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Abstract This paper studies the rumor propagation
model with heterogeneous networks in a multilingual
environment. Firstly, a rumor propagation model with
two language spreaders, in which the immunologic
mechanism is considered in the ignorant, is proposed
on heterogeneous networks. Secondly, the basic repro-
duction number and the dynamic behaviors are ana-
lyzed by using the next-generation matrix method and
Lyapunov stability theory, respectively. Moreover, two
control strategies are designed to effectively suppress
the spread of the rumor. The one is continuous control
strategy. By applying real-time control to the spread-
ers, the rumor spreading time can be greatly reduced
and the rumor can die out in a short time. The other is
event-triggered impulsive control strategy, which can
effectively reduce the consumption of resources and
ensure the extinction of the rumor. Finally, the correct-
ness of theoretical analysis and the feasibility of control
methods are verified by numerical simulations.
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1 Introduction

The rumor is unconfirmed information of public opin-
ion, which greatly affects people’s work and life. With
the rapid development of Internet information technol-
ogy, rumor propagation is no longer limited to word of
mouth, but relies on the newmedia of the Internet, such
as BBS, SMS, Microblog, QQ, WeChat, Twitter and
other social network platforms. For the past fewyears, a
number of emergencies caused by rumors have erupted
in China, which have brought huge economic losses to
the country and seriously disturbed people’s life order.
For example, in 2003, the rumor that banlangen could
cure SARS caused residents in many cities around the
country to frantically buy up banlangen, which caused
a great social panic. In the 2011 nuclear disaster in
Japan, the rumor that iodized salt could protect against
radiation caused the run on salt. These rumors seriously
destroyed the social order and caused social panic.With
the advent of information dissemination, there aremore
and more emergencies caused by rumors. Therefore, it
is very significant to study and master the law of rumor
propagation in the new era, which can help the govern-
ment department to prevent and control rumors.

Since the form of rumor transmission is similar to
disease transmission, based on the disease transmis-
sion model, the rumor propagation model is estab-
lished. In the basic rumor propagationmodel, the popu-
lation is divided into three categories: Ignorants (people
who do not know the rumors), Spreaders (people who
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know and spread rumors) and Removers (people who
know rumors but do not spread them). Early studies on
rumor propagation took the classical Daley–Kendall
(DK) model in [1,2] and Maki–Thomson (MT) model
in [3] as examples, which were applicable for the phe-
nomenon of rumor propagation in small-scale social
networks with direct contact. In the DK model, the
authors assumed that the rumor was spread through
the contact of rumor spreaders with other groups in the
population. Maki and Thomson [3] modified the DK
model and proposed that rumors were spread through
two-way contact between the rumormongers and other
people in the crowd, thus deriving the MT model.

In large-scale social networks, the probability of
rumors spreading among individuals is diverse, and the
dynamic behaviors of rumors spreading are also var-
ied. Therefore, the study of rumors spreading mainly
explores the laws between them. Zanette [4] was the
first one to apply the theory of complex networks to
analyze the rumor propagation, and then he studied the
MT model with small-world network under dynamic
and static conditions in [5], in which he found that the
network structure would have a momentous impact on
rumor propagation.Moreno [6] studied the rumor prop-
agation in homogeneous and heterogeneous networks,
respectively, and gave the mean field equation of rumor
propagation in homogeneous and scale-free networks.
Later, there are an increasing number of scholars [7–
11] to study the rumor spreading issues in complex net-
works.Kawach [12] pointed out that thememorymech-
anism of the stifler would affect the spread of rumors
and change the spread rate in the process of spread-
ing. Zhao [13] studied the rumor propagation model
with forgetting and memory mechanisms. The rumor
propagation models with rational consciousness [14],
psychological differences [15,16], media reports [17],
official refutation [18] and other factors were also con-
sidered. In addition, since individuals may not respond
to rumors in time, [19,20] studied the rumor propa-
gation models with contact lag between susceptible
and infected people. Since various individuals have dis-
tinct abilities to spread and absorb information, it is of
greater practical significance to study the rumor prop-
agation model [21–24] under heterogeneous networks.
In [25], a rumor propagation model based on heteroge-
neous networkwas proposed, and two control strategies
not only show a good resistance to rumor propagation,
but also can effectively reduce the cost of suppress-
ing rumor. In [26], based on a scale-free network, the

authors considered the network topology with psycho-
logical factors and applied such control strategies as
unified immune control, modular surface control and
optimal immune control to inhibit the spread of rumors.

For the same rumor, people can choose differ-
ent languages to spread. In this multilingual environ-
ment, diverse languages will increase the complex-
ity of rumor propagation. At present, some achieve-
ments have been made for rumor propagation in a
multilingual environment. Using multiple-group epi-
demic model research techniques, Wang in [27] first
proposed a SIR rumor propagation model in a multilin-
gual environment, inwhich all individualswere divided
into different groups according to distinct languages,
and a new model with a cross-propagation mechanism
was established. Different fromWang’s model, Li [28]
established and analyzed the I2S2R rumor propaga-
tion model in the complex network and discussed the
dynamics through themeanfield equation.However, up
to now, there is no study on rumor propagation model
with heterogeneous networks in a multilingual envi-
ronment.

Motivated by the above works, in this paper, we
study the propagation and control of rumors with het-
erogeneous networks in a multilingual environment.
The contributions of this paper are as follows: (1) In
the multilingual environment, this paper considers the
influence of immunologic mechanism on the ignorant
and proposes a new I2SR rumor propagation model.
(2) By using next-generation matrix method and Lya-
punov stability theory, the existence and global stabil-
ity of rumor-free equilibriumand rumor equilibriumare
analyzed. (3) In order to effectively suppress the spread
of the rumor, a real-time control method on the spread-
ers is proposed, which can exterminate the rumor in a
short time and greatly shorten the time of rumor spread.
(4) It is challenging and sometimes impossible to con-
sume limited resources to suppress rumor spreading
continuously. Therefore,wepropose an event-triggered
impulsive control strategy.By applying the correspond-
ing event-triggered impulsive controlmechanism to the
spreaders, we can effectively save control costs and
guarantee the extinction of rumor.

The rest of this paper is organized as follows. In
Sect. 2, we introduce the I2SR rumor propagation
model and prove the positivity of the solution. In
Sect. 3, we investigate the dynamic behaviors of the
model and analyze the existence and global stabil-
ity of rumor-free equilibrium and rumor equilibrium,
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respectively. In Sect. 4, the dynamics of rumor propa-
gation under continuous control is studied. In Sect. 5,
the dynamics of rumor propagation under the event-
triggered impulsive control is investigated. In Sect. 6,
we present some numerical simulations. In Sect. 7, the
conclusion is given.

2 Network model

In this paper, we consider the rumor propagation
dynamics over heterogeneous networks in a multilin-
gual environment. We propose four states to indicate
the different status of users in the process of rumor
spreading. Ignorants(I (t)) mean the people who do not
know the rumor. Spreaders 1(S1(t)) represent the peo-
ple who know and spread the rumor in the first lan-
guage. Spreaders 2(S2(t)) mean the people who know
and spread the rumor in the second language. Removers
(R(t)) mean the people who know the rumor but do not
spread it.

The whole population and their communication are
described by a network. An individual is represented by
a node, and the potential communication between two
nodes is represented by an edge, along which rumors
may spread. The degree of a node is the number of all its
connected edges.Without loss of generality, we assume
the people in a network are divided into n groups in
viewof their degrees, inwhich peoplewith samedegree
are assigned to the same group. Let Iki (t), S

1
ki

(t), S2ki (t)
and Rki (t) denote the densities of Ignorants, Spreaders
1, Spreaders 2 and Removers with ki degree in group
i(i = 1, . . . , n) at time t , respectively. The active nodes
in the same group satisfy Iki (t) + S1ki (t) + S2ki (t) +
Rki (t) = 1. In order to depict the process of rumor
spreading, we further assume that the criteria for rumor
propagation are as follows.

(1) In the process of rumor propagation, the proba-
bility of an ignorant becoming a spreader is asso-
ciated with its degree. Therefore, rumor propaga-
tion law is related to the degree of the individual,
which is more consistent with the law of rumor
propagation in the actual situation. An ignorant
becomes Sν

ki
(ν = 1, 2) if it believes the rumor,

and the rumor conversion rates are α(ki ) (ν = 1)
and ρ(ki ) (ν = 2), respectively. An ignorant is
connected to one or more Sν

ki
(ν = 1, 2) with prob-

ability �1(t)(ν = 1) or �2(t)(ν = 2) at time t .
Thus, the infected probability for an ignorant is

α(ki )�1(t) or ρ(ki )�2(t) at time t . The probabil-
ity of S1ki (t) converting to S2ki (t) is γ .

(2) In the rumor spreading, some ignorants are immune
to the rumor and transform into Rki (t) with prob-
ability μ. The spreaders Sν

ki
(t)(ν = 1, 2) are

cured and transformed into Rki (t)with probability
β1(ν = 1) or β2(ν = 2). The new ignorants join
the network with rate p at any time t . The active
nodes lose interest in rumor spreading with rate d
at any time.

Based on the above analysis, the process of rumor
propagation is shown in Fig. 1, and the dynamics of
rumor spreading model with heterogeneous networks
in a multilingual environment is given by:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dIki (t)

dt
= p − α(ki )Iki (t)�1(t)

− ρ(ki )Iki (t)�2(t) − (μ + d)Iki (t)

dS1ki (t)

dt
= α(ki )Iki (t)�1(t) − β1S

1
ki (t) − (γ + d)S1ki (t)

dS2ki (t)

dt
= ρ(ki )Iki (t)�2(t) − β2S

2
ki (t)

+ γ S1ki (t) − dS2ki (t)

dRki (t)

dt
= β1S

1
ki (t) + β2S

2
ki (t) + μIki (t) − dRki (t)

(1)

where i = 1, 2, . . . , n, t ≥ 0. �ν(t) (ν = 1, 2) rep-
resent the probabilities that an ignorant could get in
touch with Spreaders 1 and Spreaders 2, respectively.
The �ν(t) is defined as

�ν(t) =
∑n

i=1 θ(ki )Z(ki )Sν
ki

(t)

〈k〉
where Z(ki ) is the probability of a person with degree
ki , which equals the ratio of people with degree ki to

Fig. 1 The state transition diagram of I2SR model
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whole people in the network. Hence,
∑n

i=1 Z(ki ) = 1.
〈k〉 = ∑n

i=1 ki Z(ki ) is the average degree of the node
in the network, and θ(ki ) measures the infectivity of a
person with degree ki . At any time t , the active nodes in
the network satisfy Iki (t)+S1ki (t)+S2ki (t)+Rki (t) = 1.

Using Iki (t) = 1 − S1ki (t) − S2ki (t) − Rki (t), model
(1) is described by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS1ki (t)

dt
= α(ki )

(
1 − S1ki (t) − S2ki (t) − Rki (t)

)
�1(t)

− β1S
1
ki

(t) − (γ + d)S1ki (t)

dS2ki (t)

dt
= ρ(ki )

(
1 − S1ki (t) − S2ki (t) − Rki (t)

)
�2(t)

− (β2 + d)S2ki (t) + γ S1ki (t)

dRki (t)

dt
= β1S

1
ki

(t) + β2S
2
ki

(t)

+ μ
(
1 − S1ki (t) − S2ki (t) − Rki (t)

)
− dRki (t).

(2)

It is easy to verify that the regionM = {(S1ki (t), S2ki (t),
Rki (t)) ∈ R

3n+ |S1ki (t) + S2ki (t) +Rki (t) ≤ 1, k =
1, 2, . . . , n} is a positive invariant set formodel (2).As a
matter of convenience, letM = {(xi (t), yi (t), zi (t)) ∈
R
3n+ |xi (t) + yi (t) + zi (t) ≤ 1, i = 1, 2, . . . , n} be the

meaningful physical domain for model (2).

Remark 1 In [27,28], the authors studied the problems
of rumor spreading in a multilingual environment, but
the network is homogeneous. In fact, the social net-
works are always heterogeneous. Therefore, we pro-
pose a new propagation model with heterogeneous net-
works and consider the immunemechanismof the igno-
rants in this paper.

Next, the following useful lemma is necessary.

Lemma 1 The set M is positively invariant to
model (2).

Proof Denote χ(t) = (χ1(t), χ2(t), . . . , χn(t))T ,
where χi (t) = (xi (t), yi (t), zi (t)) for i = 1, 2, . . . , n;
then, model (2) can be rewritten as

dχi (t)

dt
= fi (xi (t)) (3)

where fi (xi (t)) =(
α(ki )(1 − xi (t) − yi (t) − zi (t))�1 − β1xi (t) − (γ + d)xi (t)
ρ(ki )(1 − xi (t) − yi (t) − zi (t))�2 − (β2 + d)yi (t) + γ xi (t)
β1xi (t) + β2 yi (t) + μ(1 − xi (t) − yi (t) − zi (t)) − dzi (t)

)

. Note

thatM is a bounded compact set.We need to prove that
χ(t) ∈ M for all t ≥ 0. Denote the boundary ofM as
∂M; then, it includes the following 3n sets:

∂M1 = {χ ∈ M|xi (t) = 0},
∂M2 = {χ ∈ M|yi (t) = 0},
∂M3 = {χ ∈ M|zi (t) = 0},
∂M4 = {χ ∈ M|xi (t) + yi (t) + zi (t) = 1}, (4)

which have outer normal vectors as follows:

ϕ1
i = (0, . . . , 0, −1

︸︷︷︸
i

, 0, . . . , 0),

ϕ2
i = (0, . . . , 0, −1

︸︷︷︸
i+n

, 0, . . . , 0),

ϕ3
i = (0, . . . , 0, −1

︸︷︷︸
i+2n

, 0, . . . , 0),

ϕ4
i = (0, . . . , 0, 1︸︷︷︸

i

, 0, . . . ,

0, 1︸︷︷︸
i+n

, 0, . . . , 0, 1︸︷︷︸
i+2n

, 0, . . . , 0). (5)

Through certain calculation, we have

〈
dχ(t)

dt
|χ∈∂M1,ϕ

1
i

〉

= −α(ki )(1 − yi (t) − zi (t))

�n
j �=iθ(ki )Z(ki )xi (t)

〈k〉 ≤ 0,

〈
dχ(t)

dt
|χ∈∂M2,ϕ

2
i

〉

= −ρ(ki )(1 − xi (t) − zi (t))

�n
j �=iθ(ki )Z(ki )yi (t)

〈k〉 ≤ 0,

〈
dχ(t)

dt
|χ∈∂M3,ϕ

3
i

〉

= −[β1xi (t) + β2yi (t) + μ(1 − xi (t) − yi (t))] ≤ 0,
〈
dχ(t)

dt
|χ∈∂M4,ϕ

4
i

〉

= −(xi (t) + yi (t) + zi (t)) ≤ 0. (6)

Thus, the claimed result can be obtained directly from
Lemma 2 in [29]. The proof is completed. �	

3 Existence of the equilibrium solution

In this section, we will analyze the dynamics of model
(1) and give some conditions for rumor extinction or
persistence.

As far as we know, whether the rumor breaks out is
dependent on the basic reproduction number r0. For the
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calculation of r0, the next-generation matrix method is
used.

In order to facilitate the calculation of basic repro-
duction number of model (1), we let ψ = (S1ki (t),

S2ki (t), Iki (t), Rki (t))
T , model (1) can be rewritten as

follows:

dψ

dt
= F(ψ) − V(ψ) (7)

where F(ψ) =

⎛

⎜
⎜
⎝

α(ki )Iki (t)�1(t)
ρ(ki )Iki (t)�2(t)

0
0

⎞

⎟
⎟
⎠,

V(ψ) =

⎛

⎜
⎜
⎜
⎜
⎝

β1S1ki (t) + (γ + d)S1ki (t)

β2S2ki (t) − γ S1ki (t) + dS2ki (t)

α(ki )Iki (t)�1(t) + ρ(ki )Iki (t)�2(t) + (d + μ)Iki (t) − p

−β1S1ki (t) − β2S2ki (t) − μIki (t) + dRki (t)

⎞

⎟
⎟
⎟
⎟
⎠

.

It is obvious that E0 = {( p
d+μ

, 0, 0, 1 − p
d+μ

), . . . ,

(
p

d+μ
, 0, 0, 1− p

d+μ
)} is a rumor-free equilibrium point

of model (1). The Jacobianmatrices ofF(ψ) andV(ψ)

at E0 = {( p
d+μ

, 0, 0, 1 − p
d+μ

), . . . , (
p

d+μ
, 0, 0, 1 −

p
d+μ

)} are

DF(E0) =
(
F 0
0 0

)

, DV(E0) =
(
V 0
J1 J2

)

where F =
(
F1 0
0 F2

)

, V =
(

(β1 + γ + d)I 0
−γI (β2 + d)I

)
,

F1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

α(k1)Ik1 (t)θ(k1)Z(k1)
〈k〉

α(k1)Ik1 (t)θ(k2)Z(k2)
〈k〉 · · · α(k1)Ik1 (t)θ(kn)Z(kn)

〈k〉
α(k2)Ik2 (t)θ(k1)Z(k1)

〈k〉
α(k2)Ik2 (t)θ(k2)Z(k2)

〈k〉 · · · α(k2)Ik2 (t)θ(kn)Z(kn)
〈k〉

...
...

. . .
...

α(kn)Ikn (t)θ(k1)Z(k1)
〈k〉

α(kn)Ikn (t)θ(k2)Z(k2)
〈k〉 · · · α(n)Ikn (t)θ(kn)Z(kn)

〈k〉

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

F2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

ρ(k1)Ik1 (t)θ(k1)Z(k1)
〈k〉

ρ(k1)Ik1 (t)θ(k2)Z(k2)
〈k〉 · · · ρ(k1)Ik1 (t)θ(kn)Z(kn)

〈k〉
ρ(k2)Ik2 (t)θ(k1)Z(k1)

〈k〉
ρ(k2)Ik2 (t)θ(k2)Z(k2)

〈k〉 · · · ρ(k2)Ik2 (t)θ(kn)Z(kn)
〈k〉

...
...

. . .
...

ρ(kn)Ikn (t)θ(k1)Z(k1)
〈k〉

ρ(kn)Ikn (t)θ(k2)Z(k2)
〈k〉 · · · ρ(n)Ikn (t)θ(kn)Z(kn)

〈k〉

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

J1 =
(

F1 F2
−β1I −β2I

)

,

J2 =
(

(d + μ)I 0
−μI dI

)

,

and I is a unit matrix with appropriate dimension.

The basic reproduction number r0 of model (1) is
defined as follows:

r0 = ρ(FV−1) = max{r01, r02} (8)

where ρ(FV−1) represents the spectral radius of the
matrix FV−1,

r01 = p
∑n

i=1 α(ki )θ(ki )Z(ki )

〈k〉(d + μ)(β1 + γ + d)
,

r02 = p
∑n

i=1 ρ(ki )θ(ki )Z(ki )

〈k〉(d + μ)(β2 + d)
. (9)

From this, the following theorem is given.

Theorem 1 For the basic reproduction number r0, the
following three cases hold.

Case 1. If r0 < 1,model (1) shows a rumor free equilib-
rium E0 = {( p

d+μ
, 0, 0, 1− p

d+μ
), . . . , (

p
d+μ

, 0, 0, 1−
p

d+μ
)}.

Case 2. If r01 < 1 and r02 > 1, model (1) shows
a unique equilibrium point E∗

1 (I
∗
1ki

, S1∗1ki , S
2∗
1ki

, R∗
1ki

)

where
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S1∗1ki = 0, S2∗1ki = pρ(ki )�∗
2

[ρ(ki )�∗
2 + d + μ](β2 + d)

,

I ∗
1ki = (d + β2)S2∗1ki

ρ(ki )�∗
2

, R∗
1ki = β2S2∗1ki + μI ∗

1ki

d
, (10)

�∗
2 =

∑n
i=1 θ(ki )Z(ki )S2∗1ki〈k〉 .

Case 3. If r01 > 1 and r02 > 1, the unique
positive rumor equilibrium point of model (1) is
E∗
2 (I

∗
2ki

, S1∗2ki , S
2∗
2ki

, R∗
2ki

) where

S1∗2ki = pα(ki )�∗
1

[α(ki )�∗
1 + ρ(ki )�∗

2 + d + μ](β1 + γ + d)
,

S2∗2ki = pρ(ki )(β1 + γ + d)�∗
2 + γ pα(ki )�∗

1

[α(ki )�∗
1 + ρ(ki )�∗

2 + d + μ](β1 + γ + d)(β2 + d)
,

I ∗
2ki = p

α(ki )�∗
1 + ρ(ki )�∗

2 + d + μ
,

R∗
2ki = β1S1∗2ki + β2S2∗2ki + μI ∗

2ki

d
, (11)

�∗
1 =

∑n
i=1 θ(ki )Z(ki )S1∗2ki〈k〉 .

Proof For the case r0 < 1, it is easy to get that the
rumor-free equilibrium point E0. In model (1), we
denote the equilibrium solution by E∗ = {(I ∗

k1
, S1∗k1 ,

S2∗k1 , R∗
k1

), . . . , (I ∗
kn

, S1∗kn , S2∗kn , R∗
kn

)}. Then, it should
satisfy

p − α(ki )I
∗
ki �

∗
1 − ρ(ki )I

∗
ki �

∗
2 − (μ + d)I ∗

ki = 0

α(ki )I
∗
ki �

∗
1 − β1S

1∗
ki − (γ + d)S1∗ki = 0

ρ(ki )I
∗
ki �

∗
2 − β2S

2∗
ki + γ S1∗ki − dS2∗ki = 0

β1S
1∗
ki + β2S

2∗
ki + μI ∗

ki − dR∗
ki = 0. (12)

For the case of r01 < 1 and r02 > 1, it has

�∗
2 =

∑n
i=1 θ(ki )Z(ki )S2∗1ki

〈k〉
= 1

〈k〉
n∑

i=1

pρ(ki )θ(ki )Z(ki )�∗
2

[ρ(ki )�∗
2 + d + μ](β2 + d)

.

According to simple calculation, it has

�∗
2

(

1 − 1

〈k〉
n∑

i=1

pρ(ki )θ(ki )Z(ki )

[ρ(ki )�∗
2 + d + μ](β2 + d)

)

= 0.

Let

G(�∗
2) = 1 − 1

〈k〉
n∑

i=1

pρ(ki )θ(ki )Z(ki )

[ρ(ki )�∗
2 + d + μ](β2 + d)

.

(13)

Since G
′
(�∗

2) > 0 for all �∗
2 and lim�∗

2→∞ G(�∗
2) =

1, then G(�∗
2) = 0 if and only if lim�∗

2→0+ G(�∗
2) <

0. That means model (1) has an equilibrium solution
E∗
1 if and only if r01 < 1 and r02 > 1.
For the case of r01 > 1 and r02 > 1, we have

�∗
1 =

∑n
i=1 θ(ki )Z(ki )S1∗2ki

〈k〉

= p

〈k〉
n∑

i=1

α(ki )θ(ki )Z(ki )�∗
1

(α(ki )�∗
1 + ρ(ki )�∗

2 + d + μ)(β1 + γ + d)
,

�∗
2 =

∑n
i=1 θ(ki )Z(ki )S2∗2ki

〈k〉

= p

〈k〉
n∑

i=1

ρ(ki )θ(ki )Z(ki )�∗
2 + γα(ki )θ(ki )Z(ki )�∗

1

(α(ki )�∗
1 + ρ(ki )�∗

2 + d + μ)(β1 + γ + d)(β2 + d)
.

Then,

�∗
1

(

1 − p

〈k〉
n∑

i=1

α(ki )θ(ki )Z(ki )

(α(ki )�∗
1 + ρ(ki )�∗

2 + d + μ)(β1 + γ + d)

)

= 0,

�∗
2

(

1 − p

〈k〉
n∑

i=1

ρ(ki )θ(ki )Z(ki )

(α(ki )�∗
1 + ρ(ki )�∗

2 + d + μ)(β1 + γ + d)(β2 + d)

− p

〈k〉
n∑

i=1

γα(ki )θ(ki )Z(ki )�∗
1

�∗
2(α(ki )�∗

1 + ρ(ki )�∗
2 + d + μ)(β1 + γ + d)(β2 + d)

)

= 0.

Let

G1(�
∗
1, �

∗
2) =

(

1 − p

〈k〉
n∑

i=1

α(ki )θ(ki )Z(ki )

(α(ki )�∗
1 + ρ(ki )�∗

2 + d + μ)(β1 + γ + d)

)

, (14)

G2(�
∗
1, �

∗
2)

=
(

1 − p

〈k〉
n∑

i=1

ρ(ki )θ(ki )Z(ki )

(α(ki )�∗
1 + ρ(ki )�∗

2 + d + μ)(β1 + γ + d)(β2 + d)

− p

〈k〉
n∑

i=1

γα(ki )θ(ki )Z(ki )�∗
1

�∗
2(α(ki )�∗

1 + ρ(ki )�∗
2 + d + μ)(β1 + γ + d)(β2 + d)

)

.

(15)

Due to
∂G1(�

∗
1,�

∗
2)

∂�∗
1

> 0 for all �∗
1 and lim�∗

1→∞
G1(�

∗
1,�

∗
2) = 1, then S1∗2ki > 0 if lim�∗

1→0+ G1(�
∗
1, 0)

< 0. Similarly, S2∗2ki > 0 if lim�∗
2→0+ G2(0,�∗

2) < 0.
Based on the definition of r01 and r02, one can conclude
that r01 > 1 and r02 > 1. From the above analysis, we
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can get that model (1) has a unique positive solution if
and only if r01 > 1 and r02 > 1. �	
Remark 2 It can be seen that the basic reproduction
number r0 is dependent on the infection rates α(ki )
and ρ(ki ). In the previous works, the infection rate is
a constant which is independent of the degree of the
individual. However, the infection rate is related to the
degree of the individual in our paper.

Remark 3 Frommodel (1),we can see that theSpreader
1 is transformed into Spreaders 2 with a certain proba-
bility γ , whichmeans that the rumor Spreader 2will not
die out when rumor Spreaders 1 exist. Therefore, our
paper discusses two situations of rumor existence. The
one is that the Spreaders 1 are extinct and the Spreaders
2 exist. The other is that two kinds of spreaders exist.

Remark 4 Through the analysis of Theorem 1 and the
calculation of the basic reproduction number r0, we
confirm that two kinds of rumor spreaders will be
extinct when r0 < 1. But we cannot accurately judge
whether there is only one kind of rumor spreaders or
both when r0 > 1. For this case, we need to further
analyze.

Theorem 2 The rumor-free equilibrium E0 of model
(1) is locally asymptotically stable if r0 < 1.

Proof According to stability theory [30], the local sta-
bility of rumor-free equilibrium E0 of model (1) is
related to the eigenvalues of the corresponding Jaco-
bian matrix J (E0). To analyze the local stability of
model (1) at E0, we firstly derive the Jacobian matrix
J (E0) as follows

J (E0) =

⎛

⎜
⎜
⎜
⎝

A11 A12 · · · A1n

A21 A22 · · · A2n
...

...
. . .

...

An1 An2 · · · Ann

⎞

⎟
⎟
⎟
⎠

where

Aii =

⎛

⎜
⎜
⎜
⎝

�1 0 0 0
γ �2 0 0

− pα(ki )
(d+μ)〈k〉 θ(ki )Z(ki )

pρ(ki )
(d+μ)〈k〉 θ(ki )Z(ki ) −(d + μ) 0

β1 β2 μ −d

⎞

⎟
⎟
⎟
⎠

,

Ai j =

⎛

⎜
⎜
⎜
⎝

pα(ki )
(d+μ)〈k〉 θ(ki )Z(ki ) 0 0 0

0 pρ(ki )
(d+μ)〈k〉 θ(ki )Z(ki ) 0 0

− pα(ki )
(d+μ)〈k〉 θ(ki )Z(ki )

pρ(ki )
(d+μ)〈k〉 θ(ki )Z(ki ) 0 0

0 0 0 0

⎞

⎟
⎟
⎟
⎠

,

�1 = pα(ki )
(d+μ)〈k〉θ(ki )Z(ki ) − β1 − γ − d and �2 =

pρ(ki )
(d+μ)〈k〉θ(ki )Z(ki ) − β2 − d.

The characteristic equation of J (E0) is

(λ + β1 + γ + d)n−1
(

1 − p
∑n

i=1 α(ki )θ(ki )Z(ki )

〈k〉(d + μ)(λ + β1 + γ + d)

)

(λ + β2 + d)n−1 ×
(

1 − p
∑n

i=1 ρ(ki )θ(ki )Z(ki )

〈k〉(d + μ)(λ + β2 + d)

)

(λ − (d + μ))n(λ − d)n = 0. (16)

The eigenvalues of J (E0) are given by

λ1 = −(β1 + γ + d),

λ2 = −(β2 + d), λ3 = −d, λ4 = −(μ + d),

λ5 = (β1 + γ + d)

(
p
∑n

i=1 α(ki )θ(ki )Z(ki )

〈k〉(d + μ)(β1 + γ + d)
− 1

)

= (β1 + γ + d)(r01 − 1),

λ6 = (β2 + d)

(
p
∑n

i=1 ρ(ki )θ(ki )Z(ki )

〈k〉(d + μ)(β2 + d)
− 1

)

= (β2 + d)(r02 − 1), (17)

where λ1 and λ2 with multiplicity n − 1, λ3 and λ4
with multiplicity n, respectively. λ5 and λ6 are simple
eigenvalues.We can easily see that λ1, λ2, λ3 and λ4 are
negative. Hence, the local stability of E0 is determined
by λ5 and λ6. Since r0 < 1, λ5 and λ6 are negative.
Therefore, the rumor-free equilibrium E0 of model (1)
is locally asymptotically stable. �	
Lemma 2 [31] For any a > 0 and b > 0, if
dx(t)
dt ≥ b − ax(t) for t ≥ 0 and x(0) > 0, we have

limt→∞ inf x(t) ≥ b
a ; if

dx(t)
dt ≤ b − ax(t) for t ≥ 0

and x(0) > 0, we have limt→∞ sup x(t) ≤ b
a .

Theorem 3 The rumor-free equilibrium E0 of model
(1) is globally asymptotically stable if r0 < 1.

Proof Based on model (1), we can get that

dIki (t)

dt
= p − α(ki )Iki (t)�1(t)

− ρ(ki )Iki (t)�2(t) − (μ + d)Iki (t)

≤ p − (μ + d)Iki (t). (18)

By Lemma 2, one has

lim
t→∞ sup Iki (t) ≤ p

μ + d
=: I 0ki . (19)
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Thus, for arbitrarily enough small ε1 > 0, there exist
t1 > 0 such that Iki (t) ≤ I 0ki + ε1 for t > t1. When
t > t1, it has that

dS1ki (t)

dt
≤ α(ki )�1(t)

(
I 0ki + ε1

)

− (β1 + γ + d)S1ki (t).

According to the comparison systemwith the condition

Q1
ki

(0) = S1ki (0) > 0, let �̃1(t) =
∑n

i=1 θ(ki )Z(ki )Q1
ki

(t)

〈k〉 ,
then one has

dQ1
ki

(t)

dt
= α(ki )�̃1(t)(I

0
ki + ε1)

− (β1 + γ + d)Q1
ki (t).

Let us consider the Lyapunov function V (t) =
∑n

i=1
θ(ki )Z(ki )〈k〉 Q1

ki
(t). We derive that

dV (t)

dt
=

n∑

i=1

θ(ki )Z(ki )

〈k〉
[
α(ki )�̃1(t)(I

0
ki + ε1)

−(β1 + γ + d)Q1
ki (t)

]

= �̃1(t)(β1 + μ + d)
[

n∑

i=1

pθ(ki )Z(ki )α(ki )

(μ + d)〈k〉(β1 + γ + d)

+
n∑

i=1

θ(ki )Z(ki )α(ki )ε1
(β1 + μ + d)〈k〉 − 1

]

= �̃1(t)(β1 + μ + d)
[

r01 +
n∑

i=1

α(ki )θ(ki )Z(ki )ε1
(β1 + μ + d)〈k〉 − 1

]

. (20)

Since r01 < 1, we can choose a small enough
ε1 > 0 such that r01 + ∑n

i=1
α(ki )θ(ki )Z(ki )ε1

(β1+μ+d)〈k〉 < 1.

Hence, dV (t)
dt ≤ 0 for all Q1

ki
(t) ≥ 0, and dV (t)

dt = 0

only if Q1
ki

(t) = 0. Therefore, Q1
ki

(t) tends to zero as

t → +∞, i.e., limt→∞ Q1
ki

(t) = 0. By the comparison

theorem, we have 0 < S1ki (t) < Q1
ki

(t), for all t > 0.

Therefore, S1ki (t) = 0 as t → +∞.

Next, we will show S2ki (t) tends to zero as t → ∞.
For arbitrarily enough small ε2 > 0, there exists t2 > 0
such that Iki (t) ≤ I 0ki + ε2 and 0 < S1ki (t) ≤ ε2 for
t > t2. Then, for t > t2, it has that

dS2ki (t)

dt
≤ ρ(ki )�2(t)(I

0
ki + ε2)

− (β2 + d)S2ki (t) + γ ε2.

According to the comparison systemwith the condition

Q2
ki

(0) = S2ki (0) > 0, let �̃2(t) =
∑n

i=1 θ(ki )Z(ki )Q2
ki

(t)

〈k〉 ,
then one has

dQ2
ki

(t)

dt
= ρ(ki )�̃2(t)

(
I 0ki + ε2

)

− (β2 + d)Q2
ki (t) + γ ε2.

Let us consider the Lyapunov function V (t) = ∑n
i=1

θ(ki )Z(ki )〈k〉 Q2
ki

(t). It has

dV (t)

dt
=

n∑

i=1

θ(ki )Z(ki )

〈k〉
[
ρ(ki )�̃2(t)(I

0
ki + ε2) − (β2 + d)Q2

ki (t) + γ ε2

]

= �̃2(t)(β2 + d)
[

n∑

i=1

θ(ki )Z(ki )ρ(ki )

〈k〉(β2 + d)

(
p

(μ + d)
+ ε2

)

− γ ε2

�̃2(t)(β2 + d)
− 1

]

= �̃2(t)(β2+d)

[

r02+
n∑

i=1

(ρ(ki )θ(ki )Z(ki ) − γ 〈k〉
�̃2(t)

)ε2

(β2 + d)〈k〉 − 1

⎤

⎦ . (21)

Similar to the previous analysis, we can get that
limt→∞ S2ki (t) = 0.

Due to limt→∞ S1ki (t) = 0 and limt→∞ S2ki (t) = 0,
we can get that for arbitrarily enough small ε3 > 0,
there exists t3 > 0 such that 0 ≤ S1ki (t) ≤ ε3 and

0 ≤ S2ki (t) ≤ ε3 for all t > t3. Hence, we have

dIki (t)

dt
≥ p − (μ + d)Iki (t) − (α(ki )

+ ρ(ki ))Iki (t)�ε3

where � = ∑n
i=1

θ(ki )Z(ki )〈k〉 . By using lemma 2, we

have limt→∞ Iki (t) ≥ p
(μ+d)+(α(ki )+ρ(ki ))�ε3

. Setting
ε3 → 0, it follows that

lim
t→∞ inf Iki (t) ≥ p

d + μ
= I 0ki . (22)
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From (19) and (22), it is clear that limt→∞ Iki (t) =
I 0ki = p

d+μ
. This proves that the equilibrium E0 is glob-

ally asymptotically stable. The proof is completed. �	
Lemma 3 If r01 < 1 and r02 > 1, the positive solution
E+ of model (1) satisfies

lim
E+→E∗

1

�+
1 (t) = 0,

lim
E+→E∗

1

1

〈k〉
n∑

i=1

ρ(ki )θ(ki )Z(ki )I
+
1ki

(t) = β2 + d.

(23)

Proof Based on the definition of�1(t), we can get that

�̇1(t) =
∑n

i=1 θ(ki )Z(ki )Ṡ1ki (t)

〈k〉

= �1(t)

[
1

〈k〉
n∑

i=1

α(ki )θ(ki )Z(ki )Iki (t)

−(β1 + γ + d)

]

≤ �1(t)

[
p

〈k〉(d + μ)

n∑

i=1

α(ki )θ(ki )Z(ki )

−(β1 + γ + d)

]

= �1(t)

β1 + γ + d
(r01 − 1) < 0. (24)

Then, the positive solution E+ of model (1) con-
verges to E∗

1 , i.e., limE+→E∗
1
�+

1 (t) = 0. From

limE+→E∗
1
�1(t) = 0,weobtain that I ∗

1ki
= (d+β2)S2∗1ki

ρ(ki )�∗
2

.

Therefore,

lim
E+→E∗

1

1

〈k〉
n∑

i=1

ρ(ki )θ(ki )Z(ki )I
+
1ki

(t)

= (d + β2)

�∗
2(t)

1

〈k〉
n∑

i=1

θ(ki )Z(ki )S
2∗
1ki (t)

= d + β2. (25)

�	
Theorem 4 If r01 < 1 and r02 > 1, E∗

1 is globally
asymptotically stable.

Proof We construct the Lyapunov function V (t) as

V (t) = 1

2〈k〉
n∑

i=1

1

I ∗
1ki

θ(ki )Z(ki )(Iki (t) − I ∗
1ki )

2

+
(

�2(t) − �∗
2 − �∗

2 ln

(
�2(t)

�∗
2

))

. (26)

The time derivative of V (t) along with model (1) is
given by

V̇ (t) = 1

〈k〉
n∑

i=1

1

I ∗
1ki

θ(ki )Z(ki )(Iki (t) − I ∗
1ki ) İki (t)

+ �2(t) − �∗
2

�2(t)
�̇2(t)

= 1

〈k〉
n∑

i=1

1

I ∗
1ki

θ(ki )Z(ki )(Iki (t) − I ∗
1ki )

[
p − α(ki )Iki (t)�1(t) − ρ(ki )Iki (t)�2(t)

−(d + μ)Iki (t)
]+ (�2(t) − �∗

2)
[

1

〈k〉
n∑

i=1

ρ(ki )θ(ki )Z(ki )Iki (t) − (β2 + d)

]

= 1

〈k〉
n∑

i=1

1

I ∗
1ki

θ(ki )Z(ki )(Iki (t) − I ∗
1ki )

[
ρ(ki )I

∗
1ki �

∗
2 + (d + μ)I ∗

1ki

−ρ(ki )Iki (t)�2(t) − (d + μ)Iki (t)
]

+ (�2(t) − �∗
2)

[
1

〈k〉
n∑

i=1

ρ(ki )θ(ki )Z(ki )Iki (t)

− 1

〈k〉
n∑

i=1

ρ(ki )θ(ki )Z(ki )I
∗
1ki

]

= 1

〈k〉
n∑

i=1

[

− 1

I ∗
1ki

θ(ki )Z(ki )(d + μ + ρ(ki ))

�2(t)(Iki (t) − I ∗
1ki )

2

− θ(ki )Z(ki )ρ(ki )(�2(t) − �∗
2)(Iki (t) − I ∗

1ki )

]

+ 1

〈k〉
n∑

i=1

ρ(ki )θ(ki )Z(ki )(�2(t)

− �∗
2)(Iki (t) − I ∗

1ki )

= − 1

〈k〉
n∑

i=1

1

I ∗
1ki

θ(ki )Z(ki )
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(d + μ + ρ(ki )�2(t))(Iki (t) − I ∗
ki )

2

≤ 0. (27)

Combining with Lemma 3, we can get that E∗
1 is glob-

ally asymptotically stable. �	
Theorem 5 If r01 > 1, r02 > 1 and γ = 0, the positive
equilibrium E∗

2 is globally asymptotically stable.

Proof We construct the Lyapunov function V (t) as

V (t) = 1

2〈k〉
n∑

i=1

1

I ∗
2ki

θ(ki )Z(ki )(Iki (t) − I ∗
2ki )

2

+
(

�1(t) − �∗
1 − �∗

1 ln

(
�1(t)

�∗
1

))

+
(

�2(t) − �∗
2 − �∗

2 ln

(
�2(t)

�∗
2

))

. (28)

The time derivative of V (t) along with model (1) is
given by

V̇ (t) = 1

〈k〉
n∑

i=1

1

I ∗
2ki

θ(ki )Z(ki )(Iki (t) − I ∗
2ki ) İki (t)

+ �1(t) − �∗
1

�1(t)
�̇1(t)

+ �2(t) − �∗
2

�2(t)
�̇2(t). (29)

Since

1

〈k〉
n∑

i=1

1

I ∗
2ki

θ(ki )Z(ki )(Iki (t) − I ∗
2ki ) İki (t)

= 1

〈k〉
n∑

i=1

1

I ∗
2ki

θ(ki )Z(ki )(Iki (t) − I ∗
2ki )

[
p − α(ki )Iki (t)�1(t) − ρ(ki )Iki (t)�2(t)

−(d + μ)Iki (t)
]

= 1

〈k〉
n∑

i=1

1

I ∗
2ki

θ(ki )Z(ki )(Iki (t) − I ∗
2ki )

[
α(ki )I

∗
2ki �

∗
1 + ρ(ki )I

∗
2ki �

∗
2 + (d + μ)I ∗

2ki

− α(ki )Iki (t)�1(t) − ρ(ki )Iki (t)�2(t) − (d + μ)Iki (t)
]

= 1

〈k〉
n∑

i=1

[

− 1

I ∗
2ki

θ(ki )Z(ki )

α(ki )�1(t)(Iki (t) − I ∗
2ki )

2

− θ(ki )Z(ki )α(ki )(�1(t) − �∗
1)(Iki (t) − I ∗

2ki )

− 1

I ∗
2ki

θ(ki )Z(ki )

(d + μ + ρ(ki )�2(t))(Iki (t) − I ∗
2ki )

2

−θ(ki )Z(ki )ρ(ki )(�2(t) − �∗
2)(Iki (t) − I ∗

2ki )

]

, (30)

and

�1(t) − �∗
1

�1(t)
�̇1(t) + �2(t) − �∗

2

�2(t)
�̇2(t)

= (�1(t) − �∗
1)

[
1

〈k〉
n∑

i=1

α(ki )θ(ki )Z(ki )Iki (t) − (β1 + d)

]

+ (�2(t) − �∗
2)

[
1

〈k〉
n∑

i=1

ρ(ki )θ(ki )Z(ki )

Iki (t) − (β2 + d)

]

= (�1(t) − �∗
1)

[
1

〈k〉
n∑

i=1

α(ki )θ(ki )Z(ki )Iki (t) − α(ki )

〈k〉
n∑

i=1

θ(ki )Z(ki )I
∗
2ki

]

+ (�2(t) − �∗
2)

[
1

〈k〉
n∑

i=1

ρ(ki )θ(ki )Z(ki )Iki (t)

−ρ(ki )

〈k〉
n∑

i=1

θ(ki )Z(ki )I
∗
2ki

]

= (�1(t) − �∗
1)

[
1

〈k〉
n∑

i=1

α(ki )θ(ki )Z(ki )

(Iki (t) − I ∗
2ki )

]

+ (�2(t) − �∗
2)

[
1

〈k〉
n∑

i=1

ρ(ki )θ(ki )Z(ki ) (Iki (t) − I ∗
2ki )

]

.

(31)

Then, combining with (30) and (31), one has

V̇ (t) = − 1

〈k〉
n∑

i=1

[
1

I ∗
2ki

θ(ki )Z(ki )

α(ki )�1(t))(Iki (t) − I ∗
2ki )

2

]
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− 1

〈k〉
n∑

i=1

[
1

I ∗
2ki

θ(ki )Z(ki )(d + μ + ρ(ki ))

�2(t))(Iki (t) − I ∗
2ki )

2

]

≤ 0. (32)

Thus, E∗
2 is globally asymptotically stable. �	

4 Continuous control

When the rumor persists and no measures are taken
to limit its spreading, it will have a certain negative
impact on social security and stability. Therefore, how
to control the spread of rumor and protect the soci-
ety from huge losses is a problem that the govern-
ment should consider. Maybe educating the spreaders
is a feasible strategy to control the spread of rumor.
Hence, the educational mechanism is considered to the
rumor spreaders in model (1). The specific model is as
follows:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dIki (t)

dt
= p − α(ki )Iki (t)�1(t)

− ρ(ki )Iki (t)�2(t) − (μ + d)Iki (t)

dS1ki (t)

dt
= α(ki )Iki (t)�1(t) − β1S

1
ki (t)

− (γ + d)S1ki (t) − τ S1ki (t)

dS2ki (t)

dt
= ρ(ki )Iki (t)�2(t) − β2S

2
ki (t)

+ γ S1ki (t) − dS2ki (t) − τ S2ki (t)

dRki (t)

dt
= β1S

1
ki (t)

+ β2S
2
ki (t) + μIki (t) − dRki (t)

(33)

where 0 < τ < 1 represents the educational influence
on rumor spreaders. The purpose of our control on the
spreaders is to stop the propagation of rumor. Hence,
we only need to prove that the spreaders eventually tend
to be extinct under the control. How much the control
influence canmake the rumor extinct is the issue thatwe
need to further study next. Here, the following theorem
is given to help us solve this issue.

Theorem 6 For model (33), the rumor can die out if
the following condition is satisfied

τ > max

{
p
∑n

i=1 α(ki )θ(ki )Z(ki )

〈k〉(d + μ)

− (β1 + d + γ ),
p
∑n

i=1 ρ(ki )θ(ki )Z(ki )

〈k〉(d + μ)

− (β2 + d)

}

. (34)

Proof For model (33), similar to the analysis of Theo-
rem 1, the basic reproduction number r∗

0 is

r∗
0 = max

{
p
∑n

i=1 α(ki )θ(ki )Z(ki )

〈k〉(d + μ)(β1 + γ + d + τ)
,

p
∑n

i=1 ρ(ki )θ(ki )Z(ki )

〈k〉(d + μ)(β2 + d + τ)

}

. (35)

As we know that r∗
0 is the condition to decide whether

the rumor spreads or is extinct, if r∗
0 < 1, the rumor

will die out. Therefore, we get

τ > max

{
p
∑n

i=1 α(ki )θ(ki )Z(ki )

〈k〉(d + μ)
− (β1 + d + γ ),

p
∑n

i=1 ρ(ki )θ(ki )Z(ki )

〈k〉(d + μ)
− (β2 + d)

}

.

The rumor can be effectively restrained when the
control intensity of the propagator satisfies model (35),
which can be seen in the later numerical simulations.

�	

5 Event-triggered impulsive control

We can use continuous control mechanism to suppress
the spreading of the rumor and make it die out quickly
and effectively. In fact, it is challenging and sometimes
impossible to control the rumor spreaders continuously.
Therefore, the impulsive control can effectively over-
come this deficiency. To save limited resources, we
propose an event-triggered impulsive control strategy,
which only needs to control the rumor spreaders at
some discrete instants. In the following, we give the
main analysis process.

To introduce the event-triggered impulsive con-
trol, we let S1(t) = (S1k1(t), S

1
k2

(t), . . . , S1kn (t))
T ,

S2(t) = (S2k1(t), S
2
k2

(t), . . . , S2kn (t))
T and S(t) =

(S1(t), S2(t))T . Then, the event-triggered impulsive
control is given by
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{
X (t) = −qS(t) t ∈ [tk−1, tk)
�S(tk) = εX (tk), t = tk

(36)

where�S(tk) = S(t+k )− S(t−k ), S(tk) = S(t+k ), ε is an
impulsive strength. The impulsive sequence tk satisfies
0 = t0 < t1 < · · · < tk <, . . . , limk→∞ tk = ∞, and
0 < q < 1 represents the control effect.

Under the impulsive control (36), we present the
following control system.

When t ∈ [tk−1, tk):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dIki (t)

dt
= p − α(ki )Iki (t)�1(t)

− ρ(ki )Iki (t)�2(t) − (μ + d)Iki (t)

dS1ki (t)

dt
= α(ki )Iki (t)�1(t)

− β1S
1
ki (t) − (γ + d)S1ki (t)

dS2ki (t)

dt
= ρ(ki )Iki (t)�2(t)

− β2S
2
ki (t) + γ S1ki (t) − dS2ki (t)

dRki (t)

dt
= β1S

1
ki (t) + β2S

2
ki (t)

+ μIki (t) − dRki (t).
(37)

When t = tk :
⎧
⎪⎪⎨

⎪⎪⎩

Iki (t
+
k ) = Iki (tk)

S1ki (t
+
k ) = (1 − εq)S1ki (tk)

S2ki (t
+
k ) = (1 − εq)S2ki (tk)

Rki (t
+
k ) = εq(S1ki (tk) + S2ki (tk)) + Rki (tk).

(38)

Let tk be the triggering time sequence of rumor prop-
agation variable, and tk+1 = inf{t |g(t) ≥ 0, t > tk}.
The event-trigger function is defined as

g(t) = ‖e(t)‖2 − ς

2
‖X (tk)‖2 − σ

(t − t0)2
(39)

where ς > 0, σ > 0 and e(t) = X (tk) − X (t).

Remark 5 Different from existing time-dependent
impulsive control, we apply the event-triggered impul-
sive control to suppress the spreading of rumors in
this paper. The impulsive instants depend on the event-
trigger function (39). If g(t) ≥ 0, the impulsive control
(36) occurs. Then, e(t) = 0 and we get that the event-
trigger function g(t) < 0 from (39). Over time, the
sample error ‖e(t)‖ will increase. The next trigger will

occur when it satisfies g(t) ≥ 0. The term σ
(t−t0)2

is
used to ensure that the Zeno behavior will not happen.

Let ξ(ki ) = θ(ki )Z(ki ), and ξ = (ξ(k1), ξ(k2), . . . ,
ξ(kn))T for i = 1, 2, . . . , n. Then, for any t ∈
[tk, tk+1), k ∈ N , the derivatives of S1ki (t) and S2ki (t) in
(37) are converted into

dS1(t)

dt
=
[

1

〈k〉�1(t) − (β1 + γ + d)In
]

S1(t)

dS2(t)

dt
=
[

1

〈k〉�2(t) − (β2 + d)In
]

S2(t) + γ S1(t)

(40)

where �1(t) =

⎛

⎜
⎜
⎜
⎝

α(k1)Ik1(t)
α(k2)Ik2(t)

...

α(kn)Ikn (t)

⎞

⎟
⎟
⎟
⎠

ξ T and �2(t) =

⎛

⎜
⎜
⎜
⎝

ρ(k1)Ik1(t)
ρ(k2)Ik2(t)

...

ρ(kn)Ikn (t)

⎞

⎟
⎟
⎟
⎠

ξ T .

Due to Iki (t) ≤ p
d+μ

, we replace Iki (t) in �1(t) and

�2(t) with p
d+μ

, then the new matrices are denoted

by �̄1 and �̄2, respectively. We can get the following
equation

dS(t)

dt
=
(

1
〈k〉 �̄1 − (β1 + γ + d)In 0

γIn 1
〈k〉 �̄2 − (β2 + d)In

)

S(t)

= ω̄S(t)
(41)

where ω̄ =
(

1
〈k〉 �̄1−(β1+γ +d)In 0

γIn 1
〈k〉 �̄2 − (β2 + d)In

)

.

From the principle of comparison, if the origin of
Eq. (41) is globally asymptotically stable, the origin of
Eq. (40) is also globally asymptotically stable. There-
fore, in the following, we will prove the origin of
Eq. (41) is globally asymptotically stable under con-
trol (36).

Before giving the main results, the following useful
lemma is presented.

Lemma 4 [32] Let w(t) be nonnegative and continu-
ous function on [t0,+∞). If the following inequality is
satisfied

w(t) ≤ Y +
∫ t

t0
�w(s)ds (42)
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where Y is a nonnegative constant, and � is a constant,
then

w(t) ≤ Y exp{�w(s)}, t ∈ [t0,+∞). (43)

Theorem 7 Consider model (1) under the impulsive
event-triggered control (36) with the event-trigger
function (39). If there exist positive numbers ς > 0,
σ > 0, 0 < ε < 1, 0 < q < 1 and a positive definite
matrix U such that

lim
t→∞

[

k ln(1 − εq) + k + 1

2
ln

(
λmax(U )

λmin(U )

)

+ λmax(φ)

2λmin(U )
(t − t0)

]

→ −∞ (44)

where λmax(U ) and λmin(U ) represent the maximal
and minimal eigenvalues of U, respectively. λmax(φ)

represents the maximum eigenvalue of φ, and φ =
ω̄U + UT ω̄. Then, the rumor will fade away. More-
over, the Zeno behavior does not exist.

Proof For any t ∈ [tk, tk+1), k ∈ N+, we construct the
following Lyapunov function

V (t) = ST (t)US(t) (45)

where U is a positive definite matrix.
The time derivative of V (t) is

V̇ (t) = ST (t)U Ṡ(t) + ṠT (t)US(t)

≤ ST (t)(ω̄TU +U ω̄)S(t)

≤ λmax(φ)ST (t)S(t) (46)

where λmax(φ) is the largest eigenvalue of the matrix
φ = ω̄TU +U ω̄.

For t ∈ [t0, t1),

λmin(U )‖S(t)‖2 ≤ V (t) ≤ V (t0)

+
∫ t

t0
λmax(φ)‖S(s)‖2ds

≤ λmax(U )‖S(t0)‖2

+
∫ t

t0
λmax(φ)‖S(s)‖2ds. (47)

Based on Gronwall’s inequality, we have

‖S(t)‖2 ≤ λmax(U )

λmin(U )
‖S(t0)‖2 +

∫ t

t0

λmax(φ)

λmin(U )
‖S(s)‖2ds

≤ λmax(U )

λmin(U )
‖S(t0)‖2 exp

{
λmax(φ)

λmin(U )
(t − t0)

}

. (48)

For the case of t = t1, we have

‖S(t1)‖2 ≤ (1 − εq)2
λmax(U )

λmin(U )
‖S(t0)‖2

exp

{
λmax(φ)

λmin(U )
(t1 − t0)

}

. (49)

For t ∈ [t1, t2), it has

‖S(t)‖2 ≤ λmax(U )

λmin(U )
‖S(t1)‖2

exp

{
λmax(φ)

λmin(U )
(t − t1)

}

≤ (1 − εq)2(
λmax(U )

λmin(U )
)2‖S(t1)‖2

exp

{
λmax(φ)

λmin(U )
(t − t0)

}

. (50)

For the case of t = t2, we have

‖S(t2)‖2 ≤ (1 − εq)4(
λmax(U )

λmin(U )
)2‖S(t0)‖2

exp

{
λmax(φ)

λmin(U )
(t2 − t0)

}

. (51)

Thus, for any t ∈ [tk, tk+1), one can obtain that

‖S(t)‖2 ≤ (1 − εq)2k
(

λmax(U )

λmin(U )

)k+1

‖S(t0)‖2

exp

{
λmax(φ)

λmin(U )
(t − t0)

}

. (52)

By using condition (44), one has limt→∞ ‖S(t)‖ = 0.
Then, the rumor dies out. �	
Remark 6 InTheorem7, the condition of rumor extinc-
tion (44) is given. In fact, it can be satisfied by properly
choosing control strength ε and q. When the event-
triggered interval is bounded, there exist constants
Tmax and Tmin such that Tmin ≤ tk+1 − tk ≤ Tmax,
k ∈ N . For any event-triggered instant tk , it has
t

Tmax
≤ k ≤ t

Tmin
. If the parameters ε and q satisfy
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ln(1−εq)
Tmax

+ 1
2Tmin

ln( λmax(U )
λmin(U )

+ λmax(φ)
2λmin(U )

) < 0, then con-
dition (44) can be satisfied.

In the next, we will prove that there is no Zeno behav-
ior under the event-triggered impulsive control strat-
egy. Let Ṡ(t) = F̄ S(t), F̄ = ( f̄ T1 , f̄ T2 , . . . , f̄ T2n)

T ,
then Ṡi (t) = f̄i S(t), f̄i = ( f̄i1, f̄i2, · · · , f̄i,2n), i =
1, 2, . . . , 2n.

For i = 1, 2, . . . , n,

f̄i j =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

pα(ki j )ξ(k j )

〈k〉(d + μ)
− (β1 + γ + d), i = j,

pα(ki j )ξ(k j )

〈k〉(d + μ)
, i �= j, j = 1, 2, . . . , n,

0, i �= j, j = n + 1, . . . , 2n.

(53)

For i = n + 1, . . . , 2n,

f̄i j =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

pρ(ki )ξ(k j )

〈k〉(d + μ)
− (β2 + d), i = j,

pρ(ki )ξ(k j )

〈k〉(d + μ)
, i �= j, j = n + 1, . . . , 2n,

γ, j = i − n,

0, otherwise.

(54)

For any t ∈ [tk, tk+1), suppose that �(t) =
eT (t)e(t). We have

�̇(t) = ėT (t)e(t) + eT (t)ė(t). (55)

Due to e(t) = X (tk) − X (t) and ė(t) = −Ẋ(t) =
q F̄ S(t). It has

�̇(t) = 2qeT (t)F̄ S(t)

≤ eT (t)e(t) + ‖F̄‖2XT (t)X (t)

≤ eT (t)e(t) + 2‖F̄‖2(eT (t)e(t) + XT (tk)X (tk))

≤ (1 + 2‖F‖2)�(t) + 2‖F̄‖2‖X (tk)‖2. (56)

It yields that

‖e(t)‖2 ≤ 2‖F̄‖2‖X (tk)‖2
1 + 2‖F̄‖2

(
exp{(1 + 2‖F̄‖2)(t − tk)} − 1

)
. (57)

The next event will not be triggered until trigger func-
tion (39) crosses zero, i.e.,

‖e(t)‖2 = ς

2
‖X (tk)‖2 + σ

(t − t0)2

≤ 2‖F̄‖2‖X (tk)‖2
1 + 2‖F̄‖2

(
exp{(1 + 2‖F̄‖2)(t − tk)} − 1

)
. (58)

Therefore, for any t ∈ [tk, tk+1),

σ

(t − t0)2
≤ 2‖F̄‖2‖X (tk)‖2

1 + 2‖F̄‖2
(
exp{(1 + 2‖F̄‖2)(t − tk)} − 1

)
. (59)

Denote Tk = tk+1 − tk and t = tk+1, one can obtain

σ

(Tk + tk − t0)2
≤ 2‖F̄‖2‖X (tk)‖2

1 + 2‖F̄‖2
(
exp{(1 + 2‖F̄‖2)Tk} − 1

)
. (60)

If Tk = 0, then σ
(tk−t0)2

≤ 0. This is not true. Therefore,
Tk > 0 for any k, i.e., the Zeno behavior is excluded.

Remark 7 In this paper, the event-triggered impulsive
control strategy is used to restrain the spread of rumor
in a multilingual environment. For the sake of conve-
nience, we control the spreaders in each layer simul-
taneously. It is found that as long as the control inten-
sitymeets some certain conditions, the rumor spreaders
will die out eventually. However, when the network is
tremendous, it is laborious to implement the centralized
event-triggered control strategy. Consequently, in the
future work, wewill further study the distributed event-
triggered control strategy. Maybe the event-triggered
condition only depends on the number of propagations
in each layer of network.

6 Numerical example

In this section, the dynamic characteristic of the pro-
posed rumor propagation model is analyzed by numer-
ical simulation.

This paper considers a rumor propagation model
with two languages under heterogeneous networks. In
the simulation, we choose the degree of network as
ki for i = 1, . . . , 50. Suppose that the network obeys

power law distribution, and we choose Z(ki ) = k−2.5
i
1.74 ;
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from
∑n

i=1 Z(ki ) = 1, we can figure out that the aver-
age degree 〈k〉 = 1.74. Because people with differ-
ent degrees may have diverse infection rates, the infec-
tion rates are always bounded. Hence, the infectivity is

designed as θ(ki ) = k0.5i

1+k0.5i
. The initial value of model

(1) is selected as follows: Iki (0) = 0.7+ k
400 , S

1
ki

(0) =
0.1− k

800 , S
2
ki

(0) = 0.15− k
1600 , Rki (0) = 0.05− k

1600 .

6.1 Stability of rumor-free equilibrium point

Case 1: In model (1), we choose α(ki ) = 0.6, ρ(ki ) =
0.38, γ = 0.08, β1 = 0.05, β2 = 0.08, p = 0.01,
d = 0.01 and μ = 0.005. By simple calculation, it
is derived that the basic reproduction r0 ≈ 0.88 < 1.
Based on Theorem 1, model (1) has a rumor-free equi-
librium E0. From Theorem 3, E0 is globally asymptot-
ically stable, which is verified in Fig. 2 with k50 = 50.
Through the simulation, it can be seen that the number
of rumor spreaders increases firstly, then it decreases,
and it dies out finally. When the rumor spreaders dis-
appear, R(ki ) = 1 − p

d+μ
= 1

3 . This means that
one-third of the people on the network have received
the rumor eventually. Moreover, we also simulate the
rumor propagation model with different initial values
when ki ∈ [1, 50]. As shown in Fig. 3, for individuals
with different degrees, the system has the same equilib-
rium point. Finally, we choose α(ki ) = 0.5 + 0.002k,
ρ(ki ) = 0.28 + 0.002k, γ = 0.08, β1 = 0.05,
β2 = 0.08, p = 0.01, d = 0.01, μ = 0.005. By a
simple calculation, we get r0 < 1. As shown in Fig. 4,
the rumor-free equilibrium point is also E0. Thismeans
that different infection rates only affect the basic repro-
duction number number r0, but do not affect the value
of rumor-free equilibrium point.

6.2 Stability of rumor equilibrium point

Case 2: We choose α(ki ) = 0.5, ρ(ki ) = 0.2, γ =
0.08, β1 = 0.015, β2 = 0.008, p = 0.01, d = 0.01,
μ = 0.005. By simple calculation, it is derived that
r01 ≈ 0.92 < 1 and r02 ≈ 2.27 > 1. Model (1) has an
equilibrium point E∗

1 . From Theorem 4, E∗
1 is globally

asymptotically stable, which is verified in Fig. 5 with
ki = 1. Through the simulation, it can be seen that the
rumor Spreaders 2 will continuously exist as time goes
by.
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Fig. 2 Dynamics of model (1) with r0 < 1 and k50 = 50
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Fig. 3 Dynamics of model (1) with r0 < 1 and ki ∈ [1, 50]
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Fig. 4 Dynamics of model (1) with r0 < 1 and different α(ki ),
β(ki )

In addition, we also simulate the rumor propagation
model with different infection rates. When we choose
α(ki ) = 0.5−0.001k,ρ(ki ) = 0.2+0.002k, γ = 0.08,
β1 = 0.015, β2 = 0.008, p = 0.01, d = 0.01,
μ = 0.005, By a simple calculation, we get r01 < 1 and
r02 > 1. The simulation is shown in Fig. 6, in which
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Fig. 5 Dynamics of model (1) with r01 < 1, r02 > 1 and k50 =
50
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Fig. 6 Dynamics of model (1) with r01 < 1, r02 > 1 and differ-
ent α(ki ), β(ki )

the rumor equilibrium point of E∗
1 depends on the indi-

vidual degree of the network. That means the infection
rate not only affects the basic reproduction number r0,
but also affects the value of rumor equilibrium point.

Case 3:We chooseα(ki ) = 0.5,ρ(ki ) = 0.475, γ = 0,
β1 = 0.0056, β2 = 0.005, p = 0.01, d = 0.01,
μ = 0.005. By simple calculation, it is easily obtained
that r01 ≈ 6.56 > 1, r02 ≈ 6.47 > 1. Accord-
ing to Theorem 1 and Theorem 5, model (1) has a
positive equilibrium E∗

2 , which is globally asymptot-
ically stable. Figure 7 is given to verify the correct-
ness of the theorems. Through the simulation, it can be
seen that rumor spreaders S1(ki ) and S2(ki ) eventually
tend to two constants as time goes on. Moreover, we
also simulate the rumor propagation model with differ-
ent infection rates. Choosing α(ki ) = 0.4 + 0.002k,
ρ(ki ) = 0.375 + 0.002k, γ = 0, β1 = 0.0056,
β2 = 0.005, p = 0.01, d = 0.01, μ = 0.005, it is
easy to get r01 > 1 and r02 > 1. The simulation result
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Fig. 7 Dynamics of model (1) with r01 > 1, r02 > 1 and k50 =
50
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Fig. 8 Dynamics of model (1) with r01 > 1, r02 > 1 and differ-
ent α(ki ), β(ki )

is shown in Fig. 8. This means that different infection
rates both affect the basic reproduction number r0 and
affect the value of rumor equilibrium point. Based on
Theorem 1, one can also find that both the r0 and the
rumor equilibrium point are affected by the infection
rate.

6.3 Efficiency of continuous control

As shown in Fig. 9, if we choose α(ki ) = 0.7, ρ(ki ) =
0.195, γ = 0.05, β1 = 0.001, β2 = 0.02, p = 0.01,
d = 0.01, μ = 0.005, the rumor Spreaders 1 and
Spreaders 2 exist continuously. In order to effectively
suppress the spreadof rumor,weuse continuous control
mechanism to control the rumor. Based on Theorem 6,
weobtain that the rumorwill disappearwhenwechoose
τ ≥ 0.12. Choosing k1 = 1 and ki ∈ [1, 50], the simu-
lation results are shown in Figs. 10 and 11, respectively.
In addition, when we choose α(ki ) = 0.6 + 0.002k,
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Fig. 9 Dynamics ofmodel (1)with r01 > 1, r02 > 1 andwithout
control
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Fig. 10 Dynamics of model (33) with τ > 0.12 and k1 = 1
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Fig. 11 Dynamics of model (33) with τ > 0.12 and ki ∈ [1, 50]

ρ(ki ) = 0.095 + 0.002k, γ = 0.05, β1 = 0.001,
β2 = 0.02, p = 0.01, d = 0.01, μ = 0.005, the state
trajectories are shown in Fig. 12. All these simulation
results well verify the correctness of the theories and
the feasibility of the control.
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Fig. 12 Dynamics of model (33) with τ > 0.12 and different
α(ki ), β(ki )
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Fig. 13 Dynamics of model (1) with r01 > 1, r02 > 1 and
without control

6.4 Efficiency of event-triggered impulsive control

Formodel (1), if we choose α(ki ) = 0.5, ρ(ki ) = 0.45,
γ = 0.001, β1 = 0.008, β2 = 0.008, p = 0.01,
d = 0.01, μ = 0.002, by simple calculation, it is
derived that r01 > 1 and r02 > 1. As Fig. 13 shows,
the rumor will persist continuously. In order to sup-
press rumor propagation, the event-triggered impulsive
control scheme is applied. The event-trigger function
is defined as g(t) = ‖e(t)‖2 − ς

2 ‖X (tk)‖2 − σ
(t−t0)2

,
where ς = 5, σ = 1. If we select ε = 0.5, q = 0.13,
Theorem 8 is satisfied. The state trajectories are shown
in Fig. 14, in which the rumor finally dies out by using
the event-triggered impulsive control. The trigger sig-
nal is shown in Fig. 15, in which 1 means triggered and
0 means not triggered. The simulation shows that the
rumorwill die out whenwe control the rumor spreaders
at some discrete instants. Compared with continuous,
this control scheme is more practical.
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Fig. 14 Dynamics of model (1) with event-triggered impulsive
control (36)
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Remark 8 In order to analyze the correctness of the the-
orems, three cases for model (1) with different param-
eters are simulated. In each case, the simulation results
verify the correctness of the theoretical analysis. When
the rumor spreaders continuously exist, we propose two
kinds of control schemes to suppress the spreading of
the rumor. Figures 10, 11, 12, 13, 14 and 15 show that
the control methods are effective. In fact, the event-
triggered impulsive control reflects thatwe only need to
decrease the rumor spreaders at some discrete instants.
This method is more resource-efficient and practical.

7 Conclusion

In this paper, we propose an I2SRmodel of rumor prop-
agation with heterogeneous networks in a multilingual
environment. In order to analyze the characteristic of
rumor spreading, we calculate the basic reproduction
number r0 by using the next-generationmatrixmethod.

The local stability and global stability of the rumor-free
equilibriumpoint and rumor equilibriumpoint are stud-
ied by means of Routh–Hurwitz discriminant method
and Lyapunov stability theory. In addition, two kinds
of control schemes, the continuous control and event-
triggered impulsive control, are proposed to restrain
the spreading of the rumor. Some related conditions
are obtained to suppress the spreading of the rumor.
Finally, the validity of the theoretical results is verified
by numerical simulations. In practice, the communica-
tion time delay always exists. Hence, we will consider
the rumor spreadingmodelwith time delays undermul-
tilingual environments in the future work.
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