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Abstract This paper presents novel approach to the
task of control performance assessment. Proposed
approach does not require any a priori knowledge on
process model and uses control error time series data
using nonlinear dynamical fractal persistence mea-
sures. Notion of the rescaled range R/S plots with esti-
mation of Hurst exponent is applied. Crossover phe-
nomenon is observed in data being investigated and dis-
cussed. Paper starts with industrial engineering ratio-
nale. Review of the control error histogram is followed
by statistical analysis of probabilistic distribution func-
tions (PDFs). Lévy α-stable PDF parameters seem to
be best fitted. They directly lead to the fractal analysis
using Hurst exponents and R/S plot crossover points.
The evaluation aims at performance of the general-
ized predictive control (GPC) and discusses freshly
introduced loop performance quality sensitivity against
design parameters of the GPC controller.
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1 Introduction

Presented work combines observations from different
contexts: CPA [24], model predictive control (MPC)
[6], non-Gaussian statistics [19] and fractal nonlinear
analysis [36]. The main research interests focus on the
subject of control quality for SISO loop using predic-
tive controller (GPC).

PredictiveMPC algorithms gain popularity in indus-
trial process control. Although they are more compli-
cated and require specific knowledge, they allow to
address issues that are unattained by PID loops. It may
coordinate multivariate installations that are subject to
delays and technology constraints. Real processes are
mostly non-stationary, time-varying complex systems.
Application ofMPCmay significantly improve control
quality. It is compensated with more extensive tuning
effort due to the larger number of parameters. Addi-
tionally, system sensitivity to unmodeled dynamics or
internal model misfit increases. It may unexpectedly
level down accomplishments. Improper or inexistent
maintenance may significantly deteriorate any positive
results [39].

Thus, loop quality and control system performance
plays crucial role in achieving operational. Improperly
selected philosophy of regulation or poor tuning affects
or even may fully destroy overall process performance.
Control performance monitoring and diagnostic tools
are inevitable elements properly designed I&C infras-
tructure. This subject is even more important in case of
advanced process control (APC) solutions.
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MPC approach consists of many algorithms being
variants of backbone predictive philosophy [28]. It
uses embedded model supporting controller with pre-
dictions and optimization algorithm to choose opti-
mal scenario. Control evaluation is repeated each step
(sampling period). GPC algorithm is one of them. It
was introduced in 1987 [9]. Although the algorithm
is well established and there are a lot of variants and
reported successful implementations, its design, tuning
and maintenance are still challenging.

Reviews show that a large number of industrial
loops perform poorly with 60% featuring bad tun-
ing and more (85%) facing wrong design [25]. The
need for control quality assessment is strong. CPA is
closely connected with life cycle of control system. It
uses specific indexes allowing measuring and bench-
marking. There are several methods to evaluate and
further interpret results. Data analysis may be per-
formed with several different approaches starting from
time trends, through statistical, minimum variance, fre-
quency domain, orthogonal functions, wavelets, frac-
tals, entropy and many others.

Historically, each control engineer used his own
approach to quantify loop quality. They gathered
unique knowledge based on personal experience, and
it was rarely shared. Increasing quantity of applica-
tions accompanied with still limited number of experts
forced the need for knowledge sharing. First reported
loop performance assessment was applied to paper
machine in 1967 [2]. The research continued gain-
ing increased interest in 1989 with minimum variance
(MinVar) index [21]. CPA interest grew up fast starting
from that moment. Actually research covers almost all
aspects of control, i.e., MIMO structures [51], nonlin-
ear processes [23], large-scale systems [30], predictive
systems [18,34].

Moreover, there are developed new methodolo-
gies using frequency domain [35], wavelets [29], per-
sistence measures [33], orthonormal functions [25],
entropy [50]. It is interesting to notice that soft comput-
ing or artificial intelligence approach is rare. Scientific
research is accompanied with industrial methods and
commercial software packages.

Most methods assumes Gaussian properties. Nor-
mal probabilistic distribution function (PDF) approach
is the most popular. But there are a lot of other func-
tions offering interesting interpretations. It also appears
that properties of many industrial examples are not so
unambiguous. Extension of Gaussian approach opens

new opportunities. It seems that fat-tail properties exist
in the control error data [15]. Stable distributions may
address real issues. Lévy α-stable PDF seems to be one
possible alternative. It is described by several parame-
ters reflecting distribution position, stability, scale and
skewness factors. There exist relations between fat-tail
properties and a phenomenon of fractality [36].

Thus, there is only single step to apply fractal analy-
sis. Approach was first proposed byMandelbrot in 70’s
[27]. Self-similarity is the underlying concept behind
fractals meaning invariance against changes in scale
or size [36]. Two other main distinctive properties are
Hausdorff dimension larger then topological one and
simple recursive definition.

Fractal time series analysis started to be developed in
the world of economy. In economy there exists effec-
tiveness hypothesis assuming that if prices reflect all
publicly available information, new prices are only
caused by new information. Thus, the prices should
hold properties of the Brownian motion. It assumes
that future is independent on past and the present. How-
ever, practice does not reflect it. Information is neither
complete nor a priori known. We do not react immedi-
ately and simultaneously. Thus, we obtain rather frac-
tional Brownian motion. Research shows that simi-
lar behavior and results are observed in many differ-
ent areas. Fractal methods have found several applica-
tions in meteorology, seismology, biology, medicine,
telecommunication, networking, etc. Analysis of con-
trol engineering time series originating from real
complex industrial systems reveals similar properties
[15,17].

Unfortunately, there are only a few reported applica-
tions in control engineering.Authors in [41] address the
subject of using Hurst exponent in the assessment of PI
and PID controller. In [10] scaling exponent is used to
assess Kalman filter performance. In the recent works
authors [11] perform diagnosis of MIMO control loops
with Hurts exponent evaluated through detrended fluc-
tuation analysis (DFA) algorithm using Mahalanobis
distance. The same approach is applied also to the dis-
turbed univariate and multivariate systems with distur-
bances [12].Methodology investigated in the paper per-
forms comprehensive approach to the fractalmethodol-
ogy analyzing different persistence measures (not only
single Hurst exponent).

Research considering performance assessment for
predictive control strategies was conducted for sev-
eral years. First works used knowledge-based system
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applied to the DMC-like predictive controller [34].
Further works continued in various directions. Model-
based approaches [3,7,42] are accompanied with min-
imum variance methods [47,48] that also require some
process knowledge. Statistical approach through corre-
lation analysis of optimal and working controller was
proposed in [3], while prediction error benchmarking
was used in [49]. Different aspect of economic, not
dynamic, controller performance was addressed in [1].
Comprehensive review of various approaches is pre-
sented in [18].

We see that some of the previous methods use data-
driven approach with covariance analysis. And most of
them considers GPC structures. Algorithm proposed
in this paper does not require any knowledge on con-
troller neither embedded model and is purely based on
historical data without any assumptions on its charac-
ter. Thus, it may be commonly applied in industrial
cases. In fact, it may be used to other control strategies.
PID loop assessment is considered in [14].

SISO linear case is considered in paper. Such a selec-
tion is intentional. Its applicability has been already
observed and effectively used in real industrial cases
[17] with nonlinear complex process witnessing strong
and unknown disturbances. Simple case enables clear
and direct analysis of the investigated phenomena. The
goal is to identify method potential and weaknesses.
First works have shown approach applicability with
simulated PID controllers. This work forms natural
next step that (if successful) may be followed by fur-
ther, in-depth (nonlinear, MIMO, complex) research. It
is rather expected that nonlinear cases will be more
suitable for fractal approach as it is just nonlinear.
Research conducted on real industrial data confirms
such a premise. In fact, there is no much difference in
approach extension toward MIMO structures. The sys-
tem uses control error; thus, it may monitor and assess
independently all the channels (CVs—controlled vari-
ables).

Paper starts with the presentation of GPC algorithm
(Sect. 2) and standard CPA approaches (Sect. 3). It
is followed by introduction to stable distributions and
their connections with fractal and persistence proper-
ties. Main part of the paper consists of simulation sce-
narios including varying GPC configuration (Sect. 4).
Paper concludes with Sect. 5 consisting of observations
and open issues requiring further attention.

2 Generalized predictive control

2.1 Predictive task formulation

Let assume that process input (MV—manipulated vari-
able) is u and the output (CV—controlled variable)
y. Classical PID algorithm calculates only value of
manipulated variable at current sampling moment k,
i.e., u(k). In contrast, MPC algorithms [6] calculate
a whole set of future controls for each consecutive
moment k.

�u(k) = [�u(k|k) �u(k + 1|k)
. . . �u(k + Nu − 1|k)]T (1)

Number of decision variables is defined by control hori-
zon length Nu and increments by:

�u(k + p|k)

=
{
u(k|k) − u(k − 1) if p = 0

u(k + p|k) − u(k + p − 1|k) if p ≥ 1

We assume �u(k + p|k) = 0 for p ≥ Nu, i.e.,
u(k + p|k) = u(k + Nu − 1|k) for p ≥ Nu. Future
increments in MV (1) are calculated from optimiza-
tion, in which predicted control quality is maximized
and constraints regarded. Typically, quality is defined
as predicted control errors over prediction horizon
N ≥ Nu, i.e., differences between setpoint ysp(k+ p|k)
and predicted process output ŷ(k + p|k) for p =
1, . . . , N .

Constraints are imposed on the range ofMV defined
by umin, umax, constraints on MV rate of change MV
by �umin,�umax and constraints limiting the range of
predicted CV are ymin, ymax. MPC optimization may
be expressed in a vector–matrix notation

min�u(k)

{ ∥∥ ysp(k) − ŷ(k)
∥∥2 + ‖�u(k)‖2�

}
subject to

umin ≤ J�u(k) + u(k − 1) ≤ umax − �umax

≤ �u(k) ≤ �umax ymin ≤ ŷ(k)�u(k) ≤ ymax (2)

where the norms are defined as ‖x‖2 = xTx and
‖x‖2A = xTAx, the setpoint trajectory vector is defined

as ysp(k) = [
ysp(k + 1|k) . . . ysp(k + N |k)]T, and the
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predicted trajectory vector ŷ(k) = [
ŷ(k + 1|k) . . .

ŷ(k + N |k)]T and the output constraint vectors ymin =[
ymin . . . ymin

]T
, ymax = [

ymax . . . ymax
]T are of

length N . The input constraint vectors umin

= [
umin . . . umin

]T
, umax = [

umax . . . umax
]T

,�umax

= [�umax . . . �umax
]T and the vector u(k − 1) =

[u(k − 1) . . . u(k − 1)]T are of length Nu, matrices
� = diag(λ, . . . , λ) and J are of size Nu × Nu.

Optimization (2) is solved online. Future control
increments (1) are calculated, but only first element
of the sequence is applied to the process, i.e., u(k) =
�u(k|k) + u(k − 1). At next moment k + 1, predic-
tion is shifted one step forward and the procedure is
repeated. Second part of the minimized cost function
is a penalty term (weight λ > 0), which is used to calm
down trajectories (the bigger the value of λ, the slower
the trajectories) and obtain good numerical properties.

2.2 GPC implementation issues

In allMPC algorithms dynamicmodel of the controlled
process is used to predict the future values of the output
variable, ŷ(k + p|k), over the prediction horizon, i.e.,
for p = 1, . . . , N . In theGPC algorithm processmodel
has the form of a discrete difference equation

A(q−1)y(k) = B(q−1)u(k − 1) + C(q−1)
ε(k)

� (3)

with polynomials in the backward shift operator (q−1)

A(q−1) = 1 + a1q
−1 + · · · + a1nAq

−nA1 (4)

B(q−1) = b1q
−1 + · · · + bnBq

−nB (5)

C(q−1) = 1 + c1q
−1 + · · · + cnCq

−nC (6)

Vector of white noises with zero mean is ε(k), and
� = 1−q−1 means backward difference operator (1/�
is integration). Model (3) may be called autoregressive
integratedmoving averagewith exogenous input (ARI-
MAX) or controlled autoregressive integrated moving
average (CARIMA) [44]. Assuming that the process is
affected by integrated white noise, i.e., C(q−1) = 1,
model (3) becomes

A(q−1)y(k) = B(q−1)u(k − 1) + ε(k)

� (7)

Above model is usually applied in practical imple-
mentations of the GPC algorithm. Assumption that

C(q−1) = 1 makes it possible to easily derive predic-
tion equations in comparison with the general case of
C(q−1) �= 1, i.e., when the integrated noise is colored.
Model (7) is used to derive the prediction equation [9]

ŷ(k) = G�u(k) + y0(k) (8)

where dynamic matrix G (calculated once) of dimen-
sionality N × Nu consists of step response coeffi-
cients of model (7) and the free trajectory vector
y0(k) = [

y0(k + 1|k) . . . y0(k + N |k)]T (calculated
at each sampling instant k) is obtained from

y0(k) = F yPG(k) + GPG�uPG(k). (9)

The vectors yPG(k) = [y(k) . . . y(k − nA)]T and
uPG(k) = [�u(k − 1) . . . �u(k − nB)]T are of length
nA + 1 and nB, respectively, and the matrices F and
GPG of size N × (nA + 1) and N × nB are calculated
from the model Eq. (7) solving Diophantine equations
[44]. From Eqs. (8) and (9), GPC prediction equation
is derived

ŷ(k) = G�u(k) + F yPG(k) + GPG�uPG(k) (10)

It is necessary to notify that according to the GPC pre-
diction Eq. (10) the future predictions of the controlled
variable form linear functions of the calculated decision
vector �u(k), and the free trajectory depends only on
the past. Using Eq. (10), from the general MPC opti-
mization problem (2), one obtains the GPC quadratic
optimization task

min�u(k)

{ ∥∥ ysp(k) − G�u(k) − F yPG(k) − GPG�uPG(k)
∥∥2

+‖�u(k)‖2�
}

subject to

umin ≤ J�u(k) + u(k − 1) ≤ umax

− �umax ≤ �u(k) ≤ �umax

ymin ≤ G�u(k) + F yPG(k) + GPG�uPG(k)�u(k) ≤ ymax

(11)

In theGPCquadratic optimization problem (11), which
is solved online at each sampling instant k to calculate
the vector of the increments of the future values of
the manipulated variable, i.e., the vector �u(k), the
minimized cost function is quadratic in terms of�u(k)
and all the constraints are linear in terms of�u(k). That
is why it may be solved online very efficiently using
the available solvers, e.g., the active set or interior point
algorithms. It is important to emphasize that due to the
quadratic nature of the GPC optimization problem, the
global solution is found at all sampling instants k.
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3 Control loop quality measures

Control performance assessment methods that are used
in the analysis are described in the following para-
graphs.

3.1 Time-domain CPA methods

Time-domain approach is straightforward and is com-
monly used. It may be based on data gathered from
specific test experiment data (like step test) or fromnor-
mal operation time trends. Step test measures are very
informative [40] (area index, output index, R-index,
idle index), but they have limited applicability. Indus-
try is not eager to allow dedicated experiments disturb-
ing normal operation, because of lost profits and safety
issues. On the other hand, integral indexes based on
data from normal operation are widely used. Three of
them will be evaluated and compared further:

– Mean square error (MSE):

MSE = 1

N

N∑
i=1

(
y∗
i − yi

)2
, (12)

where N -number of samples, y∗-setpoint (refer-
ence signal), y-process output.

– Integral of absolute error (IAE):

IAE = 1

N

N∑
i=1

∣∣y∗
i − yi

∣∣ , (13)

– And amplitude index (AMP):

AMP = max
(
y∗
i − yi

) − min
(
y∗
i − yi

)
. (14)

MSEand IAEare frequently used alternately.However,
they focus on different aspects. It was shown [37] that
tuning minimizing MSE punishes large setpoint devi-
ations and generates aggressive control, while IAE has
closest relationship to economic considerations [38].
Both of them will be considered in this work.

3.2 Statistical indexes

Statistical factors of Gaussian normal distribution
deliver number of KPIs. Mean value xo and standard
deviation σ are commonly used. They are frequently
followed by higher-order statistics [8]. Their meaning
and importance are unquestionable, and the majority

Fig. 1 Histogram fitted with Cauchy PDF

Fig. 2 Histogram fitted with Lévy PDF

of researchers and practitioners use them. However,
we have to remember that they are valid, while signal
properties are Gaussian.

It was shown [13] that only small amount (≈6%) of
industrial loops holds normal properties. Majority of
them have fat-tail characteristics.Mostly Lévyα-stable
distribution is the best fitted (>60%) (see Fig. 2), with
the rest covered by Cauchy distribution (see Fig. 1).
Lévyα-stable distribution forms feasible alternative for
control error fitting. It hasmore degrees of freedom (15)
as it is parametrized by four parameters.

ϕα,β,δ,γ (t) = eiδt−|γ t |α(1−iβl(t)), (15)

where

l(t) =
{
sgn(t)tg

(
πα
2

)
for α �= 1

−sgn(t) 2
π
ln |t | for α = 1

,

0 < α ≤ 2 stability index, |β| ≤ 1 skewness, δ ∈ R

location and γ > 0 scale factor.
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Stability parameter α is responsible for long tails.
Location δ keeps information about function position,
but it should not be considered identical to the mean
value.Additionally,we have twomore shaping parame-
ters.β informs about distribution skewness, while scale
factor γ has the meaning very similar to γ parameter
of Cauchy PDF. There might be different combinations
of them. For instance α = 2 reflects independent real-
izations. For α = 2, β = 0, γ = 1 and δ = 1 we get
exact normal distribution equation.

Lévy distribution has another advantage. Stability
parameter α responsible for tails is connected with
fractal properties. This aspect will be closely dis-
cussed later; however, at that moment we decide to
use α-stable factors as potential measure. In considered
case, α-stable fitting uses Koutrouvelis [26] regression
approach.

3.3 Nonlinear (fractal) analysis

There are several factors to verify fractal hypothesis.
One is to calculate value of the Hurst exponent H mea-
suring persistence. Hurst exponent is defined as the
asymptotic property of the rescaled range R/S factor(

R

S

)
n

= cnH , n → ∞ (16)

where S—standard deviations in time slot n, c—
positive constant, n—number of observations, H—
Hurst exponent. H is calculated using logarithms

ln E(R/S)n = ln c + H ln n (17)

plotted in double logarithmic scale E(R/S)n from n
estimating H as the line slope. Meaning of H value is
as follows:

– H = 0.5 means that all observations are statis-
tically independent and process is stochastically
uncorrelated.

– 0 < H < 0.5 means anti-persistent time series.
Decrease in the past suggests increase in the future
and opposite.

– 0.5 < H ≤ 1 means persistent process, i.e.,
data increase or decrease in the past implies
increase/decrease in future, respectively.

– For higher values, i.e., H > 1 processes are said to
have no dependency in time domain.

R/S plot is the basic approach to estimate H . It
enables to evaluate not only single scaling exponent,

but also reveals additional features of multiple scales
and crossover points. Apart from above Hurst expo-
nent evaluation method, there are other algorithms, as
in historical order. Selected ones (among many oth-
ers) are used: periodogram [20], boxed or modified
periodogrammethod [22], aggregated variancemethod
[5], detrendedfluctuation analysis (Peng) [31], absolute
value method [43] and differential variance [45].

Finally, there exists hypothesis that Hurst exponent
may be equivalent to the inverse of α parameter of
the Lévy α-stable distribution characteristics equation
[32]. There exist several assumptions on data proper-
ties limiting validity of this result. The comparison and
sensitivities of chosen methods are not the direct goal
for this paper, but some such aspects will be addressed.

4 Simulations

4.1 Simulation example

The following continuous-time dynamic system is
used:

G(s) = K

(T1s + 1)(T2s + 1)
e−T0s (18)

with parameters: K = 2, T0 = 4, T1 = 3, T2 =
10. During GPC algorithm simulations constraints
imposed on the range of MV are taken into account,
umin = −1, umax = 1, as well as change rate limits of
MV�umin = −0.05,�umax = 0.05. It has been deter-
mined that control horizon should be Nu = 3, predic-
tion horizon should be N = 25 and penalty term λ =
0.5 [its value is found experimentally, and it leads to
no problems with online solution of the quadratic opti-
mization GPC task (11)]. For tuning of the GPC algo-
rithm no plant–model mismatch is assumed, i.e., the
model is perfect. Simulation loop diagram is sketched
in Fig. 3.

Simulation control loop is also exposed to distur-
bances. Disturbance z(t) with α-stable properties is

Fig. 3 Closed-loop simulation environment

123



Assessment of predictive control performance 779

added before the process, while Gaussian noise d(t)
is added at the process output. In order to investigate
how disturbances which affect the process and model-
ing inaccuracy result in deterioration of control quality,
four scenarios are run:

(Sc1) Seven real process gains are applied: 0.4, 0.8,
1.2, 2.0, 2.8, 3.2 and 3.6.

(Sc2) GPC applied prediction horizon length different
from the tuned one N = 25. Altogether seven
values are considered: 5, 10, 15, 20, 25, 30 and
35.

(Sc3) Real process delay value differs from that of the
model used for GPC design, T0 = 8. Nine dif-
ferent process delays are used: 4, 5, 6, 7, 8, 9,
10, 11 and 12.

(Sc4) Real value of time constant, T2 being different
from the tuning value T2 = 10. Seven values are
checked: 0.5, 1, 5, 10, 15, 20 and 40.

In addition to above experiments, three different sce-
narios of disturbances are considered:

1. Process is not exposed to any disturbance.
2. Control loop is affected by additive input distur-

bances in the form of random values with normal
distribution and amplitude of 0.008.

3. Control loop is affected by additive input distur-
bances in the form of random values. It has a α-
stable distribution with amplitude of 0.04.

Additionally, nominal GPC loop was simulated with
different noise characteristics, i.e., no disturbances,
three levels of normal noise (small, medium and large)
and stability factors α = 1.5, 1.75, 2 of stable distri-
bution. Those scenarios are used to answer questions
and check the following hypotheses:

(H0) Are the measures independent on disturbance
characteristics? Can we evaluate loop quality
despite disturbances?

(H1) Does setpoint impact results of loop quality
assessment?

(H2) Can we identify whether GPC model gain is
appropriate?

(H3) Can we estimate whether GPC horizon is set
properly?

(H4) Can we confirm whether GPC model delay is
appropriate?

(H5) Can we say assess GPC model dynamics?

Simulation scheme, especially applied SISOmodel,
is simple. However, this decision was intentional. Sim-
ple model enables disclosure of the possible relations.

On the other hand, this model embeds several common
features of real process, i.e., different scales in dynam-
ics and significant delays. Complexity and detection
difficulties are imposed by selected fat-tail disturbances
that may easily and often shadow any detection possi-
bility.

4.2 Results

The main goal is to investigate behavior of fractal mea-
sures. However, its analysis without any references
would not be comparable. At first all the indexes are
simply correlated against each other to see if there is
any consistency. This analysis is done on all available
data (see Table 1).

Analysis of correlation data enables to formulate ini-
tial observations. We see that crossover point (cross)
is rather uncorrelated with other measures. It seems
that this factor carries on other information. Also short-
history Hurst exponent for two memory scales R/S plot
is not correlated. In fractal domain H calculated as
1/α is not in line with other Hurst estimates or CPA
indexes. We may also notice that Hurst exponents cal-
culated from R/S plot are not strongly correlated with
other H measures. Those measures are intercorrelated,
and additionally, it seems that they may reflect similar
behavior as AMP and integral indexes IAE and MSE.
We see that statistical scale factors of non-Gaussian
functions are closely coupled. Lévy stability parameter
α seems to keep similar information. Thus, for further
analysis only two statistical factors of α-stable distri-
bution are used, i.e., stability and scale factor.

4.2.1 H0: impact of disturbances

Ability to detect and identify controller tuning good-
ness despite any disturbances should be one of themain
features of perfect loop quality assessment. From that
perspective of controller the measure value should be
invariant. We consider 13 scenarios of different distur-
bances (see Table 2).

Analysis starts with comparison of undisturbed
value with mean and variance of disturbed values for
any measure. Six different simulations are considered:
optimal GPC model with horizons equal to 12 and 25,
internal model with too small gain K = 1.6 for both
horizons. Analogously, two simulations are run with
too large gain K = 2.4 for both horizons.
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Table 1 Correlation table (HRS : single memory scale Hurst exponent, n(cross): crossover, H (short): short-history exponent for two
scales, H (long): long-history exponent for two scales)

σ Lα Lβ Lγ Lδ n(cross) H (short) H (long) HRS

σ 1

Lα 0.104 1

Lβ −0.517 −0.375 1

Lγ 0.348 0.891 −0.547 1

Lδ −0.182 −0.050 0.461 −0.056 1

n(cross) −0.574 −0.412 0.191 −0.583 −0.214 1

H (short) 0.621 0.108 −0.258 0.304 −0.134 −0.747 1

H (long) 0.452 0.727 −0.493 0.890 −0.144 −0.748 0.616 1

HRS 0.535 0.558 −0.483 0.747 −0.221 −0.755 0.818 0.947 1

1/α −0.038 −0.664 −0.009 −0.400 −0.028 0.390 −0.146 −0.367 −0.286

AbsVal −0.173 0.228 −0.047 0.263 0.019 −0.345 0.191 0.319 0.288

AggVar 0.002 0.262 −0.130 0.341 −0.004 −0.494 0.364 0.443 0.437

DiffVar −0.172 0.279 −0.061 0.314 0.057 −0.370 0.185 0.357 0.311

Per 0.035 −0.300 0.138 −0.369 −0.003 0.430 −0.210 −0.402 −0.344

BoxPer 0.022 −0.360 0.136 −0.415 −0.036 0.459 −0.149 −0.421 −0.321

Peng 0.076 −0.356 0.126 −0.411 −0.056 0.445 −0.183 −0.435 −0.354

AMP 0.220 −0.348 0.104 −0.373 −0.047 0.308 −0.088 −0.360 −0.282

IAE 0.242 −0.297 0.043 −0.313 −0.056 0.304 −0.080 −0.319 −0.244

ISE 0.262 −0.350 0.058 −0.361 −0.061 0.299 −0.058 −0.348 −0.259

1/α AbsVal AggVar DiffVar Per BoxPer Peng AMP IAE

1/α 1

AbsVal −0.228 1

AggVar −0.264 0.978 1

DiffVar −0.252 0.995 0.974 1

Per 0.257 −0.979 −0.977 −0.975 1

BoxPer 0.313 −0.944 −0.944 −0.944 0.984 1

Peng 0.301 −0.972 −0.971 −0.977 0.990 0.987 1

AMP 0.245 −0.976 −0.934 −0.983 0.962 0.933 0.963 1

IAE 0.249 −0.989 −0.948 −0.991 0.973 0.950 0.975 0.992 1

ISE 0.264 −0.977 −0.932 −0.984 0.962 0.941 0.969 0.995 0.997

Bold values describe only correlation equal to 1

Stability factor α is sketched in Fig. 4 and scaling
γ in Fig. 5. Very clear separation is visible with worse
tuning for both parameters. Unfortunately, GPC regu-
lation with optimal model is not well detected.

Next fractal measures are presented. For all cases
rescaled range R/S plots are prepared. It has been
noticed that all of them witness crossover behavior.
R/S plot for the best GPC controller (ideal model)
with no disturbances is presented in Fig. 6 as an
example.

We clearly see two persistence scales separated with
single crossover point. Short-memory Hurst exponent
is close to the value of uncorrelated process H (short) =
0.544, while long-memory Hurst exponent (starting
after crossover point n(cross) = 504 s) is definitely anti-
persistent with H (long) = 0.157. Comparison of plots
confirms the same pattern for all considered scenarios.

Above results are very interesting. Short-memory
exponent H (short) is close to 0.5, i.e., independent
stochastic process of Brownian motion. It would con-
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Table 2 Scenarios for disturbance invariance investigation

DistScen z(t) d(t)

D0 – –

D1 α = 2.00, Ampl=average –

D2 α = 1.50, Ampl=average –

D4 α = 1.75, Ampl=average –

D5 α = 2.00, Ampl= large –

D6 α = 1.50, Ampl= large –

D7 α = 1.75, Ampl= large –

D8 – α = 2.00, Ampl=average

D9 – α = 1.50, Ampl=average

D10 – α = 1.75, Ampl=average

D11 – α = 2.00, Ampl= large

D12 – α = 1.50, Ampl= large

D13 – α = 1.75, Ampl= large

Fig. 4 Disturbance impact on factor α of α-stable distribution

Fig. 5 Disturbance impact on factor γ of α-stable distribution

firm hypothesis proposed in [40] that H = 0.5 is con-
nected with well-fitted controller. It is also suggested
that persistent properties reflect sluggish performance,

Fig. 6 R/S plot for an ideal case

while anti-persistent ones indicate aggressive tuning
often characterized by oscillations.

It is needed to explain strong anti-persistent behavior
of long-memory H (long) exponent. Control error con-
stitutes of two elements: short-term transient period
(probably associated with H (short)) and long-term
steady-state operation (reflected in H (long)). As GPC
controller uses ideal model, H (short) is relatively close
to 0.5. On the other hand, strong anti-persistent H (long)

is reflected in semi-flat line of the steady-state control
error once system stays on setpoint.

Discussion prepares hypotheses for further analysis.
As R/S plot is characterized by two persistence scales
separated with single crossover point, the evaluation of
singleHurst indexeswith other thenR/S plot algorithms
is not justified. Thus, only parameters of two memory
scales R/S plot will be further taken into consideration,
i.e., n(cross), H (short) and H (long).

Crossover phenomenon impact is presented inFig. 7.
We may see that crossover seems to be relatively inde-
pendent of noise and isworth to be considered in further
evaluations.

Both Hurst exponents H (short) and H (long) are
sketched on two following plots (Figs. 8, 9). Both
present similar properties despite loop disturbances.
One may notice from those plots’ behavior similar to
the one from non-Gaussian statistics. There is more
clear distinction between GPC model fitting for worse
controller, rather than for the ideal one.

The analysis presented in that paragraph evaluated
potential robustness of the considered loopqualitymea-
sures against disturbances embedded into the close
loop. It seems that the parameters are mostly able to
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Fig. 7 Disturbance impact on crossover point

Fig. 8 Disturbance impact on short-memory Hurst exponent

Fig. 9 Disturbance impact on long-memory Hurst exponent

detect controller misfitting despite disturbances. How-
ever, there are parameters that are screened by noise
with unreliable results, like AMP.

On the other hand, in the group of fractal indexes
it has been shown that R/S plot features distinctive
crossover behavior. Thus, all single memory Hurst

indexes are of no use and their estimation is not useful.
Following indexes are further used:

– statistical indexes: Gauss standard deviation σ

together with α and γ of α-stable PDF,
– integral indexes of IAE and MSE,
– fractal measures originating from R/S plot: n(cross),

H (short) and H (long).

4.2.2 H1: effect of setpoint shape

During evaluation of above results there has been for-
mulated hypothesis that results may be biased by the
shape of setpoint. At first setpoint is in the form of
rectangular wave with varying amplitude. Second set
of the same experiments is run to exclude that effect
with setpoint filtered by first-order inertia. It is to verify
hypothesis that setpoint shape may affect results, espe-
cially through length of transient period in relation to
steady-state time. Minimum, maximum, average and
standard deviations of the measure error �η for each
index are calculated. Results are presented in Table 3.

We see good robust behavior of scale factor γ . We
also observe that stability parameter α has the largest
standarddeviation (variability). The reason for thatmay
originate from multi-persistent nature of the R’S plot
with two distinct scales. Short-memoryHurst exponent
H (short) is the most robust one from the perspective of
robustness. Its value is practically invariant against set-
point shape. It is in clear contrary to the long-memory
exponent H (long). It somehow confirms hypothesis that
long-memory effect is connected with steady state. It is
reflected in long-memory Hurst exponent, as setpoint
shape affects steady-state operation. Crossover posi-
tion is indecisive, and it remains for further evaluations,
while H (long) is excluded.

We main formulated some working hypothesis that
detailed analysis of R/S plot may new indications on
loop behavior, like for instance about steady-state oper-

Table 3 Statistical properties of the measure errors

Min Max Mean SD

α Lévy −39.16 28.40 −3.25 9.47

γ Lévy −10.64 7.62 1.65 3.47

n(cross) −17.86 14.29 −1.82 5.37

H (short) −1.55 3.71 0.40 1.01

H (long) −19.60 8.43 −5.58 3.95
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ation. While H (short) holds information about transient
period properties, H (long) supplements us with steady-
state information.

4.2.3 H2: impact of model gain

Experiments to verify hypothesis H2 are organized
as follows. We check whether selected measures can
detect proper selection of the GPC embedded model
gain. Thus, nine different gain values are tested: 0.4,
0.8, 1.2, 1.6, 2.0, 2.4, 2.8, 3.2 and 3.6. For each one
three different disturbance scenarios are tested: no dis-
turbances, Gaussian noise added before the process and
α-stable disturbance after the controller.

As we know the real value of the model gain is
2.0. Thus, the plots should be able detect that value
with minimum index value. It is very clearly seen that
all but α curves indicate that point. Stability param-
eter (Fig. 11) fails in this task. Scale factor is exact
in detection (Fig. 10). Fractal parameters originating
from R/S plot, i.e., crossover point (Fig. 12) and Hurst
exponent H (short) (Fig. 13), also have similar ability.
Crossover indicates exact point, while H (short) detect
slightly overestimated value of K = 2.4.

Fig. 10 Dependence of Lévy’s γ on GPC model gain

Fig. 11 Dependence of Lévy’s α on GPC model gain

Fig. 12 Dependence of R/S crossover n(cross) on GPC model
gain

Fig. 13 Dependence of Hurst exponent H (short) on GPC model
gain

Fig. 14 Dependence of γ of Lévy distribution on GPC model
delay

4.2.4 H3: impact of model delay

Similar analysis is used to verifywhether selectedmea-
sures can detect selection of the GPC controller model
delay. Thus, nine different delay values are tested: 4,
5, 6, 7, 8, 9, 10, 11 and 12. For each of the delays
three disturbance scenarios are tested: no disturbances,
Gaussian noise added before the process and α-stable
disturbance inputted after the controller.

Real value of the model delay is 8.0. Thus, plots
should somehow enable finding out of this value.
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Fig. 15 Dependence of α of Lévy distribution on GPC model
delay

Fig. 16 Dependence of R/S crossover n(cross) on GPC model
delay

Unfortunately, in that case detection is not straightfor-
ward. It works only in one case, i.e., when there are no
disturbances in the loop. It is especially visible for both
stable PDF γ (Figs. 14, 15) indexes. Curve for undis-
turbed loop is in compliance with our expectation. First
the index diminishes up to ideal value and then starts
to rise in linear way. We may clearly find out optimal
value of the delay and additionally see that increase
in the model delay constantly degrades control. How-
ever, simultaneously relations for disturbed loops are
just flat. Themeasures are independent onmodel delay.
It seems that loop disturbances screen effect of model
delay misfit.

The curves for fractal measures, i.e., crossover point
(Fig. 16) and Hurst exponent H (short) (Fig. 17), are
indecisive. First of all they show something only for
undisturbed loop. Disturbances shadow delay misfit.

They both also degrade with overestimated delay.
Thus, they detect to large delay. But they fail to change
their value for underestimated model delay. Conclud-
ing, we see that appropriate model delay value is hardly
detected. Strange behavior is observed in presence of
disturbances. All the curves flatten and show nothing.

Fig. 17 Dependence of Hurst exponent H (short) on GPC model
delay

Fig. 18 Dependence of γ of Lévy distribution on GPC model
time constant T2

Fig. 19 Dependence of α of Lévy distribution on GPC model
time constant T2

4.2.5 H4: impact of model dynamics

Next the same methodology is applied to verifica-
tion whether selected measures can detect proper GPC
embedded model dynamics. Seven different values for
time constant T2 are tested: 0.5, 1, 5, 10, 15, 20 and 40.
Three different disturbance scenarios are tested, i.e., no
disturbances, Gaussian noise added before the process
and α-stable disturbance inputted after the controller
for each time constant.
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Fig. 20 Dependence of R/S crossover n(cross) on GPC model
time constant T2

Fig. 21 Dependence of Hurst exponent H (short) on GPC model
time constant T2

Real value of the model delay is 10. Thus, the plots
should be able to detect that value. Observing the plots
we notice two different curve types. First, for stable
PDF γ (Fig. 18) we see clear ability to show the right
value, while α (Fig. 19) totally fails.

We see that too small values of dynamics do not
deteriorate control quality significantly (in sense of the
measure considered). In contrary, for too high values
of T2 indexes rapidly increase suggesting fast degrada-
tion of control quality. This behavior is interpreted that
underestimated dynamics is not so dangerous for GPC
control as a too slow ones.

There is also observed that detection is better for
disturbed loops, than for undisturbed ones. This is in
contrary to previous scenario (H3: impact of model
delay). It seems that more excited trends (due to the
disturbances) enable better exposure of dynamics mis-
fit effect.

Curves for parameters originating from R/S plot,
crossover point (Fig. 20) and Hurst exponent H (short)

(Fig. 21) have different properties. Both of them are
monotonic. Crossover point decreases, while Hurst

exponent has positive slope. They keep the same shape
despite loop disturbances.

This effect requires discussion. Some explanations
may be proposed for the Hurst exponent. As it was
already cited [40], Hurst exponent value shows differ-
ent kinds of tunings. It changes from anti-persistent
H < 0.5 oscillatory behavior, through neutral Brown-
ian motion with independent stochastic process (H =
0.5) up to persistent properties (H > 0.5) reflecting
sluggish tuning. From that perspective limiting (min or
max) index values does not have to reflect anything.We
see that for model gain impact all the H (short) values
are larger than 0.5, and thus, minimal value is the clos-
est to independent stochastic process H (short) ≈ 0.54.
For model delay impact analysis we had similar values
for H (short) > 0.5 with similar minimum of close to
independent stochastic process H (short) ≈ 0.54.

Following above, optimal value of the Hurst expo-
nent should not be extremum necessarily. It should lie
at the crossing with Hurst exponent optimum value. Its
first estimate is 0.5, but other research shows that it
does not have to be exactly that value. Thus, lack of
extremum does not mean wrong detection. Hurst index
is more reach in information showing not only whether
control is good or bad, it also give us indication what
kind of wrong tuning we are witnessing (sluggish or
aggressive). Hypothetically, it might be possible that
similar effect is observed on the crossover curve but
this hypothesis requires further investigation.

4.2.6 H5: impact of GPC controller horizon

Finally, similar analysis is used to verify whether
selected measures can detect proper selection of the
GPC controller horizon. Thus, seven different horizon
values are tested: 10, 12, 15, 20, 25, 30 and 35. For
each of the horizons three different disturbance scenar-
ios are tested: no disturbances, Gaussian noise added
before the process and α-stable disturbance inputted
after the controller.

In this case different kind of results is expected. The-
oretical speculations about predictive controller clearly
say that the horizon should not be too short against
process delay and dominant time constant. We should
not loose dynamics. However, there is nothing wrong
about overestimated horizon length. It will only result
in larger calculation effort without deterioration of con-
trol quality.
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Fig. 22 Dependence of γ of Lévy distribution onGPCcontroller
horizon

Fig. 23 Dependence ofα of Lévy distribution onGPC controller
horizon

As we look at figures of γ (Fig. 22) and α (Fig. 23),
we explicitly see expected behavior. First, the mea-
sure curve rapidly decreases up to value of ∼20 and
after that saturates. It means that there is no reason
to increase further GPC horizon. We are unable to
improve control performance behind this value. Addi-
tionally, it is detected despite loop disturbances. Proper
horizon value is identified despiteminor differences for
stability index.

Crossover point (Fig. 24) impact analysis does not
give us any explicitly clear indication. We see measure
value saturation for horizon > 20 and tendency for
lower values for smaller horizon lengths. These obser-
vations are independent on loop disturbances.

Less clear detection is for short-memory exponent
H (short) (Fig. 25). First of all its values vary in a very
narrow range (0.54 ÷ 0.58). Despite shape disruption
for the shortest horizon considered (horizon = 10) the
shape gives indication. This unexplained behavior for
short horizon is not so disturbing for crossover point as
it varies in relatively wider range. This effect disturbs
proper detection with Hurst exponent. This scenario
closes simulation analysis.

Fig. 24 Dependence of R/S plot crossover n(cross) on GPC con-
troller horizon

Fig. 25 Dependence of Hurst exponent H (short) on GPC con-
troller horizon

4.3 Method application scheme

Applicability of the proposed methods and measures
may help to extend current schemes, allowing for more
degrees of freedom.Wemay imagine two possible sce-
narios:

1. the tuning (implementation) of theMPC controller,
2. monitoring of the already workingMPC algorithm.

Themethodology differs in each of the above scenarios.
The proposed measures show ability to reflect misfit-
ting in the parameters of the MPC embedded model.
But the measures itself do not show direction of the
required change. We can investigate it through several
tests evaluating the trends of the indexes. Moreover,
the changes in measures do not show the source of the
results. It is difficult to distinguish between the gain
or dynamics misfit. The one possible method of their
use is described below. We select three measures for
observation: α-stable PDF scaling γ , stability factor α

and short-memory Hurst exponent H (short).
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4.3.1 MPC tuning

The tuning of the MPC controller is not an easy task.
The embedded model and the prediction horizon are
among the most important settings.

1. At first the process model is identified, most often
during the process of process parametric tests and
a separate identification. This model allows MPC
operation; however, its fine tuning is most probably
required.

2. Next, the horizon should be set. Aswe are changing
only one MPC parameter in a time, we can try to
lower the horizon length and observe the accord-
ing changes in the scaling γ . We select the short-
est horizon length, when the scaling value stops to
diminish.

3. Model delay is not well reflected by the measures
in case of high disturbance ratio. If the disturbances
are significant, we have to use othermethods or rely
on the initially identified value. In case of minor
disturbance impact, it can be tuned with the aid of
scaling γ .

4. Tuning of the model gain should be done next. We
select the gain for theminimum value of the scaling
factor γ .

5. We perform the fine tuning of the model dynamics
(time constants) in the same way as for the model
gain.

6. The above steps are using scaling factor γ only
intentionally.During thewhole process the stability
α is observed. It is responsible for the fat tails, and
its desired value is α = 2. We use it to distinguish
between tunings of the very similar performance
(from the perspective of scaling) to select the one
with stability closest to 2.

7. Finally, the Hurst exponent should be discussed.
Actually it is not actively used during the pro-
cess. But it should be measured continuously and
matched with the obtained control qualities, both
good, sluggish and aggressive. This relation is used
to determine what value of the Hurst exponent
relates to the best case tuning.

8. Hurst exponent is then used for further process
monitoring. We may distinguish between selected
“good” operation and undesirable sluggish or
aggressive one through observation of its fluctu-
ations.

4.3.2 MPC assessment

During themonitoring of the already operating loopwe
are facing the situation, when the process fluctuates. It
is the most probably associated with the non-stationary
variations in the process dynamic characteristics. This
causes misfitting in the MPC embedded model.

We need to observe time trends scaling factor γ and
short-memoryHurst exponent for that purpose. Lasting
increase in scaling may indicate the effect of process
dynamic fluctuations and MPC embedded model mis-
fit. Simultaneously observing direction of changes in
Hurst exponent we may determine, in which direction
these changes go, i.e., sluggish or aggressive. It isworth
to perform online monitoring activity. This subject is
discussed in details in [16].

Following the observations of the onlinemonitoring,
the appropriate tuning initiative may be started using
the schemes proposed in the description of the MPC
tuning.

5 Conclusions and further research issues

This paper presents results of the research on alternative
CPAmeasures applied to control quality assessment for
SISO loop with GPC controller. Analysis is based on
simulations, even though the subject has appeared and
grown up in real, industrial cases. All considered mea-
sures have been calculated using control error variable
as it is the best loop signal available for analysis. First,
its optimal value is zero, so any nonzero mean value at
once indicates steady-state error. Any skewness clearly
suggests asymmetric control, possibly due to the pro-
cess nonlinearities or constraints. Finally, it should not
be subject to any external trends, like for instance pro-
cess output variable. Thus, no detrending is required.

Investigation starts with comparison of three CPA
measures’ groups: statistical ones (both Gaussian and
non-Gaussian), integral indexes based on time trends
and fractal persistence measures using Hurst exponent.
The goal is to find indexes invariant to loop exter-
nal environment (disturbances, setpoint, etc.). Analy-
sis enables selection of four promising indexes: two
parameters of α-stable distribution (stability and scale
factor), n(cross)—crossover point of the R/S plot for the
control error and H (short)—short-memory Hurst expo-
nent.
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The approach to the estimation of Hurst exponent is
general. It does not assumes whether we face single or
multiple persistence scales. It may work in case of any
loop performance, like oscillation. Its deficiency lies
in fact that it is not automatic. Close visual inspection
of rescaled range plots is required, at least at the early
stage of assessment. However, in opinion of authors,
it is advantage as such review may disclose aspects
otherwise omitted.

Next, they are used to verify ability to detect tuning
quality of the GPC controller: impact of model gain,
effect of model delay, influence of model dynamics
and impact of GPC controller horizon. Comparison of
results shows that:

1. Gaussian standard deviation is biased by the char-
acter of setpoint signal. The same effect happens
with stability parameter α. In contrary scale factor
of the α-stable distribution seems to be robust as
control error histogram is strongly fat-tailed.

2. Fractal analysis through rescaled rangeR/S plot and
Hurst exponents show that it has crossover prop-
erties with two strict Hurst exponents: short and
long memory. Analysis suggests that crossover and
short-scale Hurst exponent are invariant and infor-
mative. It is proposed that short-range exponent is
responsible for transient period performance (con-
troller tuning), while long-range one informs about
steady-state stabilization.

3. It is not suggested to calculate single Hurst expo-
nent without review od R/S plot.

4. Lévy’s γ is able to detect model gain, dynamics
misfit andGPChorizon length. It only has problems
with model delay. In that case any loop disturbance
screens detection.

5. Short-range Hurst exponent behaves in different
way. We are not searching for its minimum, nor
maximum value. Its best value is expected to be at
values ∼0.5 with smaller values informing about
control loop aggressiveness and higher ones detect-
ing sluggish tuning. Thus, Hurst exponent is more
informative. It not only says whether control is bet-
ter or worse, but indicates the reason. We may also
have another degree of freedom. Value 0.5 does not
have to be optimal. It depends on control require-
ments. If we allow overshoot, it may be shifted
down and in opposite case biased up.

6. Crossover behavior and its detection ability are still
open and undecided. It seems to be good indicator,

independent on external loop influences. However,
its optimal value does not have to be at extremum. It
may also hold information about reasons for wrong
tuning. As for Hurst exponent the best value may
be estimated as uncorrelated stochastic process, it
is not evident what value is the best for crossover
point.

7. Detection ability fails with model delay misfit. It
works only in case of no disturbances.

8. Stability factor of Lévy distribution is altered by
two memory scales in R/S plot and needs more
investigation

Above analysis addresses the subject of performance
monitoring of a closed-loop dynamic system. The
approach originates from process industry needs, when
some complex system is controlled. The paper shows
that application of chaos-based methods brings bene-
fits. It would be extremely interesting to see whether
such persistence and fractal measures may be used to
evaluate quality of a control for chaotic systems, like
[46].

Analysis reveals open subject that requires closer
insight. Delay misfit detection is probably the most
important one. It is the only parameter of the GPC
controller, for which approximation misfit is hardly
detected. Potential hypothesis that it may be caused my
disturbance shadowing effect requires attention. Next,
statistical properties of the control error signal should
be investigated. It would be worth to confront such a
simulation analysis with industrial process time trends.
Last open issues are associated with fractal properties.

– Crossover phenomenon requires closer attention.
Further research will focus on its origins andmean-
ing. It will be analyzed how process complexity
affects the number of crossover points and their
position, as complex dynamics frequently causes
multiple scaling exponents in the same range of
scales [4].

– Finally, the paper did not addressed eventual multi-
fractal properties of the control error time series.
The authors assumed mono-fractal behavior. The
data will be analyzed to see, whether multi-fractal
properties exist in control time trends data.

Above results and observations are accomplished
with simple linear SISO case. It is worth to investigate
more complex scenarios, like nonlinear, MIMO and

123



Assessment of predictive control performance 789

systems with significant delays cases to verify method
applicability and effectiveness.
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the source, provide a link to the Creative Commons license, and
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