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Abstract A bistable dynamical system with the Duff-
ing potential, fractional damping, and random excita-
tion has been modelled. To excite the system, we used
a stochastic force defined by Wiener random process
of Gaussian distribution. As expected, stochastic reso-
nance appeared for sufficiently high noise intensity. We
estimated the critical value of the noise level as a func-
tion of derivative order q. For smaller order q, damping
enhancement was reported.

Keywords Fractional derivative · Stochastic
process · Nonlinear dynamics

1 Introduction

Fractional-order systems have been intensively stud-
ied in various contexts [1]. In mechanical engineering,
there were suggestions to apply it for various com-
plex nonviscous, memory- effected damping effects
like rubbing or composite material response includ-
ing natural wooden composites. Finally, it was used to
model visco-elastic properties [2–5]. Dynamic prop-
erties of beams and plates, characterized by multiple
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relaxation times, were also modelled by the fractional
derivative in [1].

Important features of such systems include their
dynamical memory of previous states, which could
imply additional internal variables [6,7]. Consequently,
modelling of the system instantaneous states involves
their time evolution history. Note that the memory
effects combined with additional nonlinearities can be a
source of hysteresis which is very common in engineer-
ing systems [1]. The fractional-order- damped rotor
system with rubbing malfunction was proposed [8,9].

On the other hand, randomly excited nonlinear sys-
tems show a number of interesting features such as sto-
chastic Hopf bifurcation [10], period-doubling bifurca-
tions [11] and a stochastic resonance phenomenon [12].
This resonance is characterized by the flow over the
potential barrier. One of the simplest systems with such
a barrier may be defined as a single degree-of-freedom,
double-well Duffing potential. In such a system, the
occurrence of a single-well escape is a result of compe-
tition between damping and excitation. Consequently,
this escape can be associated with stochastic resonance
(or coherence resonance [13]). This phenomenon is
expected to be more complicated in higher system
dimensions (or memory effect), which can be intro-
duced by hidden variables of nonviscous damping [7].

Motivated by mechanical engineering applications,
fractional damping effects were studied in the context
of resonance conditions, synchronization effects and
also appearance of chaotic solutions [14,15]. It was
found out [16] that the existence of the fractional-order
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derivative could affect not only damping, but also stiff-
ness, which was characterized by equivalent damp-
ing and equivalent stiffness coefficients, respectively.
The fractional calculus is going to have a fruitful field
in many scientific areas. It would be adopted for the
description of diffusion and wave propagation phenom-
enon, the system identification in robotics, telecommu-
nications and also for control systems [17]. Recently,
the phenomenon of vibrational resonance was also
investigated in a wide parameter range of Duffing sys-
tems with fractional-order damping [18]. The authors
[18] claimed that fractional-order damping can cause a
change in a number of the stable steady states and then
lead to single- or double-well resonance behaviour.

Cao et al. [19] investigated the fractionally damped
system response using phase diagrams, bifurcation dia-
grams and Poincare maps in a wide range of the frac-
tional order that changes from 0.1 to 2.0. Their analysis
results show that the fractional-order- damped Duffing
system could be treated as a bifurcation parameter. By
continuing these studies, Chen et al. [20] and Hu et
al. [21] analysed such a system with a bounded noise
excitation term composed of harmonic excitation with
an additional random phase. The authors investigated
the appearance of bimodal amplitude through a corre-
sponding probability density. This signalled the exis-
tence of a stochastic jump.

In this paper, we continue the investigations descri-
bed in [20,21]. However, in contrast to Ref. [21], we
terminate the harmonic component and study the non-
linear Duffing system with a fractional derivative sub-
jected to a random excitation force defined as generated
with an additive white Gaussian noise term.

2 The model and equations of motion

Our discussion starts with the corresponding Duffing
equation supplemented by additional fractional damp-
ing and random forcing

d2x

dt2 + β
dq x

dtq
− x + x3 = f (t), (1)

where dq x/dtq is the Grünwald–Letnikov fractional
derivative [1,22] with an order q

dq x

dtq
= a Dq x(t)

= lim
Δt→0

⎡
⎣ 1

(Δt)q

[ t−a
Δt

]
∑
j=0

(−1) j
(

q

j

)
x(t− jΔt)

⎤
⎦. (2)

In Eq. 2,
[ t−a

Δt

]
means the integer part, where Δt

denotes the integration time step, and a is an arbitrary
number smaller than t . This defines the length of system
memory. In the following analysis, we assumed a = 0,
which corresponds to the memory length of whole tra-
jectory. The binomial coefficients in the above sum can
be expressed by the Euler’s Gamma function:
(

q

j

)
= q!

j !(q − j)! = Γ (q + 1)

Γ ( j + 1)Γ (q − j + 1)
. (3)

Excitation force f (t) has been defined as station-
ary Gaussian additive white noise with standard devia-
tion σ f described by the corresponding autocorrelation
function:

< f (t) f (t + Δt ′) > = 1/T0

T0∫

0

f (t) f (t + Δt ′)dt

= (σ f )
2δ(Δt ′), (4)

where δ(.) is the Dirac delta, Δt ′ is an arbitrary time
difference and T0 is a large time interval.
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Fig. 1 Bistable potential V (x) (restore force (Eq. 1) Fx =
−dV (x)/dx = x − x3) used in the calculations (Eq. 5)
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Fig. 2 The displacement signals-to-noise ratio σx/σF versus
noise intensity σF for different orders of derivative q = q1
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Fig. 3 a Number of hops
versus noise intensity σF for
different orders of derivative
q = q1; b critical curve of
transitions begin between
the potential wells via
increasing orders of
derivative q (dots)
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The considered potential describing the restore force
in Eq. 1

V (x) = x2

2
− x4

4
(5)

is given in Fig. 1. Note that the dynamical model in
Eq. 1 possesses damping and excitation terms.

The numerical algorithm used in the present calcu-
lations is created in analogy to the so-called Euler–
Maruyama algorithm (see [23,24], where the deter-
ministic and stochastic integration parts are summed.
In case of fractional-order derivative, the integration
schema is given by the Newton–Leipnik algorithm [22]
based on the Grünwald–Letnikov expansion (Eq. 2).
Consequently, in the time discretized form tn = nΔt
(for a = 0 used in calculations), the numerical integra-
tion is represented by the Newton–Leipnik–Maruyama
algorithm:

xn = xn−1 + vn−1Δt,

zn = (Δt)−q

⎛
⎝

n∑
j=0

c(q)
j x(tn− j )

⎞
⎠ ,

vn = vn−1 +
(
−βzn−1 + xn−1 − x3

n−1

)

(Δt) + σ f fn

√
(Δt),

(6)

where xn and vn are the time discretized displacement
and velocity, zn corresponds to the memory-dependent
damping, fn is a random number with a normal distri-
bution and the unitary standard deviation and σ f is a
measure of the level of noise. Additionally, coefficients
c(q)

j satisfy the following recursive relations [22]:

c(q)
0 = 1, c(q)

j =
(

1 − 1 + q

j

)
c(q)

j−1. (7)

Due to competition between dissipating and gener-
ating mechanical energy, these two terms lead to bal-
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Fig. 4 The mean of displacement < x > versus noise intensity
σF for different orders of derivative q. The other system para-
meters, the initial conditions and the simulation time interval are
as in Fig. 3

ancing the total energy at a particular level. This level
could be higher or lower with respect to the energy bar-
rier (ΔV = 0.25, see Fig. 1). This level signals also a
vicinity of cross-well jump conditions in the dynamical
system.

Consequently, as level σ f increases, the system
response (measured by a standard deviation σx of the
displacement x fluctuations) would be of sufficiently
larger magnitude to pass the system states through the
potential barrier.
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Fig. 5 The phase portraits
(a, c, e, g) and their
corresponding time series
(b, d, f, h) in case of noise
intensity σF = 0.09 for
derivative orders q = 0.1 (a,
b), q = 0.3 (c, d), q = 0.6
(e, f), and also q = 0.6 in
case of noise intensity
σF = 0.3 (g, h) −2 0 2
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Evidently, such a jump corresponds to the bifurca-
tion of single potential well vibration of a relatively
small amplitude into cross-barrier oscillations of a
fairly large amplitude.

3 Simulation results

By simulating the dynamical system (Eq. 1) with
increasing noise level conditions, we followed the sce-
nario of stochastic resonance [12,25,26]. For numeri-

cal calculations, the Matlab environment has been used
with nondimensional parameters, where β = 0.15 is
damping coefficient and excitation force represented
by noise level is in range of σF ∈ (0 ÷ 0.3). The initial
conditions were fixed as x0 = 0.21, v0 = 0.31. The
integration step Δt = 0.005, simulation time interval
in terms of estimated time instants tn ∈ [0, 800], where
first 400 instants were cut off as a transient part.

Figure 2 shows the signal-to-noise ratio versus
increasing noise level σ f . Note that the calculations
have been made for different orders of damping term
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q. For each simulation in terms of q, the averaged noise
results have been plotted. The average includes its 10
different Gaussian noise realizations. It is obvious that
the stochastic resonance, corresponding to the increase
of maximum σx/σF , is characterized by different noise
level σ f for different q.

On the way to a solution with the most frequent
(coherent) jumps of the large amplitude, a single hop
between potential wells occurs. This effect has been
investigated in greater detail in Fig. 3, where we show
the number of hops versus noise levels σ f for various
orders of derivative q. Figure 3b illustrates the depen-
dence of the solution transition (single hop appear-
ance between the potential wells in simulation time)
via a function of critical noise level versus an increas-
ing order of derivative q. The corresponding formula
for plotting the curve presented in Fig. 3b can be
expressed as a polynomial function, obtained in a stan-
dard approach by means of the least squares method:

σF (q) = −0.087q2 + 0.17q + 0.0059. (8)

In Fig. 4, the mean of displacements < x >=
1/T0

∫
x(t)dt versus noise intensity σ f for chosen

orders q is plotted. Note, < x >≈ 0 means that the
system oscillates by hopping symmetrically through
the potential barrier, while < x >≈ 1 indicates that
the oscillating system is trapped in one of the poten-
tial wells. Following Fig. 4a–c, one can see that as
derivative order q increases, larger noise intensity is
needed to reach cross-barrier oscillations. Certainly,
larger q means larger damping, which stabilizes sin-
gle well oscillations.

Figure 5 illustrates the selected cases of solutions
shown in Fig. 2 focusing on their time evolutions. Espe-
cially, we present the phase portraits (Fig. 5a, c, e, g)
and their corresponding time series (Fig. 5b, d, f, h)
for increasing orders of fractional derivative q = 0.1
(Fig. 5a, b), q = 0.3 (Fig. 5c, d) and q = 0.6 (Fig. 5e–
h). The corresponding noise levels were σF = 0.09 and
σF = 0.3, as in Fig. 5a–f and Fig. 5g, h, respectively.

Note that more localized motion in various fractional
cases appear at the lower noise level (Fig. 5a–f) com-
paring to the frequent hopping solution comparing to
the frequent hopping solution at the higher noise level
(Fig. 5g, h). Long time behaviour is characterized by
the increasing number of hops between potential wells
with growing q (Fig. 3a). It is also worth to note a dif-
ference between Fig. 5a, b and Fig. 5e, f. For smaller q
(q = 0.1 in Fig. 3a–b), a phase of coherent hop oscilla-

tions is visible, while for larger q (q = 0.3 and q = 0.6
in Fig. 5c, d, and Fig. 5e, f, respectively) only a single
hop can be seen.

4 Conclusion

In summary, our main results indicate that the decreas-
ing order of derivative q (Eq. 1) enhances effective
damping and leads to a different response of the system
analysed. Note that the present calculations were made
for chosen system parameters but the final conclusion is
of a general character. Namely, reaching cross-barrier
oscillations in a stochastic condition and simultaneous
appearance of stochastic coherence resonance can be
easier for smaller q (see Fig. 2). This implies smaller
damping as a result of the fractional order.
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