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Abstract This paper mainly addressed the stability
analysis and the estimation of domain of attraction
for the endemic equilibrium of a class of susceptible-
exposed-infected-quarantine epidemic models. Firstly,
we discuss the global stability of the disease-free equi-
librium and the local stability of the endemic equilib-
rium in the feasible region D of the epidemic model,
respectively. Secondly, we use a geometric approach
to investigate the global stability of the endemic equi-
librium in a positive invariant region Ds(⊂ D). Fur-
thermore, we estimates the domain of attraction for the
endemic equilibrium via sum of squares optimization
method, and obtain the optimal estimation by solv-
ing an semidefinite programming problem with sum
of squares polynomial constraints. Finally, numerical
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simulation is examined to demonstrate the feasibility
and effectiveness of the research results.
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1 Introduction

Since the contributions to the mathematical model of
epidemics, as the susceptible-infected-susceptible(SIS)
model and the susceptible-infected-removed (SIR)
model, were established in [1,2], the study of mathe-
matical epidemiology has grown rapidly. A large vari-
ety of mathematical models [3–7] have been formu-
lated as dynamical systems of differential equations
and applied to analyze the spread speed and control
the infectious diseases, such as, susceptible-infected-
removed-susceptible model (SIRS), susceptible-
exposed-infected epidemic model (SEI), the susc-
ptible-exposed-infected-susceptible model(SEIS),
susceptible-exposed-infected-removed model (SEIR)
etc. As we all know, it is common knowledge that
the quarantine [8,9] has been widely used to control
some infectious diseases and avoid infecting broadly,
for example, SARS, AIDS, H7N9, H5N6, H1N1 etc.
According to the Kermack-Mckendrick bin model, we
can build up a class about the quarantined individuals
and call it state Q, which means that some people were
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quarantined once theywere found to have infectedwith
diseases in the exposed state or the infectious state. In
fact, the study on the epidemic dynamic models with
quarantine has been paid attention by more researchers
[10–15]. Hethcote et al. investigated the susceptible-
infected-quarantine-susceptible (SIQS) model and the
susceptible-infected-quarantine-removed (SIQR) epi-
demic model by considering the effect of quarantine
[10]. Wang et al. [11] gave a class of epidemic models
with the quarantine and message delivery. In [12,13],
the quarantine models with multiple disease stages or
a disease transmission were discussed, respectively.
Dobay et al. [14] researched a SIRmodel with the quar-
antine by analyzing an epidemic of syphilis.

In the view of potentially dramatic social impact of
epidemic diseases, the investigation of epidemic mod-
els with respect to feasible steady states and their sta-
bility property study is indeed of great importance.
As one main purpose, it can enable forecasting deter-
mination of the developmental trend of infection and
entire event. In recently years, the stability analysis of
the epidemic models with quarantine has attracted a
main concern in some literatures [15–20]. Zhang et al.
[15] introduced a class of deterministic and stochastic
SIQS models and gave the conditions for the globally
asymptotically stable of the disease-free equilibrium
and the unique endemic equilibrium. Liu et al. [16] dis-
cussed the stability of an SIQS model by considering
the effects of transport-related infection and exit-entry
screenings, and obtained that the disease-free equilib-
rium is globally asymptotically stable when the basic
reproduction number is less than unify, and an endemic
equilibrium is locally asymptotically stable with the
condition that the reproduction number is great than
unify. Similar results can be obtained in the follow-
ing literatures. In [17,18], the asymptotic dynamics
of the epidemic models for quarantine and isolation
were proposed. Sahu and Dhar concerned the dynam-
ics of the susceptible-exposed-quarantined-infectious-
hospitalized-recovered-susceptible (SEQIHRS)
epidemic model and obtain a globally asymptotically
stable disease-free equilibrium and a unique local
asymptotically stable endemic equilibrium [19]. Zhao
[20] analyzed the global dynamics behaviors of an
SIQR model with pulse vaccination.

As mentioned in the previous paragraph, it is easy
to find that the local stability of the endemic equilib-
rium plays an important role in the epidemiologic sys-
tems. Investigating the local stability of the epidemic

systems inevitably leads to the problem on how to char-
acterize the domain of attraction (DOA) containing the
endemic equilibrium. In fact, we all know that it is a
difficult problem to get the exact DOA for nonlinear
systems [21], so estimating DOA(i.e.,computing the
invariant subsets of DOA) has become a value problem.
Generally, the fundamental method for estimating the
domainof attraction is to solve anoptimizationproblem
by a sublevel set of a valid Lyapunov function. Many
computing technologies have been used to solve such
optimization problem. For example, Zubov’s method
[22], the trajectory reversing method [23], LaSalle’s
invariance principle [24], LMI optimization methods
[25–28], etc. In recently years, the newborn sum of
squares (SOS) optimization method [29–31], which
were proposed by sum of squares of polynomials and
semidefinite programs (SDPs), has been successfully
applied to estimate the domain of attraction for non-
linear systems. Chesi et al. [32] had the first time to
employ SOS method in conjunction with LMI method
to solving convex optimization problems. Since then,
some research results on the stability and the estima-
tion of the domain of attraction via SOS optimization
were presented (see, e.g., [31,33,34] and references
therein). Chesi [31] studied the estimation and control
of the DOA using SOS programming, and show the
application on the various nonlinear nature systems in
the first time. Topcua et al. [33] computed the bounds
on the DOA of polynomial systems via SOS method.
Franzè et al. [34] discussed the estimation DOA of a
class of nonlinear polynomial time delay systems using
SOS approach. Jarvis-Wloszek [30] also gave the great
value research results on local stability of polynomial
systems based onSOSoptimization. Tan usedSOSpro-
gramming to deal with the nonlinear control problems
in his Ph.D dissertation [35].

In conjunction with the above pointed investiga-
tions, the issue on how to estimate the DOA for the epi-
demic models by using the proper optimization meth-
ods has become one of the main research challenges.
It is important to fully understand the dynamic char-
acteristic of the infection spread as a function of the
initial population distribution. Zhang et al. [36] set up
an LMI optimization problems with polynomial con-
straints to solving the DOA of a class of SIRS epi-
demic model. Matallana et al. [37] used the Lyapunov-
based approach to study the estimation of the DOA of
a class of SIR models with the isolation of infected
individuals. Li et al. [38] used the LMI methods on the
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basis the moments theory to estimate the DOA of an
SIR epidemic model. Jing et al. [39] and Chen et al.
[40] tried to solve the estimation of the DOA of SIRS
and SEIR models via SOS method, respectively, and
their research results demonstrated SOS optimization
method is more effective on the estimation of the DOA
of some epidemic models.

Motivation for our research endeavors come from
the facts found and presented in some above literatures.
Some recent solutions to the here investigated for the
SIRS models and SEIR models were given in [37,40],
and here we extend those results further to the case of
SEIQ epidemic models. In this paper, we wish to inves-
tigate the stability of a class of the susceptible-exposed-
infected-quarantine (SEIQ) epidemic models, which is
built up by the characteristics of infectious diseases in
the different stages and the effects of quarantine, and
estimate the DOA of the local stable endemic equi-
librium based on SOS optimization method. We ana-
lyze the stability of the equilibrium points of the SEIQ
model, including the global stability of the disease-free
equilibrium, the local stability of the endemic equilib-
rium and the global stability of the endemic equilib-
rium in a positive invariant region, by LaSalle’s invari-
ance principle and a geometric approach, which was
proposed in [41,42]. Furthermore, we use the con-
vex optimization techniques via SOS method to obtain
the largest estimation of the DOA for the local stable
endemic equilibrium by finding the largest level set of
a Lyapunov function.

2 Stability analysis of an SEIQ epidemic model

Following these works, in this section, we consider
the following structural SEIQ epidemic model, which
has four states: susceptible (S), exposed(E), infected(I)
and quarantine(Q), which divide the total population
into four classes. In our model, we consider that some
exposed people and infected people will be quaranti-
ned once they were found to have infectious, and some
exposed people and quarantined people will recover
the healthy. Figure 1 gives a diagram of interactions
between S, E, I and Q of the SEIQ epidemic model.
Here, we assume that S(t), E(t), I (t) and Q(t) are the
number of susceptible, exposed, infectious and quaran-
tined individuals in the total population N (t) at time t ,
and βSI is the standard bilinear incidence rate, where
β represents how fast the susceptible people come into

Fig. 1 A diagram of interactions between S, E , I and Q of an
SEIQ epidemic model

the exposed class; A is the constant recruitment rate
of the population, μ is the natural mortality rate of all
populations,α is themortality rate of infected and quar-
antined people due to illness, ε is the rate at which some
exposed people become infective, c is the rate that the
infected recovers and comes into the susceptible class,
σ1 and σ2 represent the quarantined rate of the exposed
people and the infected people, respectively. γ1, γ2 and
γ3 represent the recovery rate of the exposed, infected
and quarantined individuals, respectively.

The diagram leads to the following equations model
as the SEIQ model, which can be formulated as

⎧
⎪⎪⎨

⎪⎪⎩

Ṡ = A − βSI − μS + cI,
Ė = βSI − (μ+ε+σ1+γ1) E,

İ = εE − (μ+α + c+σ2+γ2) I,
Q̇ = σ1E + σ2 I − (μ+α + γ3) Q,

(1)

where all the parameters are strictly positive constants.
From (1) and N (t) = S(t) + E(t) + I (t) + Q(t),

the derivative of N can be obtained as

Ṅ (t) = A − μS − (μ + γ1) E − (μ + α + γ2) I

− (μ + α + γ3) Q. (2)

when E = I = Q = 0,weget that lim
t→∞ sup N (t) ≤ A

μ
,

and when N > A/μ, Ṅ < 0, so the feasible region D
of (1) is

D=
{

(S, E, I, Q)∈R
4
∣
∣
∣ 0< S+E+ I+Q≤N ≤ A

μ ,

S≥0, E≥0, I ≥0, Q≥0

}

.

(3)

Because all solutions of (1) will remain or be tend
to the field of D, it is easy to know that the feasible
region D is the positive invariant set for system (1). We
denote the basic reproduction number R0 as follows
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R0 = Aβε

μ (μ + ε + σ1 + γ1) (μ + α + c + σ2 + γ2)
,

(4)

and then, it is simple to get equilibriumpoints P0 (A/μ,

0, 0, 0) and P∗ (S∗, E∗, I ∗, Q∗), where

S∗ = A

μR0
, I∗ = εE∗

μ + α + c + σ2 + γ2
,

E∗ = A(R0−1) (μ+α+c+σ2+γ2)

R0
[
(μ+σ1+γ1) (μ+α+c+σ2+γ2)+ε (μ+α+σ2+γ2)

] ,

Q∗ = (μ+α+c+σ2+γ2) σ1+εσ2

(μ+α+γ3) (μ+α+c+σ2+γ2)
E∗.

In viewof that,we obtain thatwhen R0 ≤ 1, there exists
a unique equilibrium P0, i.e., the disease-free equilib-
rium point for system (1); when R0 > 1, there exist
an equilibrium P0 and a unique endemic equilibrium
P∗ ∈ Ds , where Ds is an positive invariant subset of
D.

Nowwe will discuss the stability of equilibriums P0
and P∗ for system (1), respectively. The main results
can addressed as follows

Theorem 1 When R0 ≤ 1, the unique disease-free
equilibrium P0 (A/μ, 0, 0, 0) is globally asymptoti-
cally stable in D, and when R0 > 1, P0 is unstable
in D.

Proof Constructing a Lyapunov function as follows

V = εE + (μ+ε+σ1+γ1) I,

when R0 ≤ 1, the derivative of V is

V̇ = εβSI − (μ + ε + σ1 + γ1)

× (μ + α + c+σ2 + γ2) I
= εβSI − Aβε I

μR0

= εβ I A
μ

(
1 − 1

R0

)
≤ 0,

and If and only if I = 0, then V̇ = 0. With LaSalle’s
invariance principle, we obtain that P0 (A/μ, 0, 0, 0)
is globally asymptotically stable in D.

When R0 > 1, it can easy to get that if E 	= 0, I 	= 0
and Q 	= 0, and when S → A

μ
and S > A

R0μ
, one has

V̇ > 0, and the following conclusion can be obtained
that any solutions of D, which are near to P0, will be
away from P0, then P0 is unstable in D. 
�

Remark 1 In fact, theRouth-Hurwitz stability criterion
also can be used to prove Theorem 1 as follows, for P0,

we have

J
∣
∣P0 =

⎛

⎜
⎜
⎜
⎝

−μ 0 −βA
μ

+ c 0

0 −M βA
μ

0
0 ε −N 0
0 σ1 σ2 − (μ + α + γ3)

⎞

⎟
⎟
⎟
⎠

,

(5)

whereM = μ+ε+σ1+γ1 and N = μ+α+c+σ2+γ2,

and the eigenvalue equation is be obtained as

(λ + μ) (λ + (μ + α + γ3))

×
(

(λ + M) (λ + N ) − βAε

μ

)

= 0, (6)

then it is easy to know that when R0 < 1, P0 (A/μ, 0,
0, 0) is globally asymptotically stable in D, and when
R0 > 1, P0 is unstable in D.

Theorem 2 When R0 > 1, the unique endemic equi-
librium P∗ (S∗, E∗, I ∗, Q∗) is local asymptotically
stable in D for system (1).

Proof First, the Jacobian matrix of system (1) in
P∗ (S∗, E∗, I ∗, Q∗) can be gotten as

J |P∗

=

⎛

⎜
⎜
⎝

−β I ∗ − μ 0 −βS∗ + c 0
β I ∗ −M βS∗ 0
0 ε −N 0
0 σ1 σ2 − (μ + α + γ3)

⎞

⎟
⎟
⎠ .

(7)

Then, the eigenvalue equation det (λ − J ) = 0 can be
computed as

(λ + (μ + α + γ3))
(
a0λ

3 + a1λ
2 + a2λ + a3

)
= 0

(8)

with
⎧
⎪⎪⎨

⎪⎪⎩

a0 = 1, a1 = β I ∗ + 3μ + ε + σ1 + γ1
+α + c + σ2 + γ2,

a2 = (β I ∗ + μ) (M + N ) + MN − βS∗ε,
a3 = (β I ∗ + μ) MN − βε (I ∗c + μS∗) .

ForEq. (8), due toμ + α + γ3 > 0,wecanonlydiscuss
the following equation as

a0λ
3 + a1λ

2 + a2λ + a3 = 0. (9)
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With the following inequality condition

I∗ = εA(R0 − 1)

R0
[
(μ+ε+σ1+γ1) (μ+α+c+σ2+γ2)−cε

]

= Aβε − μ (μ+ε+σ1+γ1) (μ+α+c+σ2+γ2)

β
[
(μ+ε+σ1+γ1) (μ+α+c+σ2+γ2)−cε

]

>
Aβε − μ (μ + ε + σ1 + γ1) (μ + α + c + σ2 + γ2)

β
[
(μ + ε + σ1 + γ1) (μ + α + c + σ2 + γ2)

]

= Aε
[
(μ + ε + σ1 + γ1) (μ + α + c + σ2 + γ2)

] − μ

β
,

(10)

one has

β I ∗ + μ

>
Aβε

[
(μ + ε + σ1 + γ1) (μ + α + c + σ2 + γ2)

] ,

(11)

then

a1 = (β I ∗ + μ) + M + N >
Aβε
MN + M + N > 0.

(12)

Meanwhile, we can obtain that
∣
∣
∣
∣
a1 a0
a3 a2

∣
∣
∣
∣

=
(

((β I ∗ + μ) + M + N ) ((β I ∗ + μ) (M + N )) −
−β I ∗MN + βε I ∗c

)

=
(

(β I ∗ + μ)2 (M + N ) + (β I ∗ + μ)
(
M2 + N 2

)+
+β I ∗MN + 2μMN + βε I ∗c

)

=
(

(β I ∗ + μ)2M + (β I ∗ + μ) M2 + β I ∗MN+
2μMN + (β I ∗ + μ)2N + (β I ∗ + μ) N 2 + βε I ∗c

)

> 0.

According to the Routh-Hurwitz stability criterion, it
is easy to know that the real part of all roots is greater
than or equal to 0, so one get that P∗ (S∗, E∗, I ∗, Q∗)
is local asymptotically stable in D for system (1) when
R0 > 1. 
�

Remark 2 From Theorem 2, if P∗ is local asymptoti-
cally stable in the set D, its basin of attraction is an open
subset of the feasible region D and contains a neighbor-
hood of P∗, and then we can deduce that equilibrium
P∗ is said to global asymptotically stable with respect
to an open subset Ds(⊂ D), where P∗ is the unique
equilibrium in Ds .

In [41], Li and Muldowney proposed a geometric
method to deal with this global stability problem based
on the criteria of Bendixson and Dulac, the core result
of the above geometric method can be introduced as
follows. For a dynamical system ẋ = f (x), where the
map x → f (x) from the region Λ to R

n , and the ini-
tial condition x(0) = x0, the solutions of the system
are x(t, x0). Assume that x̄ is the local asymptotically
stable equilibrium in Λ, then the basic criteria for the
global stability of x̄ with respect to Λ is implied by its
local stability can be obtained as Lemma 1.

Lemma 1 [41]Assume that the regionΛ is simple con-
nected, and there is a compact absorbing setΛ0(⊂ Λ),
where x̄ is the only equilibrium in Λ0, if the quantity
q̄2 satisfies

q̄2 = lim
t→∞ sup sup

x0∈Λ0

1

t

∫ t

0
μ(B(x(s, x0)))ds < 0,

(13)

where B = Z f Z−1+Z ∂ f [2]
∂x Z−1, Z(x) is a matrix val-

ued function, Z f = ∂Zi j
∂x f and the measure ρ(B) =

lim
h→0+

‖I0+hB‖−1
h , ∂ f [2]

∂x is the second additive compound

matrix of ∂ f
∂x , then equilibrium x̄ is global asymptoti-

cally stable in Λ0.

With the mentioned above, Li and Muldowney [41]
used Lemma 1 to prove the global stability of the
endemic equilibriumof anSEIRepidemicmodel.Huan
et al. [42] gave the sufficient conditions of the global
stability for a dynamic model of Hepatitis B via the
geometric method. Lan [43] also obtained the results
on global stability of some epidemic models using
Lemma 1 in her dissertation. Zhou and Cui [45] gave
the proof of the global stability of an susceptible-
vaccinated-treated-exposed-infectious (SEIV) model
via the Poimcaré-Bendixson criterion. Now, we will
study that the endemic equilibrium P∗ is global asymp-
totically stable in Ds with the above results.

Theorem 3 When R0 > 1, the endemic equilibrium
P∗ of system (1) is global asymptotically stable in
Ds(⊂ D).

Proof First, it is easy to find that there exists a compact
absorbing set Ds(⊂ D), where P∗ is the only equilib-
rium in Ds , then according to Lemma 1, we only prove
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that q̄2 < 0. Because the first three equations of (1) do
not contain the state Q, so we consider the subsystem
as follows

⎧
⎨

⎩

Ṡ = A − βSI − μS + cI,
Ė = βSI − (μ+ε+σ1+γ1) E,

İ = εE − (μ+α + c+σ2+γ2) I,
(14)

then the Jacobian matrix of system (14) in P∗ is

J
∣
∣
(S∗,E∗,I ∗) =

⎛

⎝
−β I ∗ − μ 0 −βS∗ + c

β I ∗ −M βS∗
0 ε −N

⎞

⎠ .

The second additive compound matrix J [2] of J∣
∣
(S∗,E∗,I ∗) can be gotten as

J [2] =
⎛

⎝
−β I∗ − μ − M βS∗ βS∗ − c

ε −β I∗ − μ − N 0
0 β I∗ −M − N

⎞

⎠ .

Choosing a proper function Z =
⎛

⎝
1 0 0
0 E∗

I ∗ 0
0 0 E∗

I ∗

⎞

⎠, then

Z f Z
−1 = diag

{

0,
Ė∗

E∗ − İ ∗

I ∗ ,
Ė∗

E∗ − İ ∗

I ∗

}

,

and one has

B = Z f Z
−1 + Z

∂ f [2]

∂x
Z−1 =

(
B11 B12

B21 B22

)

,

where

B11 = −β I∗ − μ − M,

B12 =
(

βS∗ I ∗
E∗

(
βS∗ − c

) I ∗
E∗
)

, B21 =
(

εE∗
I ∗
0

)

,

B22 =
(

Ė∗
E∗ − İ ∗

I ∗ − β I∗ − μ − N 0

β I∗ Ė∗
E∗ − İ ∗

I ∗ − M − N

)

.

The estimation of the Lozinskiľ measure ρ(B) corre-

sponding to the vector norm ‖·‖ inR3 ∼= R

⎛

⎜
⎝
3
2

⎞

⎟
⎠

can be
obtained as follows

ρ(B) ≤ sup {(B11) + ‖B12‖ , ‖B21‖ + ρ1(B22)} ,

(15)

where

‖B12‖=max
{

βS∗ I ∗
E∗ , (βS∗−c) I ∗

E∗
}

, ‖B21‖= εE∗
I ∗ .

ρ1(B22)=max
{
Ė∗
E∗ − İ ∗

I ∗ −μ−N , Ė∗
E∗ − İ ∗

I ∗ −M−N
}

= Ė∗
E∗ − İ ∗

I ∗ − μ − N .

According to system (14), we know that

‖B21‖= εE∗

I ∗ = İ ∗

I ∗ + (μ + α + c + σ2 + γ2) , (16)

and there exists t∗, when t∗ > t , one has that βS−c >

0, then

‖B12‖ = βS∗ I ∗

E∗ = Ė∗

E∗ + (μ + ε + σ1 + γ1) . (17)

So when t∗ > t , one get

ρ(B) ≤ sup

{
Ė∗

E∗ − β I ∗ − μ,
Ė∗

E∗ − μ

}

= Ė∗

E∗ − μ.

(18)

Substituting (18) to the quantity q̄2, one has

q̄2 = lim
t→∞ sup sup

x0∈Λ0

1

t

∫ t

0
ρ(B)ds

< lim
t→∞ sup sup

x0∈Λ0

[
1

t

∫ t∗

0
ρ(B)ds + 1

t

∫ t

t∗

(
Ė

E
− μ

)

ds

]

= lim
t→∞ sup sup

x0∈Λ0

[
1

t

∫ t∗

0
ρ(B)ds+ 1

t
ln

E(t)

E(t∗)
− μ(t − t∗)

t

]

Because the subsystem (14) is uniformly persistent,
there exists t > t∗ such that 1

t ln E(t) <
μ
2 , then

q̄2 < −μ

2
< 0, (19)

we gain that equilibrium (S∗, E∗, I ∗) is global asymp-
totically stable for system (14) in Ds . And then, we
solve equation

Q̇ = σ1E∗ + σ2 I ∗ − (μ + α + γ3) Q

=
(
σ1 + σ2ε

μ+α+c+σ2+γ2

)
E∗ − (μ + α + γ3) Q

,

(20)

the solution of (20) is

Q(t) = Υ e−(μ+α+γ3)t ,

where

Υ =
(

σ1 + σ2ε

μ + α + c + σ2 + γ2

)

E∗
∫ t

0
e(μ+α+γ3)τdτ,
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Stability analysis and estimation of domain of attraction for the endemic equilibrium 981

it implies that when t → ∞, one has

Q(t) → Q∗(t)

= (μ + α + c + σ2 + γ2) σ1 + εσ2

(μ + α + γ3) (μ + α + c + σ2 + γ2)
E∗,

then the conclusion can be obtained that the endemic
equilibrium P∗ of system (1) is global asymptotically
stable in Ds(⊂ D) with the conditions R0 > 1. 
�
Remark 3 According to Theorem 2 and 3, the endemic
equilibrium P∗ of system (1) is global asymptotically
stable in Ds and is local asymptotically stable in D,
where Ds is the compact absorbing subset of D, and P∗
is only equilibrium in Ds , so it is inevitable to solve the
optimization problem how to maximally characterize
the stable region Ds containing the unique endemic
equilibrium P∗. Then, the estimation the domain of
attraction Ds for the endemic equilibrium P∗ will be
mainly discussed in next section.

3 Estimation the domain of attraction
for the endemic equilibrium

From system (1), there is no the variable Q in the three
equations, and the state Q only has contact with E
and I , so we can only analyze the behavior of S, E
and I of subsystem (14) to determine Q. According to
subsystem (14), the feasible region D0 can be described
as

D∗
0 =

{
(S, E, I ) ∈ R

3
∣
∣ 0 < S + E + I ≤ A

μ
,

S ≥ 0, E ≥ 0, I ≥ 0

}

,

andwhen R0 > 1, the local stable endemic equilibrium
in D∗

0 is P
∗
0 (S∗, E∗, I ∗). Let x1 = S−S∗, x2 = E−E∗

and x3 = I − I ∗, the system (14) can be rewritten as

⎧
⎨

⎩

ẋ1 = −(β I ∗ + μ)x1 − (βS∗ − c)x3 − βx1x3,
ẋ2=β I ∗x1+βS∗x3−(μ+ε+σ1+γ1) x2+βx1x3,
ẋ3 = εx2 − (μ + α + c + σ2 + γ2) x3,

(21)

and the endemic equilibrium P∗
0 is translated into as

P0(0, 0, 0), the feasible region D0 is

D0=
⎧
⎨

⎩

X ∈R
3
∣
∣ 0< x1+x2+x3≤

( A
μ

− S∗−
−E∗− I ∗

)

,

x1≥−S∗, x2≥−E∗, x3 ≥ −I ∗

⎫
⎬

⎭
,

where X = (x1, x2, x3). Let V0(x1, x2, x3) be the Lya-
punov function defined on D0 containing the origin,
any bounded region

Ω� =
{
(x1, x2, x3) ∈ R

3|V0 (x1, x2, x3) ≤ �, � > 0
}

is a domain of attraction for (21).
According to the framework of the expanding inte-

rior algorithm based on SOS programming [30], we
firstly restrict V0(x) ∈ �3 with V0(0) = 0, �3 is the
set of all polynomials in three variables with real coef-
ficients, and we define a variable sized region

P� =
{
(x1, x2, x3) ∈ R

3|P (x1, x2, x3) ≤ �
}

,

where P (x1, x2, x3) ∈ Σ3, which satisfies the Lya-
punov conditions, Σ3 is the set of all sum of squares
polynomials in three variables. Now we assume

D0 =
{
(x1, x2, x3) ∈ R

3|V0 (x1, x2, x3) ≤ 1
}

,

then P� ⊂ D0.
Now the optimization problem for the estimation of

the DOA based on sum of squares can be introduced.
The task in this problem to maximize � under certain
constraints and is defined as follows

max
V0(x)∈�3,V (0)=0

�

s.t.
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

{
X ∈ R

3|V0 (x1, x2, x3) ≤ 0,
x1, x2, x3 	= 0

}

= ∅,
{
X ∈ R

3|P (x1, x2, x3) ≤ �,

V0 (x1, x2, x3) > 1

}

= ∅,
{
X ∈ R

3|V0 (x1, x2, x3) ≤ 1,
V̇0 (x1, x2, x3) ≥ 0, x1, x2, x3 	= 0

}

= ∅.

(22)

Instead of the constraints x1, x2, x3 	= 0 with l1 (x1,
x2, x3) (∈ Σ3) 	= 0, l2 (x1, x2, x3) (∈ Σ3) 	= 0, (22)
can be rewritten as

max
V0(x)∈�3,V (0)=0

�

s.t.
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

{
X ∈ R

3|V0 (x1, x2, x3) ≤ 0,
l1(x1, x2, x3) 	= 0

}

= ∅,
{
X ∈ R

3|P (x1, x2, x3) ≤ �,

V0 (x1, x2, x3) > 1

}

= ∅,
{
X ∈ R

3|V0 (x1, x2, x3) ≤ 1,
V̇0 (x1, x2, x3) ≥ 0, l2(x1, x2, x3) 	= 0

}

= ∅.

(23)

Under the framework of the Positivstellensatz [29,
30], (23) can be translated into the following optimiza-
tion problem with equivalence constraints,
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max
V0∈�3,V (0)=0,k1,k2,k3∈Z+,si∈∑3,i=1,...,10

�

s.t.
⎧
⎪⎪⎨

⎪⎪⎩

s1 − V0s2 + l2k11 = 0,
(
s3 + (� − p)s4 + (V0 − 1)s5+
+(� − p)(V0 − 1)s6 + (V0 − 1)2k2

)

= 0,

s7+(1−V )s8+V̇0s9+(1−V0)V̇0s10+l2k32 =0.

(24)

where s’s and the l’s are the sum of squares of
polynomials, they are all even degree, dV0 is even,
dV0 = dl1 , deg(ps6) ≥ dV0 , deg(V 0s8) ≥ deg(V̇0s9),
deg(V0s8) ≥ dl2 .

In order to use SOSTOOLs box [44] to solve the
above optimization problem (24), we choose that k1 =
k2 = k3 = 1, s2 = l1 and factor l1 out s1, and set
s3 = s4 = 0 and factor out a (V0 − 1), s10 = 0 and
factor out l2, then one gets that

max
V0∈�3,V0(0)=0,s6,s8,s9∈Σ3

�

s.t.⎧
⎨

⎩

V0 − l1 ∈ Σ3,

−((� − p)s6 + (V0 − 1)) ∈ Σ3,

−((1 − V0)s8 + V̇0s9 + l2) ∈ Σ3.

(25)

The expanding interior algorithm [30] is used to
solve the above optimization problem (25). We denote
the Lyapunov function V (i=0)

0 ∈ �3, and set �(i=0) =
0, i is the iteration index and choose a specified tol-
erance � and the degrees of V, l1, l2, s6, s8, s9. By
set V0 = V i−1

0 , s8 = s(i)
8 and s9 = s(i)

9 , we can
solve the linesearch (25) on � where s6 ∈ Σ3,ds6

,s8 ∈
Σ3,ds8

,s9 ∈ Σ3,ds9
, V0 ∈ �3, and V (0) = 0 after

finite times iterations, when |β(i) − β(i−1)| ≤ � , then
�(i) = � and V (i)

0 = V0 are the optimal solutions of the
optimization problem (25), and we know that the set
D� := {(x1, x2, x3) ∈ R

3|V (i)
0 (x1, x2, x3) = V0 ≤ 1}

is the optimal estimation of the DOA for the endemic
equilibrium P∗

0 of (21).

Remark 4 For the solving process of the optimization
problem (25), the linesearch of � can be finished by the
following optimization problems as

max
s6,s8,s9

�

s.t.
{−((� − p)s6 + (V0 − 1)) ∈ Σ3,

−((1 − V0)s8 + V̇0s9 + l2) ∈ Σ3.

(26)

and

max
V0,s6

�

s.t.⎧
⎨

⎩

V0 − l1 ∈ Σ3,

−((� − p)s6 + (V0 − 1)) ∈ Σ3,

−((1 − V0)s8 + V̇0s9 + l2) ∈ Σ3.

(27)

By the finite times iterations of (26) and (27) , if
|β(i) − β(i−1)| is less than � , the optimal results can
be obtained, including the largest estimation of DOA,
the Lyapunov function.

Based on the discussions above, we use two exam-
ples to demonstrate the feasibility and effectiveness of
the above optimizationmethod for the estimation of the
DOA via SOS optimization.

Example I Assume the parameters of the system (1)is
A = 2, β = 1

2 , μ = c = 1
4 , ε = 1

2 , σ1 = γ1 = 1
8 , α =

1
2 , σ2 = γ2 = 1

4 , γ3 = 1
2 , then the system model can

be obtained as

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Ṡ = 2 − 1
2 SI − 1

4 S + 1
4 I,

Ė = 1
2 SI − E,

İ = 1
2 E − 3

2 I,

Q̇ = 1
8 E + 1

4 I − 5
4Q.

(28)

The subsystem model contained S, E and I can be
rewritten as

⎧
⎪⎨

⎪⎩

Ṡ = 2 − 1
2 SI − 1

4 S + 1
4 I,

Ė = 1
2 SI − E,

İ = 1
2 E − 3

2 I.

(29)

The basic reproduction number R0 = 4
3 > 1, and the

local stable endemic equilibrium for (29) is (6, 6
11 ,

2
11 ),

then set S = x1 + 6, E = x2 + 6
11 , I = x3 + 2

11 , (29)
can be converted to (30),

⎧
⎪⎪⎨

⎪⎪⎩

ẋ1 = − 15
44 x1 − 3

4 x3 − 1
2 x1x3,

ẋ2 = 1
11 x1 + 3x3 − x2 + 1

2 x1x3,

ẋ3 = 1
2 x2 − 3

2 x3.

(30)

The feasible region D01 of (30) is

D01=
{

(x1, x2, x3) ∈ R
3
∣
∣ 0 < x1+x2+x3 ≤ 13

11 ,

x1≥−6, x2≥− 6
11 , x3 ≥ − 2

11

}

.
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Fig. 2 The largest estimation of the DOA for the local stable
equilibrium of (30) using SOS method

Setting the tolerance asβ(i)−β(i−1) = 0.01 and choos-
ing dV0 = 2, ds6 = ds8 = 2, ds9 = 0, dl1 = 2, dl2 = 4,
with the optimization problems (22–25), we can get the
optimal solutions under the framework of SOS opti-
mization, the Lyapunov function V01(x, y, z) can be
gained as follows

V01(x, y, z)

=
(
0.38327x21+0.41562x1x2+0.070052x1x3+
+2.7785x22+10.8934x2x3+11.8535x23

)

,

(31)

and �max = 0.0694, then the domain of attraction esti-
mated of (30) by using sum of squares optimization
method, which can be obtained as follows

D�0 =
{

(x1, x2, x3)| V01(x, y, z)|(30) ≤ 1,
x1 ≥ −6, x2 ≥ − 6

11 , x3 ≥ − 2
11

}

.

and Fig. 2 gives the simulation result for the domain
of attraction estimated of (30), where we set x1 = x ,
x2 = y and x3 = z in Fig. 2. It also can be observed
from Fig. 2 that the feasibility of the above research
results for the estimation of the DOA via SOS method.

Example II In this model, we assume that A = 4, β =
1
2 , μ = c = 1

2 , ε = 1
2 , σ1 = γ1 = 0, α = 1

6 , σ2 =
γ2 = 1

6 , γ3 = 1
2 , the subsystem for this model can be

rewritten as

⎧
⎪⎨

⎪⎩

Ṡ = 4 − 1
2 SI − 1

2 S + 1
2 I,

Ė = 1
2 SI − E,

İ = 1
2 E − 3

2 I.

(32)

The basic reproduction number satisfies that R0 = 4
3 >

1, and the local stable endemic equilibrium for (32) is(
6, 6

5 ,
2
5

)
. Set S = x1 + 6, E = x2 + 6

5 , I = x3 + 2
5 ,

(32) can be transformed into as

⎧
⎪⎪⎨

⎪⎪⎩

ẋ1 = − 7
10 x1 − 5

2 x3 − 1
2 x1x3,

ẋ2 = 1
5 x1 + 3x3 − x2 + 1

2 x1x3,

ẋ3 = 1
2 x2 − 3

2 x3.

(33)

The feasible region D02 is

D02 =
{

(x1, x2, x3) ∈ R
3
∣
∣ 0 < x1 + x2 + x3 ≤ 2

5 ,

x1 ≥ −6, x2 ≥ − 6
5 , x3 ≥ − 2

5

}

.

Similar toExample 1, we set the same tolerance and
the degrees for the variables, then the optimal solutions
can be expressed as

V02(x1, x2, x3)

=
(
0.065216x21+0.11041x1x2+0.053477x1x3+
+ 0.30416x22+1.1112x2x3+1.336x23

)

,

(34)

and �max = 0.6330. The largest estimation of domain
of attraction of (33) is

D�1 =
{

(x1, x2, x3)| V01(x1, x2, x3)|(23) ≤ 1,
x1 ≥ −6, x2 ≥ − 6

5 , x3 ≥ − 2
5

}

.

Figure 3 gives two estimations results of the DOA for
(33) by using the different optimization methods. The
smaller ellipsoid can be obtained by choosing the opti-
mizationmethod based onmomentmatrices, which can
be shown in [27,38], and the larger ellipsoid is com-
puting by using the SOS optimization. It is easy to find
the effectiveness of the research results from Fig. 3.

Remark 5 In fact, sum of square method provides a
dynamic iterative linesearch process to obtain the most
appropriate Lyapunov function and the largest estima-
tion of DOA, it is more effective than some previous
optimization methods [27,28,38], which set a selected
Lyapunov function.
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Fig. 3 The largest estimations of the DOA for the local stable
equilibrium of (33) using SOS and moment method

4 Conclusions

This paper has analyzed the stability of a class of SEIQ
epidemic models, and estimated the domain of attrac-
tion for the local stable endemic equilibrium by using
the advance SOS optimization method. Based on the
discussion on the stability of the equilibriums, we have
verified that the proof of global stability of the local sta-
ble endemic equilibrium in an positive invariant subset
of the feasible region, can be efficiently achieved. In
addition, we successfully used SOS optimization tech-
nique to obtained the optimal estimation of the domain
of attraction for the endemic equilibrium. With two
numerical examples, simulation results have illustrated
the feasibility and effectiveness of the research results
on the proof theory and the computational method
addressed. Currently, some researchers are attempting
to estimate the dependence of the domain of attraction
on chaos emergence [46] or the Hamilton energy func-
tion, and discuss the relationship between theHamilton
energy function [47,48] and the domain of attraction,
so to solve the abovemuch-studied topics by using SOS
optimization technique are our future works.
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