Skip to main content
Log in

M-estimator-based robust Kalman filter for systems with process modeling errors and rank deficient measurement models

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The aim of this paper was to develop a robust version of the Kalman filter (KF) to address process modeling errors in linear system with rank deficient measurement models. An important infinitesimal robustness metric, called the influence function, which is widely used in location, scale, and regression models, is introduced into KF. After recasting KF’s update as an artificial linear regression, the influence function of KF is derived in detail. The lack of robustness of KF is clearly demonstrated by the nonboundedness of its influence function. Huber estimator, the most important member of the robust M-estimator family, is introduced into the recast linear regression. The iteration and initialization to iteratively solve the M-estimator are emphasized to address the specific case with process modeling errors and rank deficient measurement models. The iterative reweighted least-squares method together with a covariance construction method is preferred to the standard and simplified Newton’s method and the asymptotic covariance. A new initial value constructed through correcting the a priori estimate to accord with the actual measurement exactly is proposed using the Moore–Penrose pseudoinverse method. A simple but illustrative example is simulated to check the feasibility of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Davoodabadi, I., Ramezani, A.A., Mahmoodi-k, M., Ahmadizadeh, P.: Identification of tire forces using dual unscented Kalman filter algorithm. Nonlinear Dyn. (2014). doi:10.1007/s11071-11014-11566-z

  2. Jwo, D.-J., Yang, C.-F., Chuang, C.-H., Lee, T.-Y.: Performance enhancement for ultra-tight GPS/INS integration using a fuzzy adaptive strong tracking unscented Kalman filter. Nonlinear Dyn. 73(1–2), 377–395 (2013)

    Article  MathSciNet  Google Scholar 

  3. Liu, X., Liu, H.-J., Tang, Y.-G., Gao, Q., Chen, Z.-M.: Fuzzy adaptive unscented Kalman filter control of epileptiform spikes in a class of neural mass models. Nonlinear Dyn. 76(2), 1291–1299 (2014)

    Article  MathSciNet  Google Scholar 

  4. Huber, P.J.: The 1972 wald lecture robust statistics: a review. Ann. Math. Stat. 43(4), 1041–1067 (1972)

    Article  MATH  Google Scholar 

  5. Hampel, F.R.: Beyond location parameters: robust concepts and methods. Bull. Int. Stat. Inst. 46(1), 375–382 (1975)

    MathSciNet  Google Scholar 

  6. Yuan, J., Zhu, X., Zhang, X., Yin, H., Feng, E., Xiu, Z.: Robust identification of enzymatic nonlinear dynamical systems for 1, 3-propanediol transport mechanisms in microbial batch culture. Appl. Math. Comput. 232, 150–163 (2014)

    Article  MathSciNet  Google Scholar 

  7. Kitano, H.: Biological robustness. Nat. Rev. Genet. 5(11), 826–837 (2004)

    Article  Google Scholar 

  8. Mahmoud, M.S., Shi, P.: Robust Kalman filtering for continuous time-lag systems with Markovian jump parameters. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 50(1), 98–105 (2003)

    Article  MathSciNet  Google Scholar 

  9. Hampel, F.R.: Contributions to the Theory of Robust Estimation. University of California, Berkeley (1968)

    Google Scholar 

  10. Gandhi, M.A., Mili, L.: Robust Kalman filter based on a generalized maximum-likelihood-type estimator. IEEE Trans. Signal Process. 58(5), 2509–2520 (2010)

    Article  MathSciNet  Google Scholar 

  11. Gordon, N., Salmond, D., Smith, A.: Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEE Proc. F Radar Signal Process. 140(2), 107–113 (1993)

    Article  Google Scholar 

  12. Daum, F.: Nonlinear filters: beyond the Kalman filter. IEEE Aerosp. Electron. Syst. Mag. 20(8), 57–69 (2005)

    Article  Google Scholar 

  13. Gustafsson, F.: Particle filter theory and practice with positioning applications. IEEE Aerosp. Electron. Syst. Mag. 25(7), 53–82 (2010)

    Article  Google Scholar 

  14. Doyle, J.C., Glover, K., Khargonekar, P.P., Francis, B.A.: State-space solutions to standard H2 and H\(\infty \) control problems. IEEE Trans. Autom. Control 34(8), 831–847 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  15. Hassibi, B., Sayed, A.H., Kailath, T.: Linear estimation in Krein spaces-part II: applications. IEEE Trans. Autom. Control 41(1), 34–49 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  16. Hampel, F.R.: The influence curve and its role in robust estimation. J. Am. Stat. Assoc. 69(346), 383–393 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  17. Hampel, F.R., Ronchetti, E.M., Rousseeuw, P., Stahel, W.: Robust Statistics: The Approach Based on Influence Functions. Wiley, New York (1986)

    MATH  Google Scholar 

  18. Huber, P.J.: Robust estimation of a location parameter. Ann. Math. Stat. 35(1), 73–101 (1964)

    Article  MATH  Google Scholar 

  19. Huber, P.J.: Robust regression: asymptotics, conjectures and Monte Carlo. Ann. Stat. 1(5), 799–821 (1973)

    Article  MATH  Google Scholar 

  20. Bickel, P.: One-step Huber estimates in the linear model. J. Am. Stat. Assoc. 70(350), 428–434 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  21. Masreliez, C., Martin, R.: Robust Bayesian estimation for the linear model and robustifying the Kalman filter. IEEE Trans. Autom. Control 22(3), 361–371 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  22. Yang, Y.: Robust Bayesian estimation. Bull. Géod. 65(3), 145–150 (1991)

    Article  Google Scholar 

  23. Boncelet, C.G., Dickinson, B.W.: An approach to robust Kalman filtering. In: The 22nd IEEE Conference on Decision and Control (IEEE, 1983)

  24. Kovacevic, B., Durovic, Z., Glavaski, S.: On robust Kalman filtering. Int. J. Control 56(3), 547–562 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  25. El-Hawary, F., Jing, Y.: Robust regression-based Ekf for tracking underwater targets. IEEE J. Ocean. Eng. 20(1), 31–41 (1995)

    Article  Google Scholar 

  26. Karlgaard, C.D.: Robust rendezvous navigation in elliptical orbit. J. Guid. Control Dyn. 29(2), 495–499 (2006)

    Article  Google Scholar 

  27. Karlgaard, C.D., Schaub, H., Crassidis, J., Psiaki, M., Chiang, R., Ohlmeyer, E.J., Norgaard, M.: Huber-based divided difference filtering. J. Guid. Control Dyn. 30(3), 885–891 (2007)

    Article  Google Scholar 

  28. Wang, X., Cui, N., Guo, J.: Huber-based unscented filtering and its application to vision-based relative navigation. IET Radar Sonar Navig. 4(1), 134–141 (2010)

    Article  Google Scholar 

  29. Chang, L., Hu, B., Chang, G., Li, A.: Huber-based novel robust unscented Kalman filter. IET Sci. Meas. Technol. 6(6), 502–509 (2012)

    Article  MathSciNet  Google Scholar 

  30. Chang, G.: Kalman filter with both adaptivity and robustness. J. Process Control 24, 81–87 (2014)

    Article  Google Scholar 

  31. Chang, L., Hu, B., Chang, G., Li, A.: Multiple outliers suppression derivative-free filter based on unscented transformation. J. Guid. Control Dyn. 35(6), 1902–1907 (2012)

    Article  MathSciNet  Google Scholar 

  32. Yang, Y., He, H., Xu, G.: Adaptively robust filtering for kinematic geodetic positioning. J. Geod. 75(2), 109–116 (2001)

    Article  MATH  Google Scholar 

  33. Huang, G., Zhang, Q.: Real-time estimation of satellite clock offset using adaptively robust Kalman filter with classified adaptive factors. GPS Solut. 16(4), 531–539 (2012)

    Article  Google Scholar 

  34. Karlgaard, C.D., Schaub, H.: Adaptive nonlinear Huber-based navigation for rendezvous in elliptical orbit. J. Guid. Control Dyn. 34(2), 388–402 (2011)

    Article  Google Scholar 

  35. Chang, L., Hu, B., Chang, G., Li, A.: Robust derivative-free Kalman filter based on Huber’s M-estimation methodology. J. Process Control 23(10), 1555–1561 (2013)

    Article  Google Scholar 

  36. Hajiyev, C., Soken, H.E.: Robust estimation of UAV dynamics in the presence of measurement faults. J. Aerosp. Eng. 25(1), 80–89 (2012)

    Article  Google Scholar 

  37. Chang, G.: Robust Kalman filtering based on Mahalanobis distance as outlier judging criterion. J. Geod. 88(4), 391–401 (2014)

    Article  Google Scholar 

  38. Simon, D.: Optimal State Estimation: Kalman, H\(\infty \), and Nonlinear Approaches. Wiley, New York (2006)

    Book  Google Scholar 

  39. Koch, K., Yang, Y.: Robust Kalman filter for rank deficient observation models. J. Geod. 72(7), 436–441 (1998)

    Article  MATH  Google Scholar 

  40. Kailath, T., Sayed, A.H., Hassibi, B.: Linear Estimation. Prentice Hall, Englewood Cliffs (2000)

    Google Scholar 

  41. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  42. Huber, P.J., Ronchetti, E.M.: Robust Statistics, 2nd edn. Wiley, New York (2009)

    Book  MATH  Google Scholar 

  43. Yaesh, I., Shaked, U.: Game theory approach to optimal linear state estimation and its relation to the minimum H\(\infty \)-norm estimation. IEEE Trans. Autom. Control 37(6), 828–831 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  44. Shen, Y., Xu, P., Li, B.: Bias-corrected regularized solution to inverse Ill-posed models. J. Geod. 86(8), 597–608 (2012)

    Article  Google Scholar 

  45. Chang, X., Guo, Y.: Huber’s M-estimation in relative GPS positioning: computational aspects. J. Geod. 79(6–7), 351–362 (2005)

    Article  MATH  Google Scholar 

  46. Holland, P.W., Welsch, R.E.: Robust regression using iteratively reweighted least-squares. Commun. Stat. Theory Methods 6(9), 813–827 (1977)

  47. Yohai, V.J., Maronna, R.A.: Asymptotic behavior of M-estimators for the linear model. Ann. Stat. 7(2), 258–268 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  48. Bekir, E.: Introduction to Modern Navigation Systems. World Scientific, Singapore (2007)

    Book  MATH  Google Scholar 

  49. Anscombe, F.J.: Rejection of outliers. Technometrics 2, 123–147 (1960)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The first author (GC) was supported by the National Natural Science Foundation of China (No. 41404001), and the second (ML) by A Project of Shandong Province Higher Educational Science and Technology Program (No. J13LN74).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guobin Chang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, G., Liu, M. M-estimator-based robust Kalman filter for systems with process modeling errors and rank deficient measurement models. Nonlinear Dyn 80, 1431–1449 (2015). https://doi.org/10.1007/s11071-015-1953-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-1953-0

Keywords

Navigation