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Abstract Thependulumapplied to thefieldofmechan-
ical energy harvesting has been studied extensively
in the past. However, systems examined to date have
largely comprised simple pendulums limited to planar
motion and to correspondingly limited degrees of exci-
tational freedom. In order to remove these limitations
and thus cover a broader range of use, this paper exam-
ines the dynamics of a spherical pendulum with trans-
lational support excitation in three directions that oper-
ate under generic forcing conditions. This system can
be modelled by two generalised coordinates. The main
aim of this work is to propose an optimisation pro-
cedure to select the ideal parameters of the pendulum
for an experimental programme intended to lead to an
optimised pre-prototype. In addition, an investigation
of the power take-off and its effect on the dynamics of
the pendulum is presented with the help of Bifurcation
diagrams and Poincaré sections.
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1 Introduction

We consider a lightly damped spherical pendulum
which can be forced by support excitation in three
orthogonal directions and which is fitted with an active
power take-off. The mathematical modelling of the
spherical pendulum has been investigated in the past,
and the papers by Miles are particularly noteworthy
([18–20]). In the first article, the author examined the
stability of planar oscillations for a spherical pendulum
which was excited with small amplitudes close to the
natural frequency. He found that for a particular set of
parameters the planar dynamics become unstable and
this results in stable non-planar solutions [19]. The later
work shows bifurcations and chaotic dynamics of the
system [18]. His modelling and the resulting equations
laid the foundation formuch of the followingwork. The
works by Olsson [22,23] are informative because they
give a clear overview of the pendulum for readers with
different levels of expertise. The first experimental val-
idation of the spherical pendulum equations derived by
Miles [18,19] was given by Tritton in 1968 [27], and he
concluded that the theoretical end experimental results
correlate. In 1999, Aston [2] examined the spherical
pendulum with a slight variation of the mathematical
model to ensure that there would be no singularity at
the rest position. However, the work is mainly con-
cerned with the planar movement of the pendulumwith
small perturbations from the plane. The article contains
an analysis of the bifurcatory responses and Lyapunov
exponents of the system.Tritton andGroves [28] under-
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took similar research to obtain the Lyapunov exponents
but used the equations derived byMiles [18,19] instead.
They concluded the coexistence of alternative attrac-
tors inside and outside the range of non-stable fixed
points. Furthermore, they showed that the probability
of finding chaotic dynamics is strongly dependent on
damping [28]. This dependence on damping is impor-
tant with regards to this work, even though the energy
harvester presented is lightly damped sudden switch-on
of the power take-off directly corresponds to a strongly
increased damping.

The dynamics of a spherical pendulum with a ver-
tical high-frequency vibrating suspension were inves-
tigated by Markeyev [15] in 1999. Leung and Kuang
[12] investigated the dynamics of the spherical pendu-
lumwhich was excited close to the natural frequency in
all directions. An experimental and numerical analysis
of the spherical pendulum was conducted by Pospíšil,
Fischer and Náprstek where they examined the influ-
ence of damping on the dynamics of the system [24].
These articles provide important insights into the dif-
ferent methods of excitation of a spherical pendulum.

An article on distinguishing the transition to chaos in
a spherical pendulum is attributable to Kana et al. [11].
A comparison between the numerical and experimental
results of the chaotic dynamics of a spherical pendu-
lum was done by Cartwright and Tritton [6]. Similarly,
Bryant quantified the amount of order in the chaotic
dynamics of a damped forced spherical pendulum with
the help of Lyapunov exponents [4]. These three works
are essential to understand the potential chaotic dynam-
ics of the proposed omnidirectional energy harvester.
The discussion of stability and quasi-periodic reso-
nance byNáprstek andFischer [21] is informative in the
context of the present work as it shows the softening
and quasi-periodic behaviour of the spherical pendu-
lum that is also visible in this system.

It is important to mention the paper by Litak et
al. [14], which focused on the dynamic response of
a spherical pendulum. The system is excited horizon-
tally, the difference with the work of other researchers
is that it is not exited with a simple sine or cosine func-
tion, but instead with a combination of them both. As
a result, the trajectory of the excitation has the shape
of a Lissajous curve. The authors mainly observe the
bifurcation diagrams and Lyapunov exponents of their
system.

In terms of energy harvesting, there are four main
methods for converting energy from mechanical vibra-

tion, these are piezoelectric transduction, electromag-
netic induction and electrostatic transduction [9]. Elec-
tromagnetic induction is assumed for this work. Since
the direction of the motion in the proposed system
changes constantly, an electrical rectifier is needed to
convert the AC into a usable DC, and this procedure is
mentioned in several articles [7,25,29] and [8].

Thework reported in [30] applied an on/off mechan-
ical load operating on a torsional parametric oscillator,
set up so that the oscillator would be loaded every half
cycle, with the other half cycle as a recovery stroke. The
power take-off application in [17] was devised specif-
ically for a pendulum converter.

Previous experimental work on the general con-
cept of the planar pendulum harvester was done by
Borowiec et al. [3], Marszal et al. [16], Linang et al.
[13] and Graves et al. [10]. However, Anurakpandit,
Townsend andWilson [1] noted correctly that this con-
figuration potentially limits the ability of the system
to harvest all the mechanical energy available, and so
they introduced agimballedpendulumenergyharvester
with two degrees of freedom (2-DOF). Interestingly in
the operational cases that were shown the 2-DOF sys-
tem was seen to be less effective than single DOF har-
vester. A justification for why the 1-DOF system has a
higher peak power output than the 2-DOF system was
not offered [1].

It is evident that little work has been reported on
omnidirectional pendulum energy harvesters in the lit-
erature. In addition, theworkon the spherical pendulum
discussed in the literature to date has mostly been the-
oretical and mathematical and cannot easily be trans-
ferred to an experimental approach for an energy har-
vester. This paper will addresses this lack of informa-
tion and in order to do this introduces an omnidirec-
tional pendulum energy harvester. This is investigated
numerically here, with a particular focus on optimis-
ing the operating points in order to obtain an effective
harvesting of energy for the subsequent experimental
validation.

2 Model of the spherical pendulum with active
power take-off

The geometrical configuration of the spherical pendu-
lum is given in Fig. 1, showing a local coordinate sys-
tem (o, x, y, z) attached to the pivot of the pendulum,
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Fig. 1 Geometry and coordinate systems for the spherical
pendulum-based harvester

and a separate frame (O, X,Y, Z) to which the excita-
tions are referred.

There are two necessary and sufficient generalised
coordinates required to define the motion of the pendu-
lum shown in Fig. 1, and these are given here by θ and
φ. Together they describe all possible motions of the
pendulum as configured. θ describes the planar oscilla-
tion of the pendulum and φ describes the rotation of the
plane of oscillation of the pendulum. The length l of the
pendulum is notionally defined as being from the pivot
to the centre of the end mass, m. The two polar coordi-
nates can be related to the local Cartesian coordinates
by means of the kinematic relations given in Fig. 1.
Two coordinate frames are used in order to provide a
definition for prescribed excitations operating on the
pivot, and these are given in three dimensions by the
functions u(t), v(t) andw(t), as stated in Eq. (1), where
U0, V0 andW0 correspond to the excitation amplitudes
andΩu,Ωv andΩw refer to the excitation frequencies.

u(t) = U0 cos(Ωut), v(t) = V0 cos(Ωvt),

w(t) = W0 cos(Ωwt). (1)

The excitations u(t) and v(t) will excite the pendulum
directly and are simply representative of synchronous
forced vibration of the system, whereas the vertical
motion w(t) will excite the pendulum through princi-
pal parametric resonance if the excitation is close to an
integer multiple of the linear free damped natural fre-
quency. The most significant throughput of mechanical
energy in this direction will be when that integer mul-

tiple is two [5,17,26], as required for principal para-
metric resonance. This multiplier of two is used for the
complete numerical evaluation of this work, and there-
fore, this work is concerned with generic forcing. The
linear free damped natural frequency of the pendulum
is given in Eq. (2).

ωn =
√
g

l
. (2)

After deriving the kinematic relations with respect
to time, the potential (3) and kinetic (4) energies of the
system can be constructed.

U = mgz(t) − mgw(t)

= −mgl cos θ(t) + mgW0 cos(Ωwt). (3)

T = 1

2
m

[
(ẋ(t) + u̇(t))2 + (ẏ(t) + v̇(t))2

+ (ż(t) + ẇ(t))2
]

= 1

2
m

[(
l θ̇ (t) cos(θ(t)) sin(φ(t))

+ l sin(θ(t))φ̇(t) cos(φ(t)) +U0Ωu sin(Ωut)
)2

+
(
−l θ̇ (t) cos(θ(t)) cos(φ(t))

+ l sin(θ(t))φ̇(t) sin(φ(t)) + V0Ωv sin(Ωvt)
)2

+
(
−l θ̇ (t) sin(θ(t)) + W0Ωw sin(Ωwt)

)2]
. (4)

The potential (3) and kinetic (4) energies are sub-
stituted into Lagrange’s equations of the second kind,
and two ordinary nonlinear differential Eqs. (5) and
(6) are obtained. In order to make the equations more
descriptive of physical reality, classical linear viscous
damping terms are introduced into each one. Then, a
power take-off term in the angular direction of θ is
added to Eq. (5) to allow conversion of energy from
the system. This term is in the form of a load torque
which switches on and off dependent on the sign of
the velocity of the swing of the pendulum. The power
take-off term is discussed in more detail in Sect. 3.1.

θ̈ (t) + 2ξθωn θ̇ (t) + g

l
sin(θ(t))

− sin(θ(t)) cos(θ(t))φ̇(t)2

= −U0Ω
2
u

l
cos(θ(t)) sin(φ(t)) cos(Ωut)
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+ V0Ω2
v

l
cos(θ(t)) cos(φ(t)) cos(Ωvt)

+ W0Ω
2
w

l
sin(θ(t)) cos(Ωwt)

− 2Tθ

πml2
tan−1

(
θ̇ (t)

0.01

)
. (5)

φ̈(t) + 2ξφωn

sin2(θ(t))
φ̇(t) + 2θ̇ (t) cos(θ(t))φ̇(t)

sin(θ(t))

= −U0Ω
2
u cos(φ(t)) cos(Ωut)

l sin(θ(t))

− V0Ω2
v sin(φ(t)) cos(Ωvt))

l sin(θ(t))
. (6)

In order to avoid scaling effects, the following
dimensionless parameters are introduced.

τ = ω0t, ω2
0 = g

l
, Pθ = Tθ

ml2ω2
0

,

au = U0

l
, av = V0

l
, aw = W0

l
,

βv = Ωv

ω0
, βw = Ωw

ω0
, βu = Ωu

ω0
,

αθ = 2ξθ

ωn

ω0
, αφ = 2ξφ

ωn

ω0
. (7)

This leads to two dimensionless equations ofmotion
(8) and (9) which can then be solved numerically
through a suitably controlled process of numerical inte-
gration.

θ̈ (τ ) + αθ θ̇(τ ) + sin(θ(τ ))

− sin(θ(τ )) cos(θ(τ ))φ̇(τ )2

= −auβ
2
u cos(θ(τ )) sin(φ(τ)) cos(βuτ)

+ avβ
2
v cos(θ(τ )) cos(φ(τ)) cos(βvτ )

+ awβ2
w sin(θ(τ )) cos(βwτ) − 2Pθ

π
tan−1

(
θ̇ (τ )

0.01

)
.

(8)

φ̈(τ ) + αφ

sin2(θ(τ ))
φ̇(τ ) + 2θ̇ (τ ) cos(θ(τ ))φ̇(τ )

sin(θ(τ ))

= −auβ
2
u
cos(φ(τ))

sin(θ(τ ))
cos(βuτ)

− avβ
2
v

sin(φ(τ))

sin(θ(τ ))
cos(βvτ ). (9)

3 Numerical results

In this section, the numerical results with the nondi-
mensional ordinary differential Eqs. (8) and (9) are
examined. For the numerical calculations, if not indi-
cated otherwise, the parameters are set to experimen-
tally pragmatic values, as follows, m = 1 kg, l =
0.5 m, g = 9.81 m

s2
, αθ = αφ = 0.05, au = av =

aw = 0.16, βu = βv = 1.1, βw = 2.2 and Pθ = 0.1.
In the following plots, we consider ranges for a which
correspond to a = au = av = aw and β which
correspond to β = βu = βv = 0.5βw. Likewise,
the initial conditions (ICs) are set to the following
dimensionless practically achievable values: θ(0) =
0.42, θ̇ (0) = 0.42, φ(0) = 0.42 and φ̇(0) = 0.42.
These were selected after an extensive study of the ini-
tial conditions. The aimwas to avoid two critical points
in this calculation. Firstly, the calculation cannot be
started at the equilibrium point because of the singu-
larity at θ = 0. The other problem point would bewhen
the initial conditions for θ and θ̇ are too high, and in
this case θ would displace through 2π and φ through
π when the excitation amplitudes are also high. This
already happens in the transient response and is there-
fore directly influenced by the initial conditions. Large
angular displacements of this scale would not be phys-
ically achievable in practice and would be restricted by
the necessary supporting structure. Therefore, a reason-
able value is in the middle of these extreme values, and
θ(0) = 0.42 was therefore arbitrarily chosen and for
simplicity also applied for the other initial conditions.
In the following, these values are referred to as default
parameters. The system is excited in three orthogonal
directions in order to model realistic conditions. Fur-
thermore, the sampling of the points for the following
plots start for a value of τ higher than 800 in order to
ensure that the transient part of the response has fully
decayed.

3.1 Functionality of the power take-off

The power take-off has been designed to load the pen-
dulum every half cycle, similar to the approach taken
in the concepts of [30] and [17]. In order to model
this behaviour, a power take-off term is introduced into
the equation of motion (5) and in the dimensionless
equation of motion (8). It is important to mention that
for simplicity this term does not assume any of the
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Fig. 2 Velocity of θ and the power take-off torque over time

energy losses through the process of conversion that
would occur in a real experimental setting. A suitable
mathematical representation for the nominally square
wave on/off power take-off uses the sign function or
an arctangent switching function, such as that used by
McRobb [17], for which an additional degree of tun-
ing is introduced by means of a slight radiusing on
the discontinuity in the function. The tuning parame-
ter can generally be chosen freely between 0 and 1.
However, since it was necessary to implement a power
take-off that was of a form close to that was of a square
wave, to maintain consistency of approach with pre-
vious work done, it would not be reasonable to select
a tuning parameter close to 1 since the power take-off
functionwould then be in the form of an arctan function
rather than a square wave. The tuning parameter was
therefore set to 0.01 as a compromise. Fig. 2 shows
how the rounded square wave power take-off works.
It can be seen that the velocity of θ and the rounded
square wave are anti-phased and therefore always have
opposite signs, whereby a persistent mechanical load
is presented to the pendulum, with the potential for
an efficient conversion of its kinetic energy. The con-
verted mechanical energy is a function of θ̇ (τ ) and in
order to maximise the efficiency of this conversion,
high angular velocity θ̇ (τ ) and a high take-off torque
Pθ are required. Therefore, in this study only excita-
tion frequencies close to the natural frequency have
been applied in order to be able to obtain high angular
velocities so that the energy conversion is optimised.

3.2 Bifurcation diagrams

In order to optimise the power output, an ideal torque
has to be selected which, depending on the deflection,
gives an ideal operating point for the power output.

Fig. 3 3D bifurcation diagram for the angular position θ for
three excitation frequencies (β) and the excitation amplitude (a)
as control parameter. The power take-off torque Pθ is set to zero

Therefore, in the following, the bifurcation diagrams
for the angular position θ are considered for different
excitation frequencies and amplitudes to give a broad
overview of the dynamical system. This is performed
without a power take-off and then with a switched on
power take-off. In Fig. 3, the bifurcations of the angu-
lar position θ for three different excitation frequencies
β are plotted as a function of the excitation amplitude
a without the power take-off. Within the bifurcation
diagram for β = 1.0, a stable region exists starting at
around a = 0.162. In this region, the value for θ drops
drastically and the dynamics of the system become
ordered. Due to the general softening property of this
sort of pendulum, the oscillations at an excitation fre-
quency 10 percent lower than the natural frequency at
β = 0.9 are periodic until the excitation amplitude
exceeds the value 0.18. With the highest excitation fre-
quency atβ = 1.1, it is noticeable that the stable region,
which is present for β = 1.0, is no longer existing.

Fig. 4 zooms in on the 3D bifurcation diagram of
Fig. 3 for an area around a = 0.16 for the excitation
frequency β = 1.0. This area is of particular inter-
est since the values of θ decrease here, which results
in a less effective energy conversion. For a range of
a = 0.161 to 0.164, there is a region of order within
the bifurcation diagram. This periodic regime comes
with a drop of θmax from 2.15 rad to 1.21 rad. But
even before the ordered area appears, the beginning of a
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Fig. 4 Bifurcation diagram for the angular position θ with the
excitation amplitude (a) as control parameter. The power take-
off torque Pθ is set to zero, and the excitation frequency β is set
to 1.0

bifurcation forms within the chaotic looking behaviour
starting at a value of a = 0.158. After the region of
order disappears at around a = 0.164, an area emerges
that suggest chaotic behaviour. However, within there
are areas in which the points are denser (indicated by
the rectangles), these areas indicate unstable periodic
orbits which remain up to a value of around a = 0.168.

In Fig. 5, the bifurcation diagram for the three differ-
ent excitation frequencies β and the excitation ampli-
tude a with a switched on power take-off torque is
shown. It is to be expected that the angular displace-
ment of θ decreases with an increase in the power
take-off since this directly corresponds to a greater
damping. As expected, there is a large decrease in the
motion of the bob. It can be seen that although the gen-
eral behaviour of the three frequency ranges explored
has become more periodic or quasi-periodic, see also
the Poincaré sections in Sect. 3.3, bifurcations do still
take place. For the excitation frequency β = 0.9, this
increase in the power take-off does not show a big effect
on the dynamics of the system. However, when com-
paring the 3D bifurcation diagram without and with
a power take-off the start point where θ is initially
deflected decreases from a = 0.05 to a = 0.10. The
dynamics for the frequency β = 1.0 become generally
more periodic up to a value of a = 0.18when the power
take-off is switched on. Also, the previously observed
drop of θ for the excitation frequency β = 1.0 is visible
and is starting at around a = 0.147. For the frequency
β = 1.1, the dynamics drastically change when the
power take-off is switched on. For a value of a from
0.1 to 0.135, the system behaves periodic. After the

Fig. 5 3D bifurcation diagram for the angular position θ for
three excitation frequencies (β) and the excitation amplitude (a)
as control parameter. The dimensionless power take-off Pθ is set
to 0.10

Fig. 6 Bifurcation diagram for the angular position θ with the
excitation amplitude (a) as control parameter. The power take-
off torque Pθ is set to 0.10, and the excitation frequency β is set
to 1.0

fixed point, bifurcations occur, but they are generally
more bounded compared to the bifurcations in Fig. 3.

Fig. 6 zooms in on the 3D bifurcation diagram of
Fig. 5 for a value of β = 1.0 and starting at an area
around a = 0.147. It is noticeable that the value of the
fixed point drops from θmax = 1.36 to θmax = 1.01 at
a = 0.147. After the drop, 15 limit cycles occur and
they merge into 5 limit cycles at a = 0.152. After the
excitation amplitude exceeds the value of a = 0.155,
the behaviour of the harvester changes back to a fixed
point which indicates periodic behaviour.
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Fig. 7 Poincaré sections for different excitation frequencies β.
The power take-off is set to zero, and the other parameters are
set to the default values

3.3 Poincaré sections

The Poincaré section for different excitation frequen-
cies and no power take-off is shown in Fig. 7, for the
default parameters that are defined at the beginning of
Sect. 3. The points were sampled at the local maxima
of the excitation parameter u(τ ) [2]. In order to con-
firm the dynamic behaviour at β = 0.9, it is zoomed in
on the area and the points are slowly converging with
each excitation cycle to the right top corner. Therefore,
it can be assumed that despite the long time period
(�τ = 800) that is truncated at the start, the transient
part of the response has not fully decayed for this set of
parameters. However, a large proportion of the points
can be found in the upper right corner so it can be
assumed that it is a fixed point and the other points indi-
cate the transient response that is close to completion.
Atβ = 1.1, the system showspotential chaotic dynam-
ics and at an excitation frequency of β = 1.0 the sys-
tem behaves quasi-periodically. This shows that even
small changes in the excitation frequency can change
the qualitative behaviour of the system.

After introducing the power take-off, the Poincaré
section in Fig. 8 changes drastically, as it is expected
from Fig. 5. This means that β = 0.9 is still a fixed
point, but the transient part of the response has fully
decayed compared to the plot with switched off power
take-off in Fig. 7. For β = 1.0 the dynamics change
from quasi-periodic dynamics in Fig. 7 to a fixed point.
The possible chaotic behaviour of β = 1.1 in Fig. 7
becomes quasi-periodic with a switching on of the
power take-off in Fig 8. This confirms that the overall

Fig. 8 Poincaré sections for different excitation frequencies β

the other values are set to the default values

region of chaotic dynamics or quasi-periodic dynamics
has generally decreased.

3.4 Average power output

The average dimensionless power output Pavg is a use-
ful quantity for determining the efficiency of an energy
harvester. Thus, in this section it is analysed for a vari-
ation of other parameters of the spherical pendulum.
The actual power output Pact inWatts can be calculated
using Eq. (10). The partm l2 ω2

0 comes from the nondi-
mensionalisation of the power take-off torque, and the
additional ω0 derives from the dimensionless time.

Pact = Pavg m l2 ω3
0. (10)

A comment on the average power output is made here;
firstly, the absolute value of the power is taken; in an
experiment, thiswould be achieved eithermechanically
or electrically with a rectifier, and secondly, the root
mean square dimensionless power is used to determine
the power output for a timeperiod from τ = 800− 900.
In this paper, we refer to this as the average power out-
put. The late reading of the power guarantees that the
transient part of the response has fully decayed. Since
the system is highly nonlinear with a singularity at
θ = 0, numerical errors are inevitable. One numerical
error that appeared is a stop of the calculation between
τ = 800 and 900, and thus, the displayed result of Pavg
is lower than it actually should be. Another numerical
error is where the results for the average power are dis-
proportionately too high, but these can be filtered out.
The described errors seem to be features of the numer-
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Fig. 9 Average power outputwith the dimensionless power take-
off torque Pθ as control parameter for different excitation fre-
quencies

ical calculation rather than features of the dynamics
of the system, but they have been minimised as far as
practically possible by means of suitable filtering.

The average dimensionless power output (Pavg) is
plotted against the dimensionless power take-off torque
Pθ for different values of β and shown in Fig. 9. The
other parameters are set to the default values as defined
in sect. 3.1. For β = 0.9, the most power can be
extracted until Pθ exceeds a value of 0.16. After this,
the converted power drops abruptly to a value close
to zero. When the power take-off, torque gets higher
than this the excitation at the natural frequency converts
more power and drops to zero at a value of Pθ = 0.22.
The lowest power output is extracted for β = 1.1 and
stops converting power at Pθ = 0.24. Interestingly, the
graph is somewhat different compared to those for the
other two frequencies. The graph reaches a local max-
imum for a value of Pθ = 0.22 and then drops slightly
with increasing power take-off torque before it comes
to the drastic drop to zero.

The reason why no more power can be converted
after a certain point is that the pendulumbobmovement
stops because the power take-off torque is too high. It
can be seen that this usually results in narrow operating
areas where the energy conversion is effective. These
two observations can be seen in the following plots as
well.

In Fig. 10, the average dimensionless power output
Pavg over the dimensionless power take-off torque Pθ

is shown for a variation of the excitation amplitude a.
The average power output hardly changes when chang-
ing the excitation amplitude until Pθ reaches a value
of 0.03. However, as the torque increases the graphs

Fig. 10 Average power output with Pθ as control parameter for
different amplitudes a. The excitation frequency β is set to 1.0

Fig. 11 Average power output with the dimensionless excitation
amplitude a as control parameter for different values of β

diverge from each other. Generally, it can be said that
the bigger the excitation amplitude, themore power can
be converted. However, as in the previous Fig. 9 it can
be seen that the power take-off drops abruptly to zero
when the power take-off torque gets to big. For an exci-
tation amplitude of a = 0.2, power can be converted
until Pθ = 0.215, for a = 0.16 the power conversion
ends at a value of Pθ = 0.22. The least power and
for the shortest period can be drawn from an excitation
amplitude of a = 0.1, and here, it reaches itsmaximum
at Pθ = 0.136.

In Fig. 11, the average power output is plotted
against the excitation amplitude a for different excita-
tion frequencies β. In the beginning, the plot-lines start
at a distance to each other but convergewith an increase
in the excitation amplitude. For the range shown, the
most power can be extracted with β at 0.9 followed
by 1.0 and 1.1. This corresponds with the softening
properties of the pendulum.
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Fig. 12 Average power output with the dimensionless excitation
amplitude β as control parameter for different values of a

The average power Pavg is plotted over the exci-
tation frequency β for different excitation amplitudes
a in Fig. 12. Generally, it can be said that the larger
the excitation amplitude a is, the more power can be
extracted and this is in correlation with observations
of Fig. 10. Because of the softening character of the
pendulum, the maximum value for Pavg is not at the
linear natural frequency but instead below at approxi-
mately β = 0.9. In addition, it can be seen that only
an operating range of β = 0.9 to 1.1 is feasible for the
chosen parameters. This confirms the previous limita-
tion of the excitation frequencies close to the natural
frequency of the system.

3.5 Characteristic plots

A overview of the entire system is given by the charac-
teristic plots in Fig. 13. Here, Pavg is plotted over the
excitation amplitude a and the excitation frequency β

for a variation of the power take-off torque Pθ . For the
lowest power take-off torque of Pθ = 0.05 given in
Fig. 13a, the least amount of energy can be converted.
However, the working range is given over the entire
area shown. If the power take-off torque is increased
further, the power that can be extracted also increases
for most of the areas as can be seen in Fig. 13b. The
first sign of a decrease in the operating area is visible
in the right bottom corner. Furthermore, it is notice-
able that for a range around β = 1.0 and a = 0.15
less power can be extracted. This is already expected in
the bifurcation diagrams Figs. 3, 4 and 5, as there the
angle θ is smaller, and thus also less velocity is to be
expected which consequently leads to less energy that

can be converted. This phenomenon can also be seen in
the following two plots in varying degrees of intensity.

In Fig. 13c, the power take-off torque is increased to
a value of 0.15 and it shows that the converted power
continues to increase as well, but it should be noted that
the working range of the pendulum energy harvester is
greatly reduced. This means that in regions where no
power can be extracted, the excitation amplitude is too
low and/or the excitation frequency is unfavourable to
overcome the load applied by the power take-off torque,
and as a result the pendulum bob does not move and
therefore no power can be extracted out of the system.
Furthermore, the area with the lower power output in
the middle of the effective operating area at around
a = 0.16 and β = 1.0 increased further in size.

In the last Fig. 13d, the power take-off torque is
further increased to a value of 0.2. This results in a
further restriction of the operation range of the energy
harvester. It is no longer possible to convert energy
when the excitation amplitude is too low. Likewise is
it not possible any more to convert energy for the exci-
tation frequencies below β = 0.95. This shows that
the softening effect of the pendulum slowly disappears
with an increase in the power take-off torque. However,
within the boundaries where energy can be converted,
more energy is converted compared to all the follow-
ing plots. Like before, the area with the lower power
output at around a = 0.17 and β = 1.025 increased
further in size, but at the same time drifted slightly in
the direction of the top right hand corner.

3.6 Optimisation process

As can be seen from the previous sections, the operat-
ing range and the effectiveness of the energy harvesting
are highly dependent on the excitation amplitude, exci-
tation frequency and the power take-off torque. Thus, a
flow chart is presented here in order to find the optimal
operation point, as shown in Fig. 14. After the start, the
parameters such as initial conditions, damping, mass
and length are sensibly selected based on the given sys-
tem. In order to get a first overview, we will now take
a closer look at the 3D bifurcations as shown in Fig. 3
and 5. In the following, a decision is made as to which
parameter should be preselected for further calculation.
In an experimental setting, these parameters would be
dictated by the design of the construction and by the
level of excitation at which the system operates. After
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Fig. 13 Characteristic plots for β over a for the average power output Pavg for different power take-off torques Pθ

the decision on the parameters is made, two sub-loops
are formed. On the left sub-loop, the power take-off
torque has been chosen. This, for example, is the case
when the load generator has a pre-defined torque that
it will apply. In order to find the ideal operation point
for the selected torque, we need to plot the Pavg over
a given in Fig. 11 and Pavg over β as can be seen in
Fig. 12. From these plots, optimal excitation amplitudes
and frequencies are chosen.

The right sub-loop can be chosen if the excitation
amplitude and excitation frequency of the systems are
known. Then, Pavg is plotted over Pθ referring to Fig. 9
and 10 for different excitation values close to the value

previously selected, and this results in the selection of
an ideal torque.
In the following, it is checked whether it is iterated
enough in order to get optimal operating parameters.
If another iteration cycle is needed, this decision gives
the opportunity to jump back to the selection of the
starting conditions. When the process is complete, the
ideal points for the system can be selected. These are
then compared with the characteristic plots, see Fig. 13
for details, in order to double-check the results and
avoid errors, so it is possible to return to the beginning.
If everything is correct, the process stops and so the
experiments can be initiated with the selected values.
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Fig. 14 Optimisation process flow chart

4 Conclusions

The aim of this paper consists of two parts: firstly, it
has been the aim to provide a theoretical analysis of
a omnidirectional pendulum energy harvester in order
to remove the limitations that previous simple pendu-
lum harvesters have operated under. Additionally, the
second aim of this work has been to propose an optimi-
sation procedure to select the ideal parameters of the
pendulum for an experimental programme intended to
lead to an optimised pre-prototype.

The energy harvester presented here has then been
investigated for its dynamic behaviour using bifurca-
tiondiagrams andPoincaré sections. In general, the sys-
tem behavesmore periodicallywhen power is extracted
from it. The amount of power that can be realised
has been investigated by plotting the average power

for various parameters of the pendulum. These plots
show the influence of the power take-off torque, exci-
tation amplitude and excitation frequency on the aver-
age power output. Additionally, the results also show
that the operating ranges strongly depend on these vari-
ables and that the energy conversion can stop abruptly if
the parameters are not chosen with caution. In order to
show the operating ranges of the omnidirectional pen-
dulum, energy harvester characteristic diagrams have
been created. In general, it can be said that the average
power output increases with an increasing torque, but
the operation range decreases likewise. Finally, a flow
chart has been created that illustrates the selection of
an ideal operating point depending on the predefined
conditions.

Further research will focus on the experimental side
of the problem. An analytical evaluation of the prob-
lem using the asymptotic approach of the perturbation
method of multiple scales is underway.
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