilon})=\frac{k a \epsilon}{2}+$ $\mathcal{O}\left(\epsilon^{3 / 2}\right), \mu=\mu_{c}(\sqrt{\epsilon})=\frac{k a}{4}\left(1+4 a^{2}\right) \epsilon+\mathcal{O}\left(\epsilon^{3 / 2}\right)$, and the equations (37a)-(37b) should be read as

$$
\begin{align*}
b_{H}(\sqrt{\epsilon}) & =b^{*}+\frac{k a \epsilon}{2}+\mathcal{O}\left(\epsilon^{3 / 2}\right), \tag{37a}\\
b_{c}(\sqrt{\epsilon}) & =b^{*}+\frac{k a}{4}\left(1+4 a^{2}\right) \epsilon+\mathcal{O}\left(\epsilon^{3 / 2}\right) \tag{37b}
\end{align*}
$$

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

