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Abstract The escape dynamics of a damped sys-
tem of two coupled particles in a truncated potential
well under biharmonic excitation are investigated. It is
assumed that excitation frequencies are tuned to the
modal natural frequency of the relative motion and
to the modal frequency of the centre of mass on the
bottom of the potential well. Although the escape is
essentially a non-stationary process, the critical force
strongly depends on the stationary amplitude of the
relative vibrations within the pair of masses. The char-
acteristic escape curve for the critical force moves up
on the frequency-escape threshold plane with increas-
ing relative vibrations, which can be interpreted as a
stabilizing effect due to the high-frequency excitation.
To obtain the results, new modelling techniques are
suggested, including the reduction in the effect of the
high-frequency excitation using a probability density
function-based convolution approach and an energy-
based approach for the description of the evolution of
the slow variables. To validate the method, the cou-
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pled pair of particles is investigated with various model
potentials.
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1 Introduction

Escape from a potential well is a classic problem aris-
ing in various fields of natural science and engineer-
ing [1–5]. A wide range of physical phenomena from
celestial mechanics to the dynamics of molecules has
been investigated in the literature, including topics such
as energy harvesting [6], transient resonance dynamics
of oscillatory systems [7,8], the physics of Josephson
junctions [9] and even the capsize phenomenon of ships
and vessels [3,10]. Another important topic relating to
the escapephenomenon is the dynamicpull-in inmicro-
electromechanical systems (MEMS) [11–16].

The first investigations of the forced escape phe-
nomenon started in 1940 by Kramers regarding the
thermal activation of chemical reactions [17,18].
Although much research has taken place in the last 80
years, one still encounters important unresolved issues
when considering the escape process [19].

For constant forcing, escape may occur because of
the slow variation of system parameters and the con-
sequent bifurcations of the steady-state regimes of the
response [2,11,12].

Paper [3] addressed the escape dynamics of har-
monically forced and damped particles in three model
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potential wells. To give an analytic expression for the
escape criterion, the steady-state response of the par-
ticle was used, although this criterion is not exact and
empirical corrections are performed when necessary.

A common feature of the escape phenomenon is
numerically demonstrated in paper [3]. For the inves-
tigated potentials, the critical forcing amplitude curve
has a sharpminimumvalue at a frequency value smaller
than the frequency of small oscillations in the poten-
tial well. Similar escape curves are found in papers
investigating the problem of dynamic pull-in inMEMS
devices [14,15].

Further similar patternswere foundwhen investigat-
ing the safe basins of attraction for several dynamical
systems [20,21]. The sharp minimum value found in
many papers allows the reader to formulate a conjecture
about the mentioned property of the curve as a typical
characteristic of the escape phenomena. The conjec-
ture was further examined for different model poten-
tials under harmonic forcing in the papers [22,23].

These papers addressed the escape dynamics of the
forced particle in conditions of 1:1 resonance. The tran-
sient dynamics of the system can thus be explored
in terms of the slow flow on the resonance manifold
(RM). Exploration of special trajectories on the RM
corresponding to different initial conditions (IC) allows
for the identification of two distinct mechanisms of
approaching the escape thresholdwhile varying the sys-
tem parameters. In the first mechanism, the maximum
mechanism (MM), the phase trajectory only achieves
the boundary of the potential well. In the second mech-
anism, the saddle mechanism (SM), the special trajec-
tory achieves the saddle point on the RM. Then, the
response amplitude drastically grows, and the particle
escapes. The combination of these two mechanisms
provides an understanding and prediction of the sharp
minimum on the frequency-amplitude plane without
any empirical corrections. This approach somewhat
resembles recent studies of transient phenomena in sys-
tems of coupled oscillators in terms of limited phase
trajectories (LPT) [24,25].

In the present paper, amore complex situation is con-
sidered. A system of two coupled particles (cf. Fig. 1a)
is excited by a sum of two harmonic components. The
first one corresponds (in the linear case) to the internal
mode of the coupling corresponding to their relative
oscillations. The second resonance is close to the 1:1
resonance for the centre of mass of the system. First,
after describing the governing equations of the system

(Sect. 2), the reduction in the degrees of freedom of the
system follows (Sect. 3.1). Then, the arising equations
are further simplified using the probability-based con-
volution to calculate the effective potential (Sect. 3.2).
Subsequently, further simplification is achieved by the
averaging technique to obtain equations for the slow-
flow variables (Sect. 3.3). After giving an explicit solu-
tion of the slow-flow equations, the presentation of
some numerical results and the discussion of the results
follows (Sect. 4). In Sect. 5, the results presented in the
paper are summarised.

2 Description of the model

The setting investigated in the paper is depicted in
Fig. 1a. Two bodies of mass m1 and m2 coupled with a
linear spring of stiffness k and a linear damper with the
damping coefficient c are located in the corresponding
potential wells V1(x) and V2(x). m1 is excited by the
superposition of two harmonic forces

A1(t) + A2(t) = A1 sin(ω1t + β1) + A2 sin(ω2t + β2),

with the amplitudes A1, A2, the excitation frequencies
ω1, ω2 and the phases β1, β2. The potentials act in a
way that both bodies have the same linearized eigen-

frequency ω0 :=
√

V ′(x=0)
m , i.e., V2(x) = m2

m1
V1(x).

For example, the truncated parabolic potential well
has the following form:

V1(x) =
⎧
⎨
⎩

−V0 + m1ω
2
0

2 x2 |x | ≤ 1
ω0

√
2V0
m1

0 else,

V2(x) =
⎧
⎨
⎩

−m2
m1

V0 + m2ω
2
0

2 x2 |x | ≤ 1
ω0

√
2V0
m1

0 else.
(1)

The equations of motion are given by

[
m1 0
0 m2

] [
ẍ1
ẍ2

]
+

[
c −c

−c c

] [
ẋ1
ẋ2

]
+

[
k −k

−k k

] [
x1
x2

]

+
[
V ′
1(x1)

V ′
2(x2)

]
=

[
A1 sin(ω1t + β1) + A2 sin(ω2t + β2)

0

]
, (2)

whereV ′(x) := ∂V (x)
∂x . Using the following dimension-

less values
τ = ω0t, dτ = ω0dt,

d

dt
= ω0

d

dτ
,

d2

dt2
= ω2

0
d2

dτ 2
,

q = ω0

√
m1

2V0
x,

d

dx
= ω0

√
m1

2V0

d

dq
,
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(a) (b)

Fig. 1 The basic model of the two particle system

�i = ωi

ω0
i ∈ {1, 2}, Fi = Ai

ω0
√
2m1V0

i ∈ {1, 2} (3)

and the dimensionless potentialU0(q) (see Eq. 9) with

the notation q̇ = d
dτ q andU ′

0(q) = d
dqU0. Equation (2)

can be rewritten in dimensionless form too, although
the signs of the masses remain in the equations for clar-
ity:
[
m1 0
0 m2

] [
q̈1
q̈2

]
+

[
C −C

−C C

] [
q̇1
q̇2

]

+
[
K −K

−K K

] [
q1
q2

]
+

[
m1U ′

0(q1)
m2U ′

0(q2)

]

=
[
m1F1 sin(�1τ+β1)+m1F2 sin(�2τ+β2)

0

]
,

(4)

where C := c
ω0

and K := k
ω2
0
.

To decouple the equations from each other, a new
pair of coordinates, (y1, y2) is introduced for the posi-
tion of the centre of gravity and for the relative dis-
placement of the two bodies, respectively:

y1 := m1q1 + m2q2
m1 + m2

, y2 := q2 − q1. (5)

Then,
[
q1
q2

]
=

[
1 − m2

m1+m2

1 m1
m1+m2

] [
y1
y2

]
, (6)

which substituted back into (4) results in

ÿ1 + μU ′
0 (y1 − (1 − μ)y2) + (1 − μ)U ′

0 (y1 + μy2)

= μ (F1 sin(�1τ + β1) + F2 sin(�2τ + β2)) , (7)

ÿ2 + C

m
ẏ2 + K

m
y2 +U ′

0 (y1 + μy2) −U ′
0 (y1 − (1 − μ)y2)︸ ︷︷ ︸

small coupling term

= −F1 sin(�1τ + β1) − F2 sin(�2τ + β2), (8)

with 1
m := 1

m1
+ 1

m2
and μ := m1

m1+m2
.

3 Model reduction

The equations of motion are too complicated in their
current form for further analytic investigations. In the
following, some assumptions are introduced regarding
the properties of the problem. To concentrate on the
effects caused by the coupled bodies in contrast to a sin-
gle body, the truncated, purely quadratic potential (1) is
mainly investigated; however, most of the calculations
are presented in a general form so that the procedure
described below is applicable to arbitrary potentials.

3.1 Reduction in the degrees of freedom

In the following, F2 � F1 and �2 � �1 will be
assumed; furthermore, C is assumed to be not small
and K � 1. The approach described in [26,27] can
be applied to simplify the equations. The asymptotic
behaviour of the solution can be approximated with
a small error by solving Eq. (8), neglecting the small
coupling term in Eq. (7).

Since the action of the potential well on y2 is always
present in the coupling term only, the reduction of (8)
to a damped, linear ODE of second order is possible
for arbitrary potentials.
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3.1.1 Example–truncated parabolic potential

In dimensionless form, the truncated parabolic poten-
tial takes the following form

U0(q) =
{

− 1
2 + q2

2 |q| < 1

0 else.
(9)

Neglecting the coupling term and solving the remain-
ing linearODE for y2 would be possible here.However,
in the above simple case, it turns out to be a slightly
more accurate heuristic for the solution of (8), if only
the case is considered when both of the particles are
inside of the potential well. Then,

ÿ2 + C

m
ẏ2 +

(
K

m
+ 1

)
y2

= −F1 sin(�1τ + β1) − F2 sin(�2τ + β2). (10)

Interesting effects appear when �2 is chosen close to
the resonance frequency of the relative movements of
the particles, i.e.,

�2 ≈
√

K

m
+ 1. (11)

Then, the effect of F1 compared to F2 is negligible, and
the particular solution of equation (8) can be written as

y2,p(τ ) = y0 sin(�2τ + γ2), (12)

with the vibration amplitude

y0 ≈ F2√
�4

2 +
[
−2

( K
m + 1

) + C2

m2

]
�2

2 + ( K
m + 1

)2 ,

(13)

and with the phase shift, γ2 for which the explicit
expression is omitted here, because it is not required
for further analysis.

Due to the non-small damping, the homogeneous
solution y2,h(τ ) decays rapidly, so its effect on the
behaviour of the solution is also negligible.

y2(τ ) = y2,h(τ ) + y2,p(τ ) ≈ y2,p(τ ). (14)

Equation (7) can now be simplified by the elimination
of the variable y2(τ ).

It should be noted that the method is applied only
to the simplest case of truncated quadratic potential
here, but according to [26,27], it is applicable for all
kinds of nonlinear potentials as well when the coupling
between the particles is much stronger than the effect
of the potential on their relative movements.

3.2 Effective potential: PDF Approach

After the approximation, applied above, there are three
different dimensionless time scales in equation (7):

• the very fast time scale includes the fast parametric
excitation U ′

0(y1(τ ),�2τ + β2) and the fast force
excitation F2 sin(�2τ + β2). In the next step, this
time scale will be eliminated;

• in addition, the fast time scale including the motion
of the centre of mass of the bodies, y1(τ ) and the
excitation F1 sin(�1τ + β1) is also present in the
dynamics of the system;

• modulations in the vibration amplitude of the centre
of gravity, A (Eq. 32) and its phase difference from
the excitation F1 sin(�1τ + β1) can be described
by the slowest time scale.

To distinguish the last two time scales from each other,
the variable t := ετ is altered to denote the slow time,
whereas the fast time is denoted by τ .

To eliminate the fastest time scale, some changes in
the modelling approach are helpful. Instead of always
considering the the exact position of the bodies, one
suggests a statistical approach in which a particle has a
probability to be found at an exact position. The move-
ment of the bodies around their common centre of grav-
ity, y1, is sinusoidal, so the corresponding cumulative
distribution function (CDF) is given by the arcsine dis-
tribution

R(x) = 2

π
arcsin(

√
x) = arcsin(2x − 1)

π
+ 1

2
, x ∈ [0, 1]. (15)

The resulting probability density function (PDF) is

ρ(x) =
{

1
π

√
x(1−x)

if x ∈ (0, 1)

0 else.
(16)

After appropriate scaling and normalisation of this
PDF, one obtains the density distribution for the bodies
depending on y0 and y1(t)

M1 := m1

m1 + m2
, M2 := m2

m1 + m2
,

ρ1(x, y1; y0) =
⎧
⎨
⎩
M1

1
π
√

(x−(y1−M2 y0))(y1+M2 y0−x)
if real

0 else,

ρ2(x, y1; y0) =
⎧
⎨
⎩
M2

1
π
√

(x−(y1−M1 y0))(y1+M1 y0−x)
if real

0 else,

ρ(x, y1; y0) = ρ1(y1, y0, x) + ρ2(y1, y0, x). (17)

An example for ρ(x, y1; y0) is depicted in Fig. 1b. The
resulting force acting on the center of gravity can now
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Fig. 2 Original and effective quantities describing the truncated quadratic potential with m1 = m2 = 1 and y0 = 0.3

be calculated through the following integration:

S(y1) = Ũ ′
0(y1; y0) =

∫ ∞

−∞
U ′
0(x)ρ(x, y1; y0)dx,(18)

from which the effective potential Ũ0(y1; y0) is
obtained through integration with the condition

Ũ0(−∞; y0) != 0.
In general (for arbitrary potentials), S(y1) cannot be

calculated in an analytically closed form. In the follow-
ing, the calculations are left generic, but for a specific
one, the used quantities are determined numerically.
(For the truncated quadratic potential, the integrals can
be evaluated analytically, but it is quite elaborate and
does not provide any significant advantage.) A possible
way to handle the problem is piecewise spline fitting on
a fine-resolved discrete data set. This step is not par-

ticularly complicated when using MATLAB ®1. For
functions calculated in this way, see Fig. 2.

3.3 Obtaining differential
equations for the “slow-flow” variables

One may be interested in the behaviour of the solu-
tion if the excitation frequency is close to the natural
frequency determined by the potential well. Using the
above assumption, Eq. (7) may be rewritten as follows:

ÿ1 + y1 = − (S(y1) − y1)︸ ︷︷ ︸
S∗(y1):=

+μ(F1 sin(�1τ + β1)

+F2 sin(�2τ + β2)). (19)

Here, S and S∗ also depend on the parameters y0, m1

and m2. Equation (19) is handled as follows. It is close

1 https://www.mathworks.com/products/new_products/
release2017a.html.
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to a conservative one

ÿ1 + Ũ ′
0(y1) = μF(τ ),

F(τ ) = F1 sin(�1τ+β1)+F2 sin(�2τ + β2),

(20)

with F1 = O(ε) and F2 
= O(ε). The unperturbed
equation enables the conversion to the variables char-
acterizing the total energy of the system and the corre-
sponding phase:

E = 1

2
ẏ1

2 + Ũ0(y1), (21)

θ =
∫ y1

0

dγ

±
√
2E − 2Ũ0(γ )

− τ. (22)

The choice of the sign in the last equation is determined
by the sign of ẏ1.

Although F(τ ) is not small due to the term F2, its
effect on the energy of the system is small because
�2 � 1. The governing equations of the new variables
in the perturbed system are slow:

Ė = ±μ

√
2E − 2Ũ0(y1)F(τ ), (23)

θ̇ = −μF(τ )

∫ y1

0

dγ

2E − 2Ũ0(γ )
. (24)

These equations are suitable for averaging with respect
to the explicit time [28,29]. The corresponding equa-
tions of the first-order approximation can be formally
written as follows:

Ė = ±μ

〈√
2E − 2Ũ0F(τ )

〉
, (25)

θ̇ = −μ

〈
F(τ )

∫ y1

0

dγ

2E − 2Ũ0(γ )

〉
, (26)

where
〈〉
denotes averaging with respect to explicit

time. However, to evaluate these equations, the func-
tion Ũ0(y1) has to be expressed explicitly in terms of
the new variables (E, θ). In general, it is impossible.
Thus, an approximate heuristic approach is applied for
obtaining analytic predictions.

Let us suppose that the solution of (20) can be
approximated by almost harmonic oscillations:

y1 = A(t) sin(�1τ + β1 + �(t)), (27)

ẏ1 = v̂1(A(t)) cos(�1τ + β1 + �(t)). (28)

Here, A(t) is the amplitude of the oscillations and�(t)
is the phase shift. Note that these variables depend on
the energy of the system,which changes slowly accord-
ing to (23–24). According to the transformation (21–
21), we can replace the total energy with the level of

the potential energy at the maximal deflection, i.e. at
y1 = A:

E = Ũ0(A). (29)

This means that the time derivative of the energy can
be calculated to the first-order approximation through
the time derivative of the amplitude:

Ė = Ũ ′
0(A) Ȧ. (30)

However, the maximal velocity is achieved as the
system passes through the minimum of the potential
energy. Hence, the amplitude of the velocity can be
calculated as follows:

v̂1(A) =
√
2Ũ0(A) − 2Ũ0(0). (31)

Inserting Eqs. (30) and (31) into (25), the following
governing equation for the amplitude is obtained:

Ȧ=μ

√
2Ũ0(A)−2Ũ0(0)

Ũ ′
0(A)

〈
F(τ ) cos(�1τ+β1+�(t))

〉
.

(32)

Requiring the consistency of the transformation (27)
and (28), the following equation for the phase shift is
obtained:

A(�1 + �̇) = A cos2(�1τ + β1 + �(t))

+Ũ ′
0(A sin(�1τ + β1 + �(t)))

× sin(�1τ + β1 + �(t))

−μF(τ ) sin(�1τ + β1�(t)). (33)

Assuming that the low excitation frequency is close to
the eigenfrequency of the system on the bottom of the
potential well, a small discrepancy can be introduced:

δ = �1 − 1 = O(ε). (34)

Then, Eq. (33) can be rewritten as follows:

A�̇ = −δA − A sin2(�1τ + β1 + �(t))

+Ũ ′
0(A sin(�1τ+β1+�(t))) sin(�1τ+β1�(t))

−μF(τ ) sin(�1τ + β1�(t)). (35)

In addition, according to the introducednon-dimensional
parameters Ũ ′

0(y)|y→0 = y. Hence, the second and
third terms in this equation can be combined:

A�̇ = −δA + S∗(A sin(�1τ + β1 + �(t)))

× sin(�1τ + β1 + �(t))

−μF(τ ) sin(�1τ + β1�(t)),

S∗(y1) = S(y1) − y1 = Ũ ′
0(y1) − y1. (36)
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In general, the second term in this equation is not small.
Hence, averaging of this equation is not completely jus-
tified. Nevertheless, we replace Eq. (36) with the aver-
aged one and check the quality of this approximation
by comparing its results with the results of the direct
numeric simulations of the full system. The averaged
Eq. (36) is:

�̇ = −δ+ω∗(A)−μ

A

〈
F(τ ) sin(�1τ+β1 + �(t))

〉
,

(37)

with

ω∗(A) := ω(A) − 1, (38)

where ω(A) is the amplitude-dependent eigenfre-
quency of the potential. Based on [1], the time period
of a particle’s oscillation with mass m and with the
given total energy E in a potential well Ũ (x) without
excitation, i.e. having a conservative system, can be
calculated as follows:

T (E) = √
2m

∫ x2(E)

x1(E)

dx√
E −U (x)

. (39)

Here, x1 and x2 are the energy-dependent maximal dis-
placements in the potential with the given total energy
of the particle E . Then,

ω(A) = 2π

T (E(A))
. (40)

The introduced termω∗(A) describes the effect of non-
linearity on the frequency of free oscillations in the
potential well. For several examples of the potential,
this function is displayed in Figs. 2d and 7d.

The termsdescribing the averaged effect of the exter-
nal excitation can be easily calculated:
〈
F(τ ) cos(�1τ + β1 + �(t))

〉
= −μ

2
F1 sin(�), (41)

〈
F(τ ) sin(�1τ + β1 + �(t))

〉
= μ

2
F1 cos(�). (42)

Inserting (41) into Eqs. (32) and (37), the final form of
the first-order approximation is obtained:

Ȧ = −μ

2

√
2Ũ0(A) − 2Ũ0(0)

Ũ ′
0(A)

F1 sin(�), (43)

�̇ = −δ + ω∗(A) − μ

2

F1
A

cos(�), (44)

with the initial conditions

A(0) = A0,

�(0) = �0.

The initial values of y1,0 and ẏ1,0 can be converted to
find �0 and A0. To achieve this, consider the solution
of the linearized differential equation of the center of
mass neglecting the small right-hand side

ÿ1 + y1 = 0, (45)

y1(0) = y1,0, (46)

ẏ1(0) = v̂1,0. (47)

Then, the solution is

y1(τ ) = A0 sin(τ + γ1), (48)

ẏ1(τ ) = A0 cos(τ + γ1), (49)

Comparing these equations to (27 –28) and using the
initial conditions (46–47) for τ = 0, one obtains

A0 =
√
y21,0 + v̂21,0, (50)

�0 = arctan

(
y1,0
v̂1,0

)
− β1. (51)

Due to the linearization, the conversion is exact only in
the case of a purely quadratic potential; still, for smaller
deviations from the quadratic potential, it gives a rea-
sonably good approximation of the initial conditions.

3.4 Solution by integrating factors

It is possible to write the solution to Eqs. (43)–(44) in
a closed form with the use of integrating factors. Let
us define

g(A) := v̂1(A)

U ′(A)
=

√
2(U (A) −U (0))

U ′(A)
. (52)

Dividing Eq. (44) by Eq. (43) and reorganising the
terms, one obtains

δ − ω∗(A) + μ
F1
2A

cos�
︸ ︷︷ ︸

=:p(A,�)

−μ
F1
2
g(A)

︸ ︷︷ ︸
=:q(A,�)

d�

dA
= 0. (53)

An appropriate integrating factor μ(A) is given by
μ(A) := e

∫
f (A)dA with

f (A) := 1

q

(
∂p

∂�
− ∂q

∂A

)
= 1

g(A)

(
1

A
− g′(A)

)
.

(54)

Then,

μ(A) = e
∫ 1

g(A)A dA

g(A)
. (55)
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(a) (b) (c)

(d) (e) (f)

Fig. 3 Structure of the resonance manifold (RM) [22] for differ-
ent values of F1 and �1 with the parameters m1 = m2 = 1 and
y0 = 0.2. The red line represents the limiting phase trajectory
(LPT). The unaffected part of the potential [−1 + y0

2 , 1 − y0
2 ]

can be observed by the LPT’s straight alignment. The effective
potential has, however, a nonlinear force that requires aminimum
amount of exciting force to let the escape happen

Multiplying (53) byμ(A), the partial derivatives of the
first integral C(A, �) can be determined
∂C(A, �)

∂A
=

(
δ − ω∗(A) + μ

F1
2A

cos�

)
μ(A),

∂C(A, �)

∂�
= −μ

F1
2
g(A)μ(A) sin�. (56)

The first integral is then

C(A, �) = μ
F1
2
e
∫ 1

g(A)A dA cos�

+
∫ (

δ − ω∗(A)
) e

∫ 1
g(A)A dA

g(A)
dA, (57)

which is due to its complexity being hardly solvable
for any given U0. Although this is an analytic solution
in a closed form, its evaluation is even more elaborate
than direct numerical integration. Next, we present the
numerical results by direct simulation.

4 Numerical results and discussion

Equations (43)–(44) are easy to solve numerically. The
structure of the resonance manifold is shown in Fig. 3
for the parameter values m1 = m2 = 1 and y0 = 0.2.

Figures 4 and 5 show the critical force over the exci-
tation frequency diagram for the case of the truncated
quadratic potential with a relative amplitude of the bod-
ies of y0 = 0.2 for zero initial conditions, which corre-
sponds to the LPT. Given the initial conditions q1, q̇1,
q2 and q̇2 for the particles, one can determine y1,0 and
ẏ1,0 and consequently A0 and �0 as well. This allows
us to investigate the escape scenarios for nonzero ini-
tial conditions as well. For nonzero initial conditions,
the diagram of the critical force over the excitation fre-
quency changes its shape.

Figure 6 shows a typical scenario when the escape
cannot occur, although a single body would escape for
any positive excitation force, as the excitation takes
place exactly on the natural frequency of the system.
However, the nonlinear boundaryof the effective poten-
tial does not allow such an escape scenario.

Figure 7 shows the graphs of some effective quanti-
ties for the reduced system in the case of asymmetrical
mass distribution, m1 = 2m2 = 2 compared to the
original graphs derived from the truncated quadratic
potential.
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Fig. 4 �1–Fcrit–diagram of the model-based prediction (red
line) and the numerically simulated original two-body system
(markers) for y0 = 0.2 (by using K = 799.5,C = 0.1, �2 =
40, β2 = 0 and F2 = 1.6), m1 = m2 = 1 and A0 = 0. β1 = 0–
green circles, β1 = π

2 –blue squares. A shift to the left in the dia-
gram’s right branch can be observed due to the relative motion
of the two bodies to each other. Fcrit has been re-scaled to unit
mass, i.e., Fcrit = F1,crit

m1+m2
. (Color figure online)

Figure 8 depicts the�1− Fcrit-diagrams for the sys-
tem presented in Fig. 7with two different starting phase
difference values, β1 = 0 and β2 = π

2 .

4.1 Explanation of the stabilizing effect

To explain the stabilizing effect of the high-frequency
excited coupled bodies, note that in Eq. (43), the energy

0 50 100 150 200 250 300
 (time)
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-0.5
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0.5

1

1.5

A
m

pl
itu

de

y1 from 2-body simulation

Corrected amplitude

Fig. 6 Time-amplitude diagram (black line) and direct integra-
tion of the two-particle system (red line). (Color figure online)

transferred to the system is positive and thus increases
the amplitude, consequently leading to escape if the
phase of the excitation does not differ bymore than±π

2
from the phase of the motion. However, a phase differ-
ence larger than±π

2 means that the system is delivering
work to the exciter, and so A decreases.

Due to the progressive or degressive characteristic
of the force resulting from the underlying potential,
ω(A) is either amonotonously increasing or decreasing
function. Therefore, for increasing A, the body swings
faster or slower, accumulating an increasing phase dif-
ference from the phase of the excitation. If this differ-
ence reaches π

2 or−π
2 , the energy transferring from the

excitation to the energy of the body turns over to the
energy transferring from the body to the exciter, and no
escape occurs, at least for the moment.
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Fig. 5 �1–Fcrit–diagram of the model-based prediction (red
line) and the numerically simulated original two-body system
(markers) for y0 = 0.2 (by using K = 799.5,C = 0.1, �2 =

40, β2 = 0 and F2 = 1.6), m1 = m2 = 1 and A0 = 0.5. Fcrit
has been re-scaled to unit mass, i.e., Fcrit = F1,crit

m1+m2
. (Color figure

online)
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Fig. 7 Original and effective quantities describing the truncated quadratic potential with m1 = 2, m2 = 1 and y0 = 0.3
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Fig. 8 �1–Fcrit–diagram of the model-based prediction (red
line) and the numerically simulated original two-body system
(markers) for y0 = 0.3 (by using K = 799.5,C = 0.1, �2 =

34.645, β2 = 0 and F2 = 1.559), m1 = 2, m2 = 1 and y1,0 =
−0.1. Fcrit has been rescaled to unit mass, i.e. Fcrit = F1,crit

m1+m2
.

(Color figure online)
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In the case of the truncated quadratic potential, the
degressivity of the effective eigenfrequency has a very
remarkable explanation. Once one of the bodies gets
out of the potential well, a restoring force is no longer
acting on it; thus, the restoring force on the center of
mass drops to half of the original value (form1 = m2).
This results in softening spring characteristics as the
bodies spend increasingly more time outside of the
potential well for the increasing oscillation amplitude
of the center of mass of the bodies, A.

4.2 Some further remarks

It can also be noted that the convolution operator used
to determine the effective potential increases the regu-
larity of the effective potential function. The kernel of
the integral, the PDF of the arcsin distribution (16), is
a Hölder continuous function with the exponent of the
Hölder condition α = 0.5.

In the limiting case, when y0 → 0, the problem
reduces itself to a single body problem, which has
been investigated by many authors. This agrees with
themodel, since the integral kernel tends to a Dirac dis-
tribution for y0 → 0 by having a PDF, whose integral
is by definition 1 and whose support’s length tends to 0.

5 Conclusions

The dynamics of a couple of strongly coupled particles
in a potentialwell under biharmonic resonant excitation
have been analytically and numerically investigated.
Under the assumption of non-small damping, the sys-
tem’s dynamics have been reduced to one degree of
freedom describing movements of the system’s cen-
tre of mass in the modified effective potential well,
which takes into account the smoothened probabilis-
tic relative vibrations of the particles. The subsequent
application of the averaging procedure for the system
being close to a conservative one has enabled very accu-
rate prediction of the escape behaviour, especially for
small values of the critical excitation force. Both the
analytic and numerical results clearly show the stabi-
lizing effect of the high-frequency relative movements
of the pair of particles on their escape behaviour. This
effect increases with increasing amplitude of the rela-
tive vibrations. Although the obtained analytic results
demonstrate excellent agreement with the results of

direct numerical simulations of the full system, the
investigated problem and the applied approach open
a whole class of theoretical and practical questions that
must be addressed in the future.

Do twobodieswith high-frequency excitation always
stabilise the escape behaviour? If not, for what kind
of potentials does this not occur? What happens to
potentials where ω(A) is not monotonous? To what
extent could the probability-based modelling approach
be applied to describe high-frequency excited physical
systems? How large is the uncertainty of the solution
caused by this approach? Is there a way to synthesize
potentials to shape the form of the Fcrit(�1)-curve?

The authors hope that these open questions can
attract the attention of readers to the fascinating prob-
lemsof escapedynamics for groups of coupledparticles
and even more complex structures, opening a broad
field for analytic investigations and creative applica-
tions.
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