Skip to main content
Log in

Absolute stability of the axially moving Kirchhoff string with a sector boundary feedback control

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this study, the absolute stability problem for the axially moving Kirchhoff string with nonlinear boundary feedback control has been investigated. Based on the generalized Hamilton’s variational principle, the nonlinear governing equations of the motion and boundary conditions have been deduced. The proposed boundary control, which satisfies a sector constraint condition, is a negative feedback of the transversal velocity at the right end of the string. Applying the integral-type multiplier method, the absolute stability of the axially moving Kirchhoff system is established. To validate the proposed theoretical results, numerical simulations are expressed by the finite element method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Abrate, S.: Vibration of belts and blet drives. Mech. Mach. Theory 16, 534–548 (1992)

    Google Scholar 

  2. Bapat, V.A., Srinivasan, P.: Nonlinear transverse oscillations in traveling strings by the method of harmonic balance. ASME J. Appl. Mech. 34, 775–777 (1967)

    Article  Google Scholar 

  3. Beikmann, R.S., Perkins, N.C., Ulsoy, A.G.: Free vibration of serpentine belt drive systems. J. Vib. Acoust. 118, 406–413 (1996)

    Article  Google Scholar 

  4. Pellicano, F., Vestroni, F.: Nonlinear dynamics and bifurcations of an axially moving beam. J. Vib. Acoust. 122, 21–30 (2000)

    Article  Google Scholar 

  5. Kartik, V., Wickert, J.A.: Vibration and guiding of moving media with edge weave imperfections. J. Sound Vib. 291(1), 419–436 (2006)

    Article  Google Scholar 

  6. Zhang, S., He, W., Ge, S.S.: Modeling and control of a nonuniform vibrating string under spatiotemporally varying tension and disturbance. Mechatron. IEEE/ASME Trans. 17(6), 1196–1203 (2012)

    Article  Google Scholar 

  7. Fung, R.F., Liao, C.C.: Application of variable structure control in the nonlinear system. Int. J. Mech. Sci. 37, 985–993 (1995)

    Article  MATH  Google Scholar 

  8. Chung, C.H., Tan, C.A.: Active vibration control of the axially moving string by wave cancellation. J. Vib. Acoust. 117, 49–55 (1995)

    Article  Google Scholar 

  9. Wickert, J.A., Mote Jr, C.D.: Classical vibration analysis of axially moving continua. J. Appl. Mech. 57, 738–744 (1990)

  10. Wang, J., Li, Q.: Active vibration control methods of axially moving materials: a review. J. Vib. Control 10(4), 475–492 (2004)

    Article  MATH  Google Scholar 

  11. Chen, L.Q.: Analysis and control of transverse vibrations of axially moving strings. ASME Appl. Mech. Rev. 58(2), 91–116 (2005)

    Article  Google Scholar 

  12. Yurddaş, A., Özkaya, E., Boyacı H.: Nonlinear vibrations and stability analysis of axially moving strings having nonideal mid-support conditions. J. Vib. Control 20(4), 518–534 (2014)

  13. Yurddaş, A., Özkaya, E., Boyacı, H.: Nonlinear vibrations of axially moving multi-supported strings having non-ideal support conditions. Nonlinear Dyn. 73, 1223–1244 (2013)

  14. Bağdatli, S.M., Öz, H.R., Özkaya, E.: Dynamics of axially accelerating beams with an intermediate support. J. Vib. Acoust. (2011) doi:10.1115/1.4003205

  15. Bağdatli, S.M., Özkaya, E., Öz, H.R.: Dynamics of axially accelerating beams with multiple supports. Nonlinear Dyn. 74, 237–255 (2013)

    Article  MATH  Google Scholar 

  16. Riedel, C.H., Tan, C.A.: Coupled forced response of an axially moving strip with internal resonance. Int. J. Non-Linear Mech. 37, 101–116 (2002)

    Article  MATH  Google Scholar 

  17. Ghayesh, M.H.: Coupled longitudinal-transverse dynamics of an axially accelerating beam. J. Sound Vib. 331(23), 5107–124 (2012)

    Article  Google Scholar 

  18. Ghayesh, M.H., Amabili, M., Païdoussis, M.P.: Nonlinear vibrations and stability of an axially moving beam with an intermediate spring support: two dimensional analysis. Nonlinear Dyn. 70(1), 335–54 (2012)

    Article  Google Scholar 

  19. Kim, C.W., Park, H., Hong, K.S.: Boundary control of axially moving continua: application to a zinc galvanizing line. Int. J. Control Autom. Syst. 3(4), 601–611 (2005)

  20. Lee, S.Y., Mote Jr, C.D.: Vibration control of an axially moving string by boundary control. J. Dyn. Syst. Meas. Control 118, 66–74 (1996)

    Article  MATH  Google Scholar 

  21. Li, T., Hou, Z.C., Li, J.F.: Stabilization analysis of a generalized nonlinear axially moving string by boundary velocity feedback. Automatica 44, 498–503 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  22. Shahruz, S.M., Kurmaji, D.A.: Vibration suppression of a nonlinear axially moving string by boundary control. J. Sound Vib. 201(1), 145–152 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  23. Shahruz, S.M.: Boundary control of the axially moving Kirchhoff string. Automatica 34(10), 1273–1277 (1998)

    Article  MATH  Google Scholar 

  24. Yang, K.J., Hong, K.S., Matsuno, F.: Robust adaptive boundary control of an axially moving string under a spatiotemporally varying tension. J. Sound Vib. 273(4), 1007–1029 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  25. He, W., Ge, S.S., How, B.V.E., et al.: Robust adaptive boundary control of a flexible marine riser with vessel dynamics. Automatica 47(4), 722–732 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  26. Kirchhoff, G.: Vorlesunger über Mathematische Physik: Mechanik. Druck and Verlag von B.G Teubner, Leipzig (1877)

    Google Scholar 

  27. Chen, G.: Energy decay estimates and exact boundary value controllability for the wave equation in a bounded domain. J. Math. Pures Appl. 58, 249–273 (1979)

    MATH  MathSciNet  Google Scholar 

  28. Lagnese, J.E.: Note on boundary stabilization of wave equations. SIAM J. Control Optim. 26, 1250–1256 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  29. Lur’e, A.I., Postnikov, V.N.: On the theory of stability of control systems. Appl. Math. Mech. 8(3), 246–248 (1944)

    MATH  Google Scholar 

  30. Popov, V.M.: Absolute stability of nonlinear systems of automatic control. Auto. Remote Control 22(8), 857–875 (1962)

  31. Kalman, R.E.: Lyapunov functions for the problem of Lur’e in automatic control. Proc. Natl. Acad. Sci. 49(2), 201–205 (1963)

    Article  MATH  MathSciNet  Google Scholar 

  32. Park, P.G.: Stability criteria of sector-and slope-restricted Lur’e systems. IEEE Trans. Auto. Control 47(2), 308–313 (2002)

    Article  Google Scholar 

  33. Khalil, H.K.: Nonlinear Systems, 3rd edn. Prentice Hall, Upper Saddle River, NJ (2002)

    MATH  Google Scholar 

  34. Curtain, R.F., Logemann, H., Staffans, O.: Absolute stability results in infinite dimensions. Proc. R. Soc. Ser. A Math. Phys. Eng. Sci. 460, 2171–2196 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  35. Wu, Y.H., Xue, X.P., Shen, T.L.: Absolute stability of the Kirchhoff string with sector boundary control. Automatica 50(7), 1915–1921 (2014)

  36. Jayawardhana, B., Logemann, H., Ryan, E.P.: Infinite-dimensional feedback systems: the circle criterion and input-to-state stability. Commun. Inf. Syst. 8(4), 413–444 (2008)

  37. Li, T., Hou, Z.C.: Exponential stabilization of an axially moving string with geometrical nonlinearity by linear boundary feedback. J. Sound Vib. 296, 861–870 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  38. Komornik, V.: Exact Controllability and Stabilization. RAM Research in Applied Mathematics. John Wiley Ltd, Chichester, Masson, Paris (1994)

    Google Scholar 

  39. Rao, S.S.: Vibration of Continuous Systems. Wiley, New Jersey (2007)

    Google Scholar 

Download references

Acknowledgments

The first author would like to express his gratitude to Prof. T. Nagashima of the Department of Mechanical Engineering at Sophia University for his helpful suggestion to the simulation results. This work was partially supported by the NNSFC under Grant 11271099, and 11401142.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuhu Wu.

Appendices

Appendix A. Variational analysis of motion.

Noticing that in the Hamilton principle (4), the variation variable \(\delta y\) satisfy \(\delta y(x,t_0)=\delta y(x,t_1)=0,\) and \(\delta y(0,t)=0\), since the left eyelet \(x=0\) of string is fixed. Thus, using integration by parts technique, we get from Eqs. (6) and (7),

$$\begin{aligned}&\int _{t_0}^{t_1} \delta T{\text{ d }}t\nonumber \\&\quad = \int _{t_0}^{t_1}v\rho A \left[ vy_x(l,t)+y_t(l,t)\right] \delta y(l,t){\text{ d }}t\nonumber \\&\qquad -\int _{t_0}^{t_1} \int _0^l \rho A\left[ vy_{xt}+y_{tt}\right] \delta y\nonumber \\&\qquad +v\rho A\left[ vy_{xx}+y_{tx}\right] \delta y{\text{ d }}x{\text{ d }}t\nonumber \\&\quad = \int _{t_0}^{t_1}v\rho A\left[ vy_x(l,t)+y_t(l,t)\right] \delta y(l,t){\text{ d }}t\nonumber \\&\qquad -\int _{t_0}^{t_1} \int _0^l \rho A \left[ y_{tt}+2 vy_{xt}+ v^2y_{xx}\right] \delta y{\text{ d }}x{\text{ d }}t,\nonumber \\ \end{aligned}$$
(41)

and

$$\begin{aligned}&\int _{t_0}^{t_1} \delta U{\text{ d }}t\nonumber \\&\quad = \int _{t_0}^{t_1}T_0 y_x(l,t)\delta y(l,t){\text{ d }}t-\int _{t_0}^{t_1} \int _0^l T_0 y_{xx}\delta y{\text{ d }}x{\text{ d }}t\nonumber \\&\qquad +\int _{t_0}^{t_1}\left[ \frac{EA}{2}\int _0^l y_x^2{\text{ d }}x \right] y_x(l,t) \delta y(l,t){\text{ d }}t\nonumber \\&\quad \quad -\int _{t_0}^{t_1}\int _0^l\left[ \frac{EA}{2}\int _0^l y_x^2{\text{ d }}x \right] y_{xx}\delta y{\text{ d }}x{\text{ d }}t\nonumber \\&\quad =\int _{t_0}^{t_1}\left[ T_0+\frac{EA}{2}\int _0^l y_x^2{\text{ d }}x \right] y_x(l,t) \delta y(l,t){\text{ d }}t\nonumber \\&\quad \quad -\int _{t_0}^{t_1}\int _0^l\left[ T_0+\frac{EA}{2}\int _0^l y_x^2{\text{ d }}x \right] y_{xx}\delta y{\text{ d }}x{\text{ d }}t. \end{aligned}$$
(42)

Substituting Eqs. (5), (41), and (42) into Hamilton principle (4), we get

$$\begin{aligned}&0=\int _{t_0}^{t_1} \left\langle v\rho A\left[ vy_x(l,t)+y_t(l,t)\right] +F_\mathrm{c}(t)\right. \nonumber \\&\quad \left. -\left[ T_0+\frac{EA}{2}\int _0^l y_x^2{\text{ d }}x \right] y_x(l,t)+F_\mathrm{c}(t)\right\rangle \delta y(l,t){\text{ d }}t\nonumber \\&\quad -\int _{t_0}^{t_1} \int _0^l\left\langle \rho A \left[ y_{tt}+2 vy_{xt}+ v^2y_{xx}\right] \right. \nonumber \\&\quad \left. -\left[ T_0+\frac{EA}{2}\int _0^l y_x^2{\text{ d }}x \right] y_{xx}\right\rangle \delta y{\text{ d }}x{\text{ d }}t. \end{aligned}$$
(43)

Since above equation must hold for arbitrary variation variable \(\delta y\), the term in front of variables \(\delta y\) and \(\delta y(l,t)\) in Eq. (43) should be zero, respectively. It means that the governing Eq. (8) and the boundary condition (9) are derived.

Appendix B. Proof of Lemma 1.

Proof

To avoid repetition, we just give here the proof of Eqs. (13) and (15) in Lemma 1. And for detailed proof of Eqs. (14), (16), and (17) in Lemma 1, we refer to Lemma 3.1 of [35]. Based on the boundary condition (11c) at left eyelet \(x=0,\) we easily get

$$\begin{aligned} y_t(0,t)=0,\quad \text{ for } \text{ all }\; t\ge 0. \end{aligned}$$
(44)

Then, using integration by parts and (44), we obtain for all \(t\ge 0,\)

$$\begin{aligned} 2\int _0^ly_{xt}(x,t)y_t(x,t){\text{ d }}x=\int _0^l[y_t^2(x,t)]_x{\text{ d }}x=y^2_t(l,t). \end{aligned}$$

That means Eq. (13) holds. For any \(x\in [0,l], t\ge 0, \) we have

$$\begin{aligned} \frac{\partial }{\partial t}\big [xy_x^2(x,t)\big ]=2xy_x(x,t)y_{xt}(x,t). \end{aligned}$$

Integrating on both side of above equation with respect to \(x\) over \([0,l]\), we get Eq. (15).\(\square \)

Appendix C. Proof of Proposition 1.

Proof

Differentiating the energy function (12) with respect to \(t\), we get

$$\begin{aligned} E'(t)&= \int _0^ly_ty_{tt}{\text{ d }}x\nonumber \\&+\left[ (1-v^2)+b\int _0^ly_x^2{\text{ d }}x\right] \int _0^ly_xy_{xt}{\text{ d }}x.\nonumber \\ \end{aligned}$$
(45)

Combining boundary control (11d) with Eq. (14) in Lemma 1, we get

$$\begin{aligned}&\left[ (1-v^2)+b\int _0^ly_x^2(x,t){\text{ d }}x\right] \int _0^ly_xy_{xt}{\text{ d }}x\nonumber \\&\quad = \left[ F_\mathrm{c}(t)+vy_t(l,t)\right] y_t(l,t)\nonumber \\&\qquad -\left[ (1-v^2)+b\int _0^ly_x^2(x,t){\text{ d }}x\right] \int _0^ly_{xx}y_t{\text{ d }}x.\nonumber \\ \end{aligned}$$
(46)

Substituting Eq. (46) into Eq. (45) and observing (11a), we deduce

$$\begin{aligned} E'(t) =y_t(l,t)F_\mathrm{c}(t)+vy^2_t(l,t)-\int _0^l 2v y_{xt}y_t{\text{ d }}x, \end{aligned}$$
(47)

for all \(t\ge 0.\) Finally, substituting Eq. (13) into above Eq. (47), we obtain Eq. (18).\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Xue, X. & Shen, T. Absolute stability of the axially moving Kirchhoff string with a sector boundary feedback control. Nonlinear Dyn 80, 9–22 (2015). https://doi.org/10.1007/s11071-014-1847-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1847-6

Keywords

Navigation