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Abstract Flexible robots with controllable mecha-
nisms have advantages over common tandem robots
in vibration magnitude, residual vibration time, work-
ing speed, and efficiency. However, abnormal vibra-
tion can sometimes occur, affecting their operation.
Traditionally only simple mechanisms are considered
in studying abnormal vibration, omitting reference to
important chaotic phenomena caused by the flexibility
of the mechanism rod. In order to better understand the
causes of abnormal vibration, our work takes a con-
trollable flexible robot with a complex series-parallel
mechanism as a research object and uses a combina-
tion of Lagrangian and finite element methods to estab-
lish its nonlinear elastic dynamics. The effectiveness of
the model is verified by comparing the calculated fre-
quencywith the frequencymeasured in a test. The time-
domain diagram, phase diagram, Poincaré map, maxi-
mum Lyapunov exponent, and bifurcation diagram of
the elastic motion of the robot wrist are studied, and
the chaotic phenomena in the system are identified
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through the phase diagram, Poincaré map, the maxi-
mumLyapunov exponent, and the bifurcation diagram.
The relationship between the parameters of the robot
motion and the maximum Lyapunov exponent is dis-
cussed, including trajectory angular speed and radius.
The results show that chaotic behavior exists in the
controllable flexible robot and that trajectory angular
speed and radius all have an influence on the chaotic
motion. Our work provides a theoretical basis for fur-
ther research on the control and optimal design of flex-
ible robot mechanisms.

Keywords Controllable mechanism · Robots ·
Dynamic behavior · Chaos

1 Introduction

Controllable mechanisms include adjustable mecha-
nisms, hybrid drive mechanisms, variable input param-
etermechanisms, and flexible robots. Controllable flex-
ible robots have the following advantages over tradi-
tional robots: higher intelligence, greater flexibility of
output motion, and higher accuracy of motion. They
belong to a class of highly coupled nonlinear systems
with complex nonlinear dynamic behaviors. Chaos is
one of the most important dynamic characteristics of
a nonlinear dynamic system. It is a bounded irregu-
lar motion distinct from periodic motion and quasi-
periodic motion. It can well describe the behavior of
nonlinear systems. The elastic deformation of mecha-
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nism rods can cause the mechanism to behave chaot-
ically. At present, the methods of analyzing chaotic
motion of a system include the time historymethod, the
phase diagram method, the Poincaré mapping method,
the maximum Lyapunov exponent method, and the
bifurcation diagram method [1–4], etc. It is there-
fore important to study the dynamic response and the
chaotic behavior of controllable flexible robots, and
establish the dynamic performance design theory of
this type of robot, which will help establishing further
characteristics of the nonlinear dynamic behavior of
this system and in revealing its abnormalities [5–8].

In the past few decades, many researchers have
worked on the dynamic response of robots. Tang et al.
[9], based on Hamilton’s principle, established a set of
nonlinear equations ofmotion of a double-cable single-
linkflexiblemanipulatorwith twoboundary constraints
and studied the natural frequency and terminal response
of the system. The effectiveness of the cable in sup-
pressing the vibration of the system was verified by
both simulation and experiment. Cai et al. [10] pro-
posed a multi-objective optimization design method
to improve the elastic strain response distribution of
a joint strain gauge in the working area, and conducted
related experimental studies to improve the sensitivity
and resolution of the joint torque sensor, finally achiev-
ing compliance control of the robot joints. Amer et al.
[11–15] used a Lagrangian method to establish non-
linear dynamic models of single-pendulum, double-
pendulum, and triple-pendulum systems. Amulti-scale
method was used to solve the problem analytically.
The solvability condition was checked and the time
history and resonance response of the solution were
obtained. Using a nonlinear stability analysis method,
the stable and unstable regions were analyzed, and the
influences of different physical parameters on dynamic
motionwere investigated. Thesemodels and their study
have been important advances in the understanding of
vibration control of construction machinery. Li et al.
[16] studied the kinematic accuracy and dynamic per-
formance of spatially deployable mechanisms taking
into account the uncertainties of geometric and physi-
cal parameters, including the uncertainty of joint clear-
ance. They used the Monte Carlo method to solve the
dynamic equation. My et al. [17] proposed a general
two-link flexible robot dynamic modeling method, car-
ried out inverse dynamic response analysis, and ver-
ified the effectiveness and robustness of the method
through numerical calculation. Sun et al. [18] estab-

lished a simplified dynamic model of a flexible manip-
ulator with interval gaps and random material charac-
teristics. Their numerical-analysis results showed that
joint clearance, component flexibility, and uncertainty
all have a strong influence on the kinematic accu-
racy and dynamic behavior of the flexible manipulator.
Meng et al. [19] established a dynamic model of a pla-
nar single-link flexible manipulator by using the hypo-
thetical mode method and proposed a fast and stable
control strategy based on the system energy to achieve
suppression of theflexible rod’s vibration.He et al. [20–
23] used the hypothetical mode method, concentrated
spring-massmodel method, and other methods, includ-
ing neural network control methods, for flexible link
manipulators, to achieve trajectory tracking and vibra-
tion suppression. Zhou et al. [24] used space-vector
theory and graph theory to study the dynamic cou-
pling effects of multi-arm space robots, focusing on the
effects of dynamic parameters, link lengths, and joint
variables on coupling. Cuvillon et al. [25] used the the-
ory of modal analysis to derive a dynamic model of the
modal space, which is useful for adjusting the damping
modal controller; this analysis was verified by experi-
ments on an eight-cable suspension robot prototype.

Researchers have also done considerable work on
the chaotic analysis of mechanisms considering the
flexibility link, joint clearance, and time-varying stiff-
ness. Chen et al. [26–28] established an ideal nonlinear
relative dynamics model of the 4-UPS-UPU flexible
parallel mechanism and the two-degrees-of-freedom
9-bar mechanism and studied the dynamic response,
phase diagram, and Poincaré map of the mechanisms.
The mapping and the largest Lyapunov exponent veri-
fied the existence of chaos in the complex mechanical
system. Cao et al. [29] introduced the fractional-order
model of a magnetically coupled broadband energy
harvester under low-frequency excitation, using phase
trajectories, power spectra, Poincaré maps, and bifur-
cation diagrams to analyze fractional-order damping,
excitation amplitude, and frequency pairs. Lampart et
al. [30] discussed the dynamic characteristics of a non-
autonomous double pendulum model under soft-stop
dual-harmonic excitation, and performed simulations
for a specific range of excitation frequencies, confirm-
ing that many bifurcations change the characteristics
of induced motion into regular, quasi-periodic, and
chaotic motions. Jiang et al. [31] studied a cracked gear
system in a coal cutter considering the environmental
multiple-frequency excitation force, and analyzed the
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amplitude-frequency relationship of the model’s main
resonance using the multi-scale method; they also cal-
culated the dynamic response of themodel by the incre-
mental harmonic balance method. Qi et al. [32] pro-
posed a spherical chaotic system based on appropri-
ately combining a conservative system with a dissipa-
tive system under the celestial mechanism and studied
the rich dynamics of four types of spherical system:
having spherical four-wing chaotic attractors, spherical
ring-like chaotic attractors, spherical periodic orbits,
and spherical sink orbits. Based on previous theoreti-
cal studies, Moysis et al. [33] proposed an improved
HyperJerk system, with a hyperbolic sine function as
the only nonlinear term, and studied the path to chaos,
antimonotonicity, crisis and coexistence attractors, etc.
Miranda-Colorado et al. [34] proposed a hybrid speed
controller for flexible joint robots, which can induce
chaotic motion on the manipulators of such robots with
multiple degrees of freedom. Based on Lyapunov the-
ory, the asymptotic stability of the tracking error signal
is verified when the controller is used.

This paper reports our work analyzing the dynamic
response and chaotic behavior of a controllable flexible
robot. Using the finite element method and Lagrangian
equations, an elastodynamic model of the robot is pro-
posed. We establish the law of motion of the robot’s
end trajectory, compare the natural frequency of the
system by using a numerical method and the hammer
test method to verify the reliability of the nonlinear
dynamic model. The nonlinear dynamic response of
the system is analyzed, including the time-domain dia-
gram, the phase diagram, the Poincaré map, the maxi-
mumLyapunov exponent, and the bifurcation diagram.
The chaotic state of the system is identified. Finally, the
relationship between the motion parameters of the sys-
tem and the maximumLyapunov exponent is analyzed,
including the radius and angular velocity of the circular
trajectory. This lays a foundation for further analysis of
the nonlinear characteristics of the system.

2 Kinematic analysis of the controllable flexible
robot

The vibration of an industrial robot will reduce its effi-
ciency, shorten its working life, and reduce its accu-
racy, so it is of great importance to suppress the robot’s
vibration. The controllable robot applies the "multi-
degrees-of-freedom controllablemechanism" theory to

Fig. 1 Three-dimensional model of a controllable flexible robot

the field of robot mechanics. This approach installs the
drive motor and reducer on the frame as much as pos-
sible and increases the local closed-chain mechanism,
thereby reducing the joint’s large moment of inertia.
The prototype structure consists mainly of a waist, left
crank, pull rod, rotating arm, rear arm, auxiliary rod,
right crank, forearm, andwrist. The design of the proto-
type can improve the load capacity and working accu-
racy while satisfying the requirements of light weight,
fast movement, high reliability, and high stability. Fig-
ure 1 shows a three-dimensionalmodel of a controllable
flexible robot, and Fig. 2 shows a schematic diagram
of such a robot.

In kinematic analysis, in order to study the move-
ment of the wrist, one can overlook the rods that make
up two parallelograms, and simplify the movement
into a classic tandem mechanism, considering only the
waist, rear arms, rotating arms, forearms, and wrists.
The corresponding joints are all revolving joints, and
the angular displacement is used as the relative dis-
placement to meet the requirement that the operation
adapts to a complex trajectory. For each joint, the z-
axis is in the direction of right-handed rotation, the
x-axis is usually in the direction of the common per-
pendicular to the two z-axis, and the y-axis is always
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Fig. 2 Schematic diagram of a controllable flexible robot

perpendicular to both the x-axis and z-axis, as shown
in Fig. 2. A corresponding local coordinate system is
established at each joint. The rotation axis of joint i is
zi−1, the first coordinate system (coordinate system 0)
coincides with the global coordinate system, and the
i-th link is located between joints i − 1 and i , in turn
analogy. The kinematic relationship between adjacent
members of the manipulator can be described by the
Denavit–Hartenberg (D–H) [35] model, for which the
transformation matrix is

Ai−1
i = Rot (z, θi )Tran(0, 0, di )Tran(ai , 0, 0)Rot (x, αi )

=

⎡
⎢⎢⎣
cos(θi ) −cos(αi )sin(θi ) sin(αi )sin(θi ) ai cos(θi )
sin(θi ) cos(αi )cos(θi ) −sin(αi )cos(θi ) ai sin(θi )

0 sin(αi ) cos(αi ) di
0 0 0 1

⎤
⎥⎥⎦

(1)

where θi ∈ Rn(i = 1, 2, ..., 6) is the generalized coor-
dinate of the joint of the manipulator, di is the offset of
the connecting rod, ai is the length of the connecting
rod, and αi is the torsion angle of the connecting rod.

The total transformation from the robot-wrist coor-
dinate system to the global coordinate system is
0T6 = A0

1A
1
2A

2
3A

3
4A

4
5A

5
6 (2)

Given the angle of the joint θi , the position and pos-
ture of the wrist can be determined by using Eq. (2).

The first 3 × 3 columns of the matrix 0T6 are the pos-
tures of the wrist, and the fourth column represents the
position of the wrist. It can be written in the following
unified form:

p = f (θ) (3)

where p is the position of the wrist.
By differentiating Eq. (3), the relationship between

the moving velocity ṗ of the wrist and the angular
velocity dθ/dt of the joint can be calculated.

dp

dt
= J

dθ

dt
(4)

where

J = ∂ f (θ)

∂θT
=

⎡
⎢⎢⎢⎢⎣

∂ f1
∂θ1

· · · ∂ f1
∂θn

...
. . .

...

∂ fm
∂θ1

· · · ∂ fm
∂θn

⎤
⎥⎥⎥⎥⎦

(5)

For a definite motion ϕ(p), in order to meet the
requirements of high-precision control of robotmotion,
a closed-loop synchronous control scheme is intro-
duced, which includes, for the joint’s angular velocity
and angular acceleration,

θ̇ = J−1 ṗ
θ̈ = J−1( p̈ − J̇ θ̇s + kve2 + kpe1)

(6)

where kv and kp are negative definite matrices; e1 and
e2 are the rigid displacement error and velocity error of
the wrist, respectively, and θ̇s is the initial joint angular
velocity.

3 Elastodynamic model of the controllable flexible
robot

Given that modern machinery is developing rapidly in
the direction of higher speed, greater precision, and
lighter weight, the influence of component deforma-
tion on the stability and operating accuracy of the robot
cannot be ignored. In order to make the controllable
flexible robot achieve better dynamic performance, it
is necessary to carry out an elastodynamic analysis.
Based on the Lagrangian equation and finite element
method, an elastodynamic model of the controllable
flexible robot can be established. To simplify the mod-
eling, we make the following assumptions:

(1) The waist is treated as a rigid member, the other
members as elastic.
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Fig. 3 Beam element and element generalized coordinate

(2) According to the kinematic assumption, by ignor-
ing the coupling of rigid-body motion and elastic
deformation, the real motion can be regarded as a
linear superposition of the two.

(3) Using the assumption of instantaneous structure at
a certain mechanism position, the rotating coordi-
nate system is treated as a static coordinate system,
the rotation angle is treated as a constant, and the
rotation matrix is treated as a constant matrix.

(4) The mass of the bearing mounted at the hinge is
treated as a concentrated mass, which is superim-
posed onto the system mass matrix, ignoring the
influence of clearance and friction.

3.1 Model of beam element

Figure 3 shows a typical beam-element structure dia-
gram. The element coordinate system Ax y, which is
fixed to the beam element, is established in the dia-
gram. The transverse displacement and longitudinal
displacement of the beam element are functions not
only of the element coordinate x , but also of time t . It
is assumed that the transverse displacement and lon-
gitudinal displacement of any point are expressed by
w(x, t) and u(x, t), respectively. The transverse dis-
placement function uses a fifth-order polynomial, and
the longitudinal displacement uses a first-order poly-
nomial:{

u(x, t) = NT
i Aδi

w(x, t) = NT
i Bδi

(7)

In these equations, δi is the unit generalized coor-
dinate, and the generalized coordinate array is δi =
[δ1, δ1, · · · , δ8]T . Ni A, NiB are the displacement func-
tions, which depend on the unit coordinate x .

Ni A = [
1 − e 0 0 0 e 0 0 0

]T

Ni B = [
0 u1 u2 u3 0 u4 u5 u6

]T (8)

and

u1 = 1 − 10e3 + 15e4 − 6e5

u2 = L(e − 6e3 + 8e4 − 3e5)

u3 = 1

2
L2(e2 − 3e3 + 3e4 − e5)

u4 = 10e3 − 15e4 + 6e5

u5 = L(−4e3 + 7e4 − 3e5)

u6 = 1

2
L2(e3 − 2e4 + e5)

Here e = x/L; it is called the relative coordinate of the
beam element, where L is the length of the element.

3.2 Dynamic model of beam element

3.2.1 Kinetic energy of beam element

Assuming that the cross section of the beam element
is a uniform rectangle and that the mass of the section
is concentrated on the axis, and ignoring the rotational
kinetic energy of the section, the kinetic energy T of
the beam element can be written

T = 1

2

∫ L

0
ρA

[(
dua(x, t)

dt

)2
+

(
dwa(x, t)

dt

)2
]
dx (9)

where A is the cross-sectional area of the beamelement
and ρ is the density of the beam.

According to the simplified model assumption (2),
it can be concluded that{

ua(x, t) = ur (x, t) + u(x, t)

wa(x, t) = wr (x, t) + w(x, t)
(10)

whereur (x, t) andwr (x, t) are the rigid-bodydisplace-
ments of points along the x and y axes, respectively.

Bringing the real movement of the mechanism into
Eq. (9), the kinetic energy of the beam element can be
expressed as

T = 1

2
(δ̇r + δ̇)Tme(δ̇r + δ̇) (11)

where me is the element quality matrix,

me = ρA
∫ L

0
NNT dx (12)

3.2.2 Deformation energy of beam element

When deriving the deformation energy, only the bend-
ing deformation of the beam under the action of the
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Table 1 Structural parameters of the controllable flexible robot

i-th link θ d a α Joint Range

1 θ1 0.1 −0.15 π/2 Rotation (−160, 160)

2 θ2 0 0.6 0 Rotation (20, 120)

3 θ3 0 0.1725 π/2 Rotation (−70, 70)

4 θ4 0.366 0 −π/2 Rotation (−170, 170)

5 θ5 0 0 π/2 Rotation (−90, 90)

6 θ6 0.257 0 0 Rotation (−180, 180)

bendingmoment and the tensile and compressive defor-
mation caused by the action of the axial force are taken
into account. Other kinds of deformation, such as shear,
are ignored. According to the mechanics of materials,
the deformation energy can be written

V = 1

2

∫ L

0
E A

(
∂u(x, t)

∂x

)2

dx

+ 1

2

∫ L

0
E I

(
∂2w(x, t)

∂x2

)2

dx

(13)

where E is the elastic modulus of the beam element
and I is the moment of inertia of the cross section of
the beam element.

By substituting and simplifying Eq. (13), we get

V = 1

2
δT keδ (14)

where ke is the element stiffness matrix.

ke = E A
∫ L

0
ṄA Ṅ

T
A dx + E I

∫ L

0
N̈B N̈

T
B dx (15)

3.2.3 Differential equation of beam element

Incorporating Eqs. (11) and (14) above into the second
type of Lagrangian equation, one gets

d

dt

(
∂T

∂δ̇

)
− ∂T

∂δ
+ ∂V

∂δ
= f (16)

Thedynamic equationof the beamelement in a rotat-
ing coordinate system is

mδ̈i + kδi = fi + pi − mδ̈ir (17)

where f is the element generalized force array, includ-
ing the external force array fi and the force array
between the units pi , which will cancel each other in
the process of mechanism assembly, and δ̈r is the ele-
ment rigid-body acceleration array.

In order to transform the assembly of the equation
of motion of the elements into the equation of motion
of the system, a new generalized coordinate array of
elements is introduced:

δie = [δ1e δ2e · · · δ8e]
T (18)

According to the assumption (3), the relationship
between δi and δie is

δi = Riδie (19)

where Ri is the coordinate transformation matrix.
The differential equation of motion of the beam ele-

ment in the global coordinate system is

mδ̈ie + kδie = f − mδ̈ire (20)

where m = RTmR , k = RT kR, and f = RT f R are
all 8 × 8 symmetric matrices.

3.3 Differential equation of the controllable flexible
robot

The left crank, right crank, and wrist are cantilever
beams. The pull rod and rear arm are each divided into
two units. The other members are all single units. A
total of 11 units make up the controllable flexible robot
system. The generalized coordinate array of the system
is defined as

U = [U1 U2 · · · UNu ]T (21)

where Nu = 42 is the total number of generalized coor-
dinates.

The relationship between δie and U is written

δie = BiU (22)

where Bi is the coordinate harmony matrix.
In the process of studying the actual working of the

controllable mechanism robot, the influence of damp-
ing cannot be ignored. In this work, the elastodynamic
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equation is included, in the form of a Rayleigh damp-
ing matrix [36–39]. All of the unit dynamics equations
are assembled to obtain the differential equations of
motion of the system:

MÜ + CU̇ + KU = F − MÜr (23)

where Ür is the system rigid-body acceleration array.
M = ∑Ne

i=1 Mie ,C = ∑Ne
i=1 Cie , K = ∑Ne

i=1 Kie, and

F = ∑Ne
i=1 Fie are the system mass matrix, damping

matrix, stiffness matrix, and generalized force array,
respectively, and Ne is the total number of elements.

4 Dynamic response analysis of the controllable
flexible robot

The elastodynamic equation of the system, Eq. (23), is
a time-varying strongly coupled nonlinear differential
equation. In our work, the direct-integration implicit
Newmark method and the fourth-order Runge–Kutta
algorithm are used to solve the dynamic response of
the mechanism.

The structure parameters, material characteristic
parameters, and moment of inertia of the controllable
mechanism robot are shown in Tables 1 and 2 and Table
2. In analyzing the dynamic response of the controllable
flexible robot, the period of the motion is defined as T ,
with T = 2π

ω
. The integral step is 0.01s. The initial

position of the robot wrist is specified as

p = (x0, y0, z0)
T = (0.5532, 0, 0.329 + R)T

where R is the radius of the circular trajectory.
The controllable mechanism robot moves according

to the circular trajectory described by the following
equations:
⎧⎪⎨
⎪⎩

X = x0 − Rsin(ωt)

Y = y0

Z = z0 − Rcos(ωt)

(24)

Here,ω is the angular velocity of the circular trajectory.
Through numerical simulation, the characteristics of

the natural frequency of the system are analyzed, and
the time-history diagrams of the elastic displacement,
velocity, and acceleration of the robot wrist in the x
direction, the y direction, and around the z direction
are obtained.
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4.1 Analysis of frequency characteristics of the
controllable flexible robot

The natural frequency of the mechanism is determined
by the inherent characteristics of the mechanism (such
as mass, shape, and material), and to changes in the
position and attitude of the mechanism. By studying
the natural frequency of the mechanism, we can grasp
the vibration of the system as a whole, avoid a res-
onance phenomenon of the system, and benefit by the
stability of the system. The average value of the natural
frequency can express the overall change trend of the
mechanism frequency in the entire motion cycle and is
an important indicator for evaluating the dynamic char-
acteristics of the mechanism. Among them, the first-
order natural frequency (fundamental frequency) plays
an important role in the dynamic response of the sys-
tem,which is the focus in both engineering applications
and theoretical research.

By using the classical multi-point excitation single-
point pick-up modal test method in the force mea-
surement modal test, 14 tested points are selected and
marked on the rod mechanism of the controllable flexi-
ble robot, and a three-way accelerometer is installed at
the end of the robot manipulator, serving as the pick-up
point in the modal test. We tap each measuring point
in turn, collect the force signal and acceleration sig-
nal at each measuring point, then calculate the fun-
damental frequency of the system. The experimental
measurement system for the natural frequency of the
controllable flexible robot is shown in Fig. 4, where
the robot is stopped in the upright position for test-
ing through the operating handle of the control system.
The joint angular position is θ = [0 π/2 0 0 0 0]T . The
modal frequency of the system obtained by experiment
is 6.836 Hz. The natural frequency, calculated by the
numerical simulation method, is 6.84 Hz. The differ-
ence between the experimental value and the numer-
ically calculated value is 0.11%, confirming that the
elastodynamic model of the controllable flexible robot
has high reliability.

Based on the circular motion trajectory given by the
mechanism, MATLAB is used to program the numer-
ical simulation. When ω = 0.5π , the relationship
between the radii of different circular trajectories and
the first-order natural frequency of the system is ana-
lyzed, and when R = 0.05m, the relationship between
the velocity of different circular trajectories and the
first-order natural frequency of the system is analyzed.

It can be seen from Fig. 5 hat the first-order nat-
ural frequency of the system decreases as the radius
of the circular track increases. With an increase of the
angular velocity of the trajectory, the value of the first-
order natural frequency also shows a downward trend,
but the local curve fluctuates slightly. Since the natu-
ral frequency of each rod is affected by the movement
of the mechanism, the overall natural frequency of the
mechanism varies with its position.

4.2 Vibration response analysis of the controllable
flexible robot

According to the law of motion of the circular trajec-
tory of the system, the circular trajectory radius R of the
controllable flexible robot is set to 0.05m, the trajectory
angular velocity ω is 0.5π rad/s, and the system mate-
rial is ordinary carbon steel. The Newmark method is
used to solve the nonlinear equations of the system, and
the elastic displacement, velocity, acceleration, ampli-
tude spectrum of the robot wrist are recorded.

Figures 6, 7, 8 show the elastic displacement, veloc-
ity, acceleration, and amplitude spectrum curves of the
controllable flexible robot.

As the mechanism follows a circular trajectory,
the elastic member of the system will be elastically
deformed, causing errors in the vibration of the end
manipulator arm, which in turn results in a decrease in
the accuracy of the motion of the controllable flexible
mechanism. It can be seen that the elastic movement
displacement, speed, and acceleration of the mecha-
nism in the x , y directions and around the z direction
all have slight oscillations, with no obvious regularity.
The frequency domain curves in all directions show
the fundamental frequency of the system,which further
illustrates the reliability of the elastodynamicmodeling
of the system.

5 Chaotic motion analysis of the controllable
flexible robot

Although chaotic motion has long-term unpredictabil-
ity, it does have unique mathematical characteris-
tics that are very important for understanding regular
aspects of chaos. In a phase plane diagramwith velocity
on the ordinate and displacement on the abscissa, one
canmake a trajectory that changeswith time. If a closed
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Fig. 4 Experimental
measurement system of the
natural frequency of the
controllable flexible robot

Fig. 5 The dependence of
first-order natural frequency
on (a) the radius of the
circular trajectory and (b)
the angular velocity of the
circular trajectory
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trajectory appears in the phase plane, the system has a
periodic solution; otherwise, the system may produce
chaotic motion. The phase diagram of the controllable
flexible robot is shown in Fig. 9.

This figure depicts the phase trajectory diagram in
the directions of x , y, z, and co-direction. It can be seen
from the diagram that the phase trajectory is chaotic and
disordered, with the trajectory remaining in the same
region.

Through continuous mapping of the system, differ-
ent forms of phase points or phase trajectories can be
observed in the Poincaré map. According to its topo-
logical properties, it can be judged whether a system
has period 1 motion, period k motion, quasi-periodic
motion, or chaotic motion. The isolated points, finite
(k) isolated points, closed curves, and uncountable
point sets distributed in a certain area appearing on the
Poincaré section can, respectively, represent the period
1 motion, period k motion, quasi-periodic motion, and

chaotic motion. The Poincaré section of the control-
lable flexible robot is shown in Fig. 10.

It can be seen from this figure that the Poincarémaps
of the robot in the x and, y directions and around the z
direction all consist of scattered and disorderly dense
points, throughout the graphic area. Figures 9 and 10
both show that the controllable flexible robot system is
in a state of chaos.

The Lyapunov exponent is a quantity that describes
the degree of divergence of adjacent orbits in the phase
space. In this work, the small data volume method [40]
is used to estimate the maximum Lyapunov exponent.
The concrete recipe for calculation is as follows:

(i) Perform FFT transformation on the time series
{x(ti ), i = 1, 2, ..., N }.

(i) Calculate the time delay τ and the average period
P , determine the embedding dimension m, and
thereby reconstruct the phase space {Y j , j =
1, 2, ..., M}.
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Fig. 6 Time–frequency
characteristics in the x
direction. a Elastic
displacement. b Amplitude
spectrum. c Elastic velocity.
d Elastic acceleration
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Fig. 7 Time–frequency
characteristics in the y
direction. a Elastic
displacement. b Amplitude
spectrum. c Elastic velocity.
d Elastic acceleration
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Fig. 8 Time–frequency
characteristics around the z
direction a Elastic
displacement. b Amplitude
spectrum. c Elastic velocity.
d Elastic acceleration
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Fig. 9 Phase diagram of
mechanism. a Relative
displacement and velocity
in the x direction. b Relative
displacement and velocity
in the y direction. c Relative
rotation angle and velocity
around the z axis. d Relative
displacement and velocity
in the co-direction
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Fig. 10 Poincaré
cross-sectional view of
mechanism. a Relative
displacement and velocity
in the x direction. b Relative
displacement and velocity
in the y direction. c Relative
rotation angle and velocity
around the z axis. d Relative
displacement and velocity
in the co-direction
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(iii) Calculate the nearest neighbor point Y j∗ of each
point Y j in the phase space, and the distance
between the two points, d j (0) = min

j∗
‖Y j −

Y j∗‖, | j − j∗| > P .
(iv) For each point Y j in the phase space, calculate

the distance d j (i), d j (i) = |Y j+i ,Y j∗+i |, i =
1, 2, ...,min(M− j,m− j∗) after i discrete time
steps of the adjacent point pair.

(v) Finally, find the average value of ln d j (i) of all

j for each i , that is, y(i) = ( 1
q�t )

q∑
j=1

ln d j (i),

where q is the number of nonzero values of d j (i);
and use the least squaresmethod to draw a regres-
sion line, the slope of which is the maximum
Lyapunov exponent.

When the Lyapunov exponent is negative, the map-
ping converges finally to a certain point; when it is zero,
themappingmoves periodically; when it is positive, the
mapping is in a chaotic state. The Lyapunov exponent
of the controllable flexible robot in the directions of x ,
y, z and in combination is shown in Fig. 11.

As shown in this figure, the largest Lyapunov expo-
nents are 0.4036 in the x direction, 0.1910 in the y

direction, 0.1755 around the z direction, and 0.3058
in the combined direction. The fact that the maximum
Lyapunov exponent of the system is greater than zero
in all directions confirms that the controllable flexible
robot is in a chaotic state.

Figure 12 depicts bifurcation diagrams for excitation
frequency of the robot in the x direction, the y direction,
around the z axis, and in the co-direction. According to
this figure, when the external excitation changes from 0
to 0.16 Hz, the motion state of the wrist in all directions
changes from periodic motion to chaotic motion. This
shows that there is indeed chaos in the elastodynamic
response of the controllable flexible robot.

6 Influence of the main motion parameters on the
chaotic characteristics of the system

6.1 The influence of the radius of the circular
trajectory on the chaotic motion of the system

In order to study the influence of the circular trajec-
tory radius R on the chaotic motion of the system,
the relationship between this radius and the maximum
Lyapunov exponent of movement in each direction is
established, as shown in Fig. 13.
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Fig. 11 Lyapunov exponent
graphs of all directions: a
the x direction, b the y
direction, c around the z
axis, and d the co-direction
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Fig. 12 Bifurcation
diagrams with respect to
excitation frequency of all
directions: a the x direction,
b the y direction, c around
the z axis, and d the
co-direction
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Fig. 13 The relationship
between the maximum
Lyapunov exponent and the
radius of the circular
trajectory a in the x
direction, b in the y
direction, c around the z
axis, and d In the
co-direction
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Fig. 14 The relationship
between the maximum
Lyapunov exponent and the
velocity of the circular
trajectory, a in the x
direction, b in the y
direction, c around the z
axis, and d in the
co-direction
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As can be seen from this figure, with an increase of
the radius R of the circular trajectory, the maximum
Lyapunov exponents in the y direction and around the
z direction show a downward trend, the maximumLya-
punov exponent in the x direction oscillates around 0.4,
while themaximumLyapunov exponent in the codirec-
tion increases at first and then decreases.

6.2 The influence of the angular velocity of the
circular trajectory on the chaotic motion of the
system

In order to study the influence of the angular velocity
of the circular trajectory on the chaotic motion of the
system, the relationship between the angular velocity
of the circular trajectory and the maximum Lyapunov
exponent of the movement in each direction was estab-
lished, as shown in Fig. 14.

It can be seen in this figure that with an increase
of the angular velocity ω of the circular trajectory, the
maximum Lyapunov exponents in the x and y direc-
tions show an overall upward trend. When the angular
velocity ω of the circular trajectory is 1 rad/s, the max-
imum Lyapunov exponent in the combined direction is
the largest, 0.6323.

7 Conclusion

This paper establishes a nonlinear elastic dynamic
model of a controllable flexible robot, obtains the non-
linear dynamic response characteristics of this new type
of robot system, identifies the chaotic phenomenon in
the system, and reveals the reason for the system’s
abnormal vibration. The main conclusions are the fol-
lowing: (I) Based on the Lagrange equation and the
finite element method, the elastodynamic model of the
controllable flexible robot system was established. The
natural frequency of the robot was tested by a ham-
mering test, and the validity of the nonlinear dynamic
model was verified by comparing it with the numerical
simulation results. (II) The elastic displacement, veloc-
ity, and acceleration of the wrist in accordance with
the circular trajectory were analyzed. The simulation
results show that the motion of the system has no obvi-
ous regularity. By analyzing the system phase diagram,
Poincarémap,Lyapunov exponent, and bifurcation dia-
gram, it was further verified that there is chaos in the
elastic vibration of the controllable flexible robot under

the excitation of inertial force. (III) On this basis, the
relationship between the changes in the main motion
parameters and the maximum Lyapunov exponent was
analyzed comprehensively and systematically. It was
revealed that the radius of the trajectory and its angu-
lar velocity both have some influence on the nonlin-
ear motion of the controllable flexible robot system.
In future work, vibration suppression and joint clear-
ance in controllable flexible robotic systems may be
investigated, and this work will also be extended to 3D
models.
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