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Abstract This study represents the transverse vibra-
tions of an axially accelerating Euler—-Bernoulli beam
resting on multiple simple supports. This is one of
the examples of a system experiencing Coriolis ac-
celeration component that renders such systems gy-
roscopic. A small harmonic variation with a constant
mean value for the axial velocity is assumed in the
problem. The immovable supports introduce nonlin-
ear terms to the equations of motion due to stretching
of neutral axis. The method of multiple scales is di-
rectly applied to the equations of motion obtained for
the general case. Natural frequency equations are pre-
sented for multiple support case. Principal paramet-
ric resonances and combination resonances are dis-
cussed. Solvability conditions are presented for differ-
ent cases. Stability analysis is conducted for the so-
lutions; approximate stable and unstable regions are
identified. Some numerical examples are presented to
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1 Introduction

Many real-life engineering devices, such as band and
chain-saws, conveyor belts, fiber textiles, magnetic
tapes, paper sheets, and threadlines, involve vibration
of axially accelerating beams. Some practical exam-
ples can be modeled as a moving string of thin or thick
beams. A vast literature can be found in references
[1, 2]. Transverse vibrations of axially moving strings
and beams are investigated by Wickert and Mote
[3] including axial tension. Wickert [4] discussed
tensioned beams, including nonlinear stretching ef-
fects for subcritical and supercritical speed region.
Pakdemirli and Ulsoy [5] obtained approximate ana-
lytical solutions for variable speed using the method of
multiple scales and compared direct-perturbation and
discretization-perturbation. Nayfeh et al. [6] showed
that direct-perturbation is better for quadratic and cu-
bic nonlinearities. The method of multiple scales and
other methods were applied to string—beam transi-
tion problem [7-11] for axially accelerating materi-
als. Yurddas et al. [12, 13] investigated nonlinear vi-
brations of an axially moving string having nonideal
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Fig. 1 Axially moving beam on multiple supports

mid-support and multi-support conditions. The vari-
able velocity case for a moving beam was investigated
for different end conditions and different resonance
cases, including principal parametric and combination
types, were discussed in [14—19]. Infinite-mode analy-
sis was performed in [20]. There are also some studies
about axially moving beams composed of viscoelas-
tic materials [21-24]. Stationary beams with multi-
ple supports were also investigated in detail. Non-
linear free vibrations of multispan beams on elastic
supports were studied by Lewandowski [25], where
frequencies and nonlinear mode of vibrations were
found by using dynamic stiffness method, and the in-
fluence of support flexibility on the frequency ampli-
tude relations was examined. Beams simply supported
in span were discussed, and frequency response func-
tions were determined [26, 27]. Nonlinear vibrations
and 3:1 internal resonances on multiple supports were
investigated, and excitation frequency—frequency re-
sponse curves were drawn for different support num-
bers [28, 29]. Bagdatli et al. [30] dynamics of axi-
ally accelerating beams with an intermediate support.
Tekin et al. [31] investigated three-to-one internal res-
onances for multi-stepped beam systems. The cou-
pled longitudinal-transverse nonlinear dynamics of an
axially accelerating beam was determined [34], and
Ghayesh et al. [35] discussed the stability of an axially
moving beam supported by an intermediate spring.

In the current manuscript, transverse vibrations
of axially moving beams are presented. An Euler—
Bernoulli-type axially moving beam on multiple sup-
ports (simply supported) is considered. This type of
support may represent contact with multiple bound-
aries, e.g., cutting a wood or passing through holes.
Stretching of the neutral axis introduces a nonlinear ef-
fect to the problem. The beam travels with a harmonic
axial velocity slightly varying about a constant mean
value. The equations of motion are obtained using an

@ Springer

|_> () A ]

e

energy approach and solved using a perturbation tech-
nique. A general support condition in matrix form is
presented for multi-support case. Natural frequencies
are presented for different flexural rigidity values, sup-
port locations, and support numbers. Principal para-
metric resonances and stability are investigated.

2 Equations of motion

Figure 1 shows the axially accelerating beam on mul-
tiple supports. x*, z*, and ¢* are spatial and time vari-
ables, respectively, w* and u* denote the transverse
and axial displacements respectively, and v* is the ax-
ial velocity of the beam.

The Lagrangian of the system is given below.

1 T
£= 2 Z/ ) pA{ (4 +w;’,‘1’+1v*)2

L IS T 1 2
B Z[E /* EA<M:1/+1 + 5“’2&1) dx*
X

m

l xr);Jrl 2 %
+ = Elw,, 7 dx
X

*
m

X 1
+/ ! P(uj;H + Ew;ﬁ])dx*], (1)
X

where (-) denotes the derivative with respect to time
(t*), and ()’ denotes the derivative with respect to
the spatial variable (x*). In Eq. (1) the rotary inertia
and shear effect are not included, and cross-sectional
area does not change during motion. x; ., denotes
the distance between any support and the origin. m =
0,1,2,...,n, where n is the number of supports. The
first two integrals inside the summation sign are ki-
netic energies between any successive supports (e.g.,
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1st-2nd, 2nd-3rd, 3rd—4th, and so on). The terms in
the second summation sign are elastic potential ener-
gies due to elongation, bending, and tensile force (P)
between any successive supports, respectively. xo = 0,
and x,41 = L is the total length, x, is the location of
multiple supports. The material properties in the equa-
tion are defined as follows: pA is the mass per unit
length, EA is the longitudinal rigidity, and EI is the
flexural rigidity. After applying Hamilton’s principle
to Eq. (1), the equations of motion between any suc-
cessive supports can be obtained as follows:

.k . %/ * */ . *// *2
(wm+1 + 2wm+lv + Wpy 41V + Wy 41V )

EI . P
p_Aw;knl—li)-l - p_Aw;kn/g—l

E
%1/ %/ */ *//
A\ YUmt+1Wmt1 + U1 W41

o
3 */2 *//
+§wm+lwm+] =0, 2

(thy gy A 2t 0" Ay O 0" v*z)
E IR
- ;(”:;1/+l + Ew;kn/+1) =0. €)

Using the following parameters, one can make the
equations nondimensional:

w* u* x*
Wp+1 = YZ—H ,  Um41 = WZH , nN= ”ZH ,
P
t=1"| , 4
v* , EA ) El
VE——, V=, Up=——,
JP/pA P PL

where v), represents the longitudinal rigidity, and v ¢ is
the flexural rigidity. The axial velocity is made nondi-
mensional by dividing with critical velocity. The ex-
planation for v,f > 1 is given in reference [4]. After
performing necessary mathematical operations and in-
cluding damping, nondimensional integro-differential
equations of motion and boundary conditions for the
general case are obtained as follows:

(i1 + 200, v+ wp, g 9) + (02 = Dy

-2 [ - .
+Tpwyy A+ (D + 0w, )

1 n Mr+1
— 42 2 7
=% E / w5 dx Jwy, s
r

r=0
m=0,1,2...n, no=0, nu41=1,
w1 (0,1)=0, wy1(1,6)=0, w{(0,7)=0,
w! (1,6 =0, 5)
wp(Mp, 1) =0, wpy1(mp,1) =0,

w;(ﬂp,l)=w;,+1(77p,l), w;(np»t):wg+1(npst)

(p=1,2,3,....n).

The right-hand side of the equation above represents
the stretching of the neutral axis. w4 is the lo-

cal acceleration, 2u');n Y is the Coriolis acceleration,

2,/
Vb W4
locations of intermediate supports. The transport ve-

locity with constant mean and arbitrary fluctuation fre-
quency can be written as follows:

| is the centripetal acceleration, and 7, are the

v = vg + v sin 21, (6)

where ¢ denotes a small variation. The displacement in
Eq. (5) can be assumed as wy,+1 = /€yn+1 to guar-
antee that the longitudinal rigidity depending on non-
linear effects appears in higher orders of expansion.
Using Egs. (5) and (6), the equation of motion and
boundary conditions become
Vm+1 =+ 29y, v0 + 263, v1 sin 21

+ ey} V182 c0os 21 + D7y

+ ei(Ymt1+ voyy, ) + (v(%

+ ezv% sin® 21 + 2gvgv; sin 21 — 1)y,/1/1+1

1, , n M, .
= Evbgym+l Z/ Yr+1 dx Ym+1>
r=0""

y1(0,7) =0,

yp(ﬂp, t) 207

(N

yi/(ovt):()a yl’l+l(lvt):07
yp+1(77p» t) = 07

y;(np, 1= y;;+](77p, 1).

One can make an arrangement for the orders of flex-
ural rigidity and viscous damping as 17%- = v} and
i = ep. These equations will be solved analytically

in the next section.
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3 Perturbation analysis

For searching the approximate solutions of Eq. (7), the
method of multiple scales will be used. The displace-
ment functions for sections between any successive
two supports can be expanded as shown below:

Ym+1(x, 15 8) = Ym+1)1(x, To, T1))
+ &eym41)2(x, To, Ty + -+ -, (8

where Top =t and T; = &t are the slow and fast time
scales, respectively. The first and second time deriva-
tives used in Eq. (7) are defined as follows:

d
— =D D e
i o+éeD +

d2
dr?
where D; = 9/07;. Substituting Egs. (8), (9) into Eq.

(7), one obtains equations at different orders of pertur-
bation expansion:

&)
=D3+23D0D1 +e

0o():
DG Y11+ 200D0Y (s 11 + (06 = 1)Yus 11

5
+ VY mi1y1 =0,

)’1(0, I)ZO, )’i/(O,l)ZO, yl‘l+1(17t)=()7 (10)
y}{l/+1(1’ t) =07
yp(npvt)zov )’p+1(77p,t)=0,

y;;(np+1a r)= y;g_g_[(ﬂp’ 1),

O(e):
DY n+1)2 + 200 D0Y (12 + V5 Vims12
+ (U5 = DY sz
= —2DoD1Y(m+1)1 — 200 D1 (111
— 2v; sin .QtDoyme)l — 2y22n+1)1”0”1 sin 2t

— y£m+1)1v19 cos 2t — ,l,LD()y(m_H)l

= Y0¥ (1)1
1 2 . r+d 2 "
+§Ub Z/ Yoms)1 9% | Yonynyr, (11
r=0""r
y1(0,1)=0, y/(0,1)=0,
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y;(ﬂpy 1= y;+1(77p7 1).

)’n+1(1,t)=07 y;l/+1(15t):0’
)’p(ﬂp,t)zov yP“rl(np’t):(:)v

y;(ﬂp+1, 1) = y;;+1(77p» 1),
Ypp, 1) =¥y (np, ).

The solution of Eq. (10) will give velocity-dependent
natural frequencies and mode shapes between adjacent
two supports. It can be assumed as follows:

Yont1)1 (X, To, Ti; €) = AT 0V p1) (x)
+ A(T) e T0Y (g y1) (x).
(12)

Inserting it into the equations gives

U%‘Y;;UH + (v — )Y, 41 + 20000, — @Y1

=0,

Y1(0)=0, Y, (1)=0, Y{(0)=0, (13)
Y, (1) =0,
Yp(np) =0, Ypt1 (np) =0, Y,’,(np) = Y;,+1(77p),

Y;;/(np) = Y1/7/+1 (’7p)-

The following functions can be proposed for the solu-
tions of equations above:

Y1 (X) = Cama (ei,B4m+lX + C4m+zeiﬁ4m+2x
+ Camp3e P 4 g PmaT) - (14)
Then we obtain the dispersion relation
0} Bim1 + (1= 03) Ba 1 — 2000Bam1 — 0* =0
m=0,1,2,...,n). (15)

The support condition is obtained by applying the
boundary conditions similar to references [4, 14, 15]
(for two supports only) for multiple support case as
given below:

[U§ﬂ2m+1 +(1- v%)ﬂfmﬂ — 20v0Bam+1

_ a)z]eiﬁ4m+1x
+ [v%ﬂjm+2 + (1= v3) Bimsa — 2000Bam+2

2 i X
— @ Jeap e P

+ [U%ﬁ21n+3 + (1= v5) Bins3 — 2000 Bam13
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— wz]c4m+36iﬁ4/11+3x
+ [v%ﬁ‘é“mﬁ-‘l + (1 - v(z))/gé%m+4 — 20v0Bam+4
— oJcap g€t =0, (16)

The coefficients in function (14) can be obtained from
the boundary conditions (13) in terms of one of the co-
efficients by equating the determinant of the following
matrix to zero. Numerical examples for linear frequen-
cies considering different cases will be presented later.
Support condition matrices for 3- and 4-support cases
and for a general form of the multiple support case are
given in the Appendix.

Order ¢ (11) represents the nonlinear behavior. The
following functions can be proposed for the solution:

= Pmr1(x, T1)e T

+ W1 (x, To, T1) +cc, (17)

Ym+12(x, To, Tt €)

where the first term (¢,,41) is related with the secular
terms, the second one (W,,,41) is related with the non-
secular terms (NST), and cc stands for the complex
conjugate of the preceding terms. After using these
substitutions, one gets

(U%‘P::H + (U(% - 1)¢;;1+1 + 2ivowe,, 1
- wzd)m+l)ein0

—2(10)Ym+1 + vg m+l)D1AeinO
/ 2, :
tu _a)Ym-i-l - EYm—H + lvOYm—H
. _ 2 -
x Ae' 2T 4o, (a)Yr/n+l =5 Vs

+ iuol?,;;+1>Aei<9—w>To

(5 ) (7

r=0 fm“ Y;;1+1 m+1 dx) - iUO(

(szm+1 + v m+1)Aein°

Nr+1 ,
+ m+1 / m+1 dx
Nr+1
+2Y,0 <Z/ YoV dx):|

x A%2Ae'“T0 4 cc + NST,

m=0,1,2,...,n, M =1 (I8)

Since the left-hand sides of Egs. (10) and (11) are the
same, and Eq. (10) has a nontrivial solution, a solvabil-
ity condition should be obtained for Eq. (11) to have a
solution. A function is chosen depending on whether
the problem is adjoint or self-adjoint. For this case, the
function is adjoint. The solvability condition can be
obtained by following reference [32]. These solutions
will be discussed for different velocity fluctuation fre-
quencies £2.

no =0,

3.1 Principal parametric resonances

When the velocity fluctuation frequency is close to two
times any natural frequency, the principal parametric
resonance will occur. This case can be represented by

2 =2w+ o, (19)

where o is a detuning parameter. The solvability con-
dition can be obtained as follows:

DA + koAei®Tt 4+ %A k3 A2A =0, (20)

where

r=0 Sy " V1 Yort1 dx)

ko =1

2[la)( r=0fnr],r+l m+1Ym+1dx)+v0( r= OfmJrl m+1 _m-‘rldx)]

21)

Lo [Dh o™ Vot Y d) (3 ¥y dx) + 2 550U Vol Tt d) (1 ¥ V1 )]

k
3= 2 vy

2ieo (X0 Sy Ymer Vg dx) +v0(0g fy ! ¥y yy Y1 d)]

The amplitude in Eq. (20) can be written in polar
form as

1 ,
A= Eae'e. (22)

Amplitude and phase modulation equations are ob-

tained by separating Eq. (21) into real and imaginary
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parts as follows:
. 1
Dia=a kolsmy—koRcosy+§u s (23)

1
aDy =ao + 2a(ko, cosy + ko, siny) — §k3la3,
(24)

where ko = ko, + iko,, k3 = ik3;, and the real part of
k3 is very small compared to the real part [14], and

y =0T —26. (25)

The transformation can be assumed for the phase
to seek the solution in steady-state region Dja = 0,
Dy =0:

. 1
Fl (Cl, V) = <kOI Slny - kOR COS)/ + 5/“")7 (26)
F(a,y) =0 4 2(ko,cosy + ko, siny)

1
— —k3,a’. 27
2

The solution of phase modulation equations with zero
amplitude is the trivial solution, and the other case is
the nontrivial solution. The relation between the ve-
locity fluctuation frequency and amplitude of the non-
trivial solution can be obtained as follows:

1 2 11,2 2 1 2
U],2=Ea k31:F2 kOI+kOR _ZH . (28)

The Jacobian matrix can be constructed to investigate
the stability conditions of the nontrivial solution:

an AR

da ay

o OF (29)

da ay a=a

Y=1

The eigenvalues are obtained from the equation

—A a(z—llk3la2— %)]

30
I:_k3la - — A a=a ( )
Y=0
as follows:
1
Al,zzi(_uzp\/u+2a2ak3l —a4k§1). 31)
The complex amplitudes in the polar form
1 . iZT

A=(p+ig)ae>™! (32)

T2
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are rewritten for the stability analysis of the trivial so-
lution. Then phase modulation equations are obtained
as follows:

1 o
Dip=—|kox =51 |p+\75 —ko Jq

1
= Jkaa(p? = %), (33)
1 o
Dig = (koR - 5#)61 + (5 -i—koI)P
1
+ 7kup (P’ +47). (34)

The eigenvalues are

o= %(—M¢\/4(k§l +k) - 2), 35)

and the stability boundaries for the trivial solution are

1 1
2 2 2 2
2\ kg, + kg, — Z/ﬂ <o ==2/ky +ky, — 1“2'

(36)
There will be no nontrivial solutions in the regions at
which the trivial solutions are stable [33]. There exist
nontrivial solutions in the regions at which the trivial

solutions are unstable. In the latter case, amplitudes of
vibration increase.

3.1.1 $2 is away from 0 and 2w

This is the case for the velocity fluctuation frequency
away from 0 and 2w. The solvability condition is

D1A+%A—k3A2A=O, (37)

and phase modulation equations are

Dia + %a =0, (38)
1 3

aD6 — Zkg,a =0. 39)

For undamped free vibrations, i = 0, the amplitude is
constant (a = agp), and the phase is

1
0= Zk31a2T] + Bo- (40)
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The nonlinear natural frequency is obtained as fol-
lows:

1
onl =a)+8(1k3la2>, (41)
3.1.2 2 is close to 0

The velocity fluctuation frequency is

2 =¢o. (42)

UIQ(Z’;:O fnnrrﬂ Y;;1+1Ym+l dx)

The solvability condition is

D]A—i—%A—i-(kl coso Ty +kysino T))A—k3A2A =0,

k1
nr

ivla)(fo’7 Yl’l?l dx + fnl Yz’l?zdx)

i) [ Y Y1 dx) + 00 [ Y,

ky = — .
i) )" Y1 Y1 dx) + 00X [

m+1

43)
where
o Ymr1dx)]
(44)
Yingp1dx)]

The amplitude for this case is

(klR coso Ty 7k2R sina Tp)
o

a=a,e "N (45)
Since |sinoT1| <1 and |cosoT1| < 1, the complex
amplitudes are bounded in time, and thus there is no
instability for this case.

3.2 Combination resonances

In this section, we assume that there are two dominant
modes. Two cases are significant. The velocity varia-
tion frequency may either be nearly equal to the sum of
any two modes or to the difference of any two modes.
One can assume the following function for the solu-
tion of Egs. (10) for combination resonances in which
the ath and bth modes are effective:

Yont 1)1 (X, To, Tis €) = Ag (T1)e' 10 4 1) o (%)
+ Ap(T)E Y (i1, (x)
+ cc. (46)

2 4 2 . 2
(vf(pér!l)H»l),a + (vO - 1)¢E/m+l),a +2i an)a¢ém+1)ﬂ - a)a¢>(m+1),a)e

+ (V70 + (U8 = DBy b + 2000001 — Dabin+1).0)e

Shape functions for the two modes can be proposed as
follows:

iBam+1x iBam+2x

Y(m+1),p(x) = C4m+1,p€ + cam+2,pe
+ C4m+3,pe’ﬁ4m+3x + C4m+4,pelﬂ4m+4xv

p=a,b. 7
Inserting the function above into the first order of ex-
pansion gives

2 yi 2 .
V¥ ity p + (00 = DY Gugn)p + 200005 Y

— & Yiut1).p =0. (48)
The displacement function for the second order of ex-
pansion can be defined as follows:

Yon+12(x, To, T1; €)
= Pimt1).a (X, TE T 4 Bp1) pe' "0

+ Wing1y(x, To, T1) + cc. (49)

The first two terms are related with secular terms
in the ath and bth modes, the third one is related
with nonsecular terms. Inserting the functions defined
above into the second order of expansion, we get

iwgaTo

iwpTy
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= —(2D1Aq + 1A (i0aYin+1).a T 00 (s 1)a)€ ™ = @D1Ap + 18 AR) (i@ Y106 + V0 (i1 )€

2 .
/ / . /" R4wq) T
—waY(m+l),a — ?Y(m—H),a + lvOY(m—H),a)el( wq)To

2

/ . Vi [ ($2+ Tt
a)bY(nz_,'_l) b ) Y(m+1),b + lUOY(m—Fl),b)el( wp)To

% / % i (£2—wa) Ti
Wq (m+1) «— jy(/erl),a +1U0Y(/r/n+l),a>€l( wa)To

v/ .ol (22— Tt
wa(m—i—l)b 2 Y(m+l),h+lv0Y(m+1)’;,)€l( wp)To

Mr+1 Mr+1
3 2 3iwg Ty A2 y'2 —iwgTi
_vb|:|:A (§ :/ (m+1)adx>e 10af0 1 AL A (E / (m+1)adx>e oo

Nr4+1 _ Nr+1 iy _
+2AaA Ab(Z/ Y(erl)u (m+1)bdx)e_lwa0+A¢1A2<Z/ (m+1)bdx)el(wa 2wp)To
2 r1 iwy Tt r1 / v/ iwy—wp) Tt
2454 Z/ Yinsn.a¥imsn,adx |0 +2474, Z/ Yomt1).a¥mgy pdx Je2 000
N4l _ iopTo e+l , =/ iwaTo
+24,A,Ap Z/ Yrty.aYimsny.pdx |70 +24,ApAp Zf Yty ¥ omsry.pdx | €
+2AaAb<Zf
Nr+1 _in i (@wa-+2w) Ty .
+ AqA} Z/ (m+l)bdx e TN Y g 1.
Nr+1 _,
|:Ab (Z/ Yonin). bdx>€3’w”T° +ALAp (Z/ Vi), adx>€’( 2eaten)To
_ _ Nr+1 -, -, il T — n Nr+1 iy i T
+24,ApA Zf Yionity.aYomary.p dX Je 770 + Ay A7 2/ Y1y pdx e in™
=0 r=0"Yr
Nr+1 T
+2A4AqA) Z/ YitraPinsnyady |6 +24,4,4, Z/

Nr+1
2wa+wp) T(
(m+1)aY(m+1)bdx>el( waten)To

1 / ! iw, Tt
Yons1y.aY o) pdx |40

Nr+1 , . _ n Mr+1 _ .
+ 2A2Ab (Z/ (m+1) . dx)el(Zwa-i-wb)To + 2AaA% <Z/ Y(/m+]),aY(/m+l),b dx>et(—wa+2a)h)TO
r=0°""
Nr+1 T
2 Nr+1 . ) T
+24,4% Z/ Yirty.aYimsrypdx | @t oyl |+ cc+NST. (50)
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3.2.1 Combination resonances of sum type

One can take two dominant modes (i.e., the ath and

DA, + %Aa + koabAheiaT' — k3abA¢21Ah

— ko, AaApAp =0, (52)

hm K 1 ioT 27
bth modes) DiAp+ 5 A+ ko, Aae'”T — ks, AL A
Q:wa +wp + €0 (5]) _k2baAaAaAb=07
and obtain the solvability conditions as follows: where
2 g rz
L v [(F —w)(Xroo r+ Y(m+1) bY(mH) adx) —ivg(X7 o r+ Y(m+1) bY<m+l) adx)]
0gp = VI Ty ,
¢ 2fioa (0o S T Yonr1).a¥ims1).0 %) + v0(X0 g nﬁ (1), 1,0 4%)]
n,
. ) [(§ —wa) (2= ofnr+ i ty.a Yonn).p dx) = ivo (272 ome— Youity.aYontn),pdx)]
Opg = V1
¢ i (S S Y1), Voms1).64%) + 00 (S0 o Y1y Voms).40)]
Myt - 41 —
i 1 02 [22’:=0(fm~r+ Y(/:n+1),aY(m+l).a dx)(f,)r"*' Y(/m+1),hY(/m+1),b d)‘) +2Z (fn N Y(/;/'n+1) bY(m-H) adx)(frzr i Y(/m+1) a (m+1) bd )]
2ab b ; 1 = ’
2 2fioa(Zr—g St T Yot 1).a V1), dx) + vo(S_g fy Yt t),a Y ont1),09%)]
+1 +1
by, = 02 [ (fnr Y(/m+1) bY(m+1) bd")(fnr (m+1) a (m+l) a d") +22n—0(fnr Y(/;;1+1) aY(m+1) bd")(fnr (m+1) a (m+|) bdx)]
ba = 2V :
‘2 2fieon (g St T Yoms 1.6 Fan 17,6 4%) + 00 (Zimg S ™ Yoy Yim1).64%)]
(53)
Nr+41 r+1 /2 Nr41 Nr+1 2
ks = lvg [ (fnr Y(m-H) a Y(m+l) ad")(fnr Y(m+1) a dx) +22 (/mr Y(Zn-%—l) ay("l+1) a dx)(f,]r’ Y(/m+1),ay(,m+1),a d")]
3 h - )
“ 2 [lwn (Z:l:() fnr Y(»Z+l) aY(m+1) a dx) + UO(Z:’ Ofnr-H Y(m+1) aY(erl) a )]
+1 /2 Ir+1 7
_— lug[ "o Yniny.p Yo, bdx)(fnr Yori1y.a90) 250 o Un T Yinpy 5 Yot bdx) (S ! Yons1),6 Yo 1),0 4]
ba = T .
‘2 Ym0Vt 1,6 %) +00(S0 g o T ¥ty Vomt 1,6 4%)]

[1 @b (Z:’=O Jnr

To solve Eqgs. (52) and (53), we assume the form

1 : 1 .
A= ag(Te™ ™), Ay = ap (e TV

(54)
and obtain
Diaq + aqi D16, + %aa + ko, ape’”
- %k%bas - %kzabaaaﬁ =0,
(55

3
_k3ha ap

Diap + api D16, + ﬁa;, + kobaaael 2

2
1 2
— Zkzbaaaab =0.

We can make another transformation using y =
oTy — 6, — 6. Since the complex coefficients in

Eq. (53) are koap = koabg + ikoaby> koab = ikoaby
k3ab = ik3aby, koba = kovag +1kobar» k2ba = ikopay, and
k3pa = ik3pa;, we obtain the following amplitude mod-
ulation equations:

2% .
Dia, = —Eaa ~+ koapap Siny — koaprap cosy = Fy,

0 .
Diap = 5 + kopay@a SIny — kopagta OSy = F2,

Diy =0+ (56)

1 .
(kOabRag + kobakag) siny
aaqQp

1
+ wadn (kOablag + kObalag) cosy

Aq
2 P
- Za(k&;bl + kopay) — Z(kZabI + k3pa) = F3.

Now we can consider the steady-state response D1a, =

0, Diap =0, D1y = 0. Negative real parts of the
eigenvalues obtained from the Jacobian matrix shown
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below are stable. The positive roots of the real parts
are unstable.

oF AR AR
dag dap y
O 0F, dF
day dap ay . 57
JF3 o0F3 JF _
dag day, oy 22 ;ggz
Y=10

One can write complex amplitudes in polar form to
perform a stability analysis for the trivial solutions

Ag= %(pa +ipa)e' 2

: . (58)
Ap =3 (pp +ipp)e’>"
and obtain the following amplitude phase modulation
equations:

Dlpa=qa( + k3ub1(p qa)

2

1
+ Zkzabl (py + le))

m
— 5P~ koabg Pb — koabiqp = f1,
o 1 2 5
Dipy =qp B} + Zk3ba1 (Pb - qb)
1 2, 2
+ Zkzbal (pa +qa)
"
— 5P kobag Pa — kobar9a = f2, (59

o 1
Digy = pa <—§ + Zk3ah1 (PZ + qaz)

1
+ ZkZabI (P;% + 61;3))

"
— =qa — koabrqb — koab; Pb = f3,

2

[ (wp + 2)(2

o 1
Diga = pb (—5 + Zk3bﬂl(pl% +4;)

1
+ ZkZbaI (pg + 613))

"
— 549 — kObaRQQ - kOba]pa = f4'

2
At the steady state, D1p, =0, D1pp, =0, D1g, =0,

D1gqp = 0, and the Jacobian matrix is

ah i dh

opa  Opp  9qa  3gp

ofp, dfr 3 BN

0pa  9pp  9qa  Oqp (60)
s s Bz A '

0pa pp 3qa aqp

ofs  Ofs Ofa  Bfa

9pa pp 094 aqp Pa=P0a
4a=P0a Pb=P0b4b=90b

3.2.2 Combination resonances of difference type

Now let us investigate combination resonances of dif-
ference type. The velocity variation may be nearly
equal to the difference of the ath and bth modes as-
suming that @ > b without loss of generality:

2 =w, —wp+eo. 61)

Similarly, the following complex amplitude equations
are obtained:

—ks,, AqApAp =0,
(62)
— k3, A%Ab

D1 Ay + %Ab — ke,, Age= 1T

—k7,,AqAqAp =0,

where

! Y(/m+1)bY(m+1>»adx)+iv0( =0 fy " Y(m+1)bY(m+1),adx)]

ka,, =1

2[iwa (X720 "’“ Yont1),a¥on+1),0 dx) +v0(X7 = f,)

T Y(/m—i-l) aY(m+l),a dx)]

Nr+1 Mr+1 _
ks, = [(Zf YGuit).aYont, adX> (Z/ Yons1) o Yomt1), dx)
Nr+1 _ Nr+1
(Z/ Y(m+1)by(rn+l)adx) (Z/ Y(m+l)a (m+1)bdx)
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Nr+1 Nr+1 , -,
Z/ Yinr1).oYim1).a dx Z/ Yonrn).a¥ont1).0 4%
n Nr+1 _ n Nr+1 _
/|:ia)a (Z/ Y(m-‘,—l),a Y(m+1),a dx) + vy (Z/ Y(/m+1),aY(m+1),a dx)i| s (63)
r=0""1r r=0""r

[(wa ( r= ofnr+l Y(/m+l) aY(m+1),b dx) - ivO( r= ofm+l Y(/,/n+1) aY(erl),b dx)]

key,, = 1

Z[iwb( r=0 Sy Yontn oY onnyp dx) + 00720 [y Yigny o Yomtn) b dx)]

3

1 2 n Nr+1 Nr+1
k1, = 50 Zf Yty Yont1),pdx Zf Y1) Yont1),a dx

Nr+1 _ Nr+1
+ (Z/ Y(m+l) aY(m+1) bdx) (Z[ Y(/m+1),aY(/m+1),b dx)
'7r+1 _ n Nr+1 B
+ ( Yimt1y.aYont1).b dx) (Z/ Yonr1y.a¥ (ms 1) dx):|
r=0°""
nH—I Nr+1
iwp Yont1),6Yon+1),6 dx | + vo Z/ Y(m+1)bY(m+l) pdx

The following transformation can be used:

1 . 1 .
Aq=ag(Te ™, Ay = Sap(T)e!™ ™.
(64)
Equations (60)—(61) become
. iy 1 3
Dyay, —agiD10, + —aq — ks ape’” — Zk?’abaa
1 2
— stahaaab =0, (65)
. 1% —i 1 3
Diap + api D16 + Eab — ke, Gae — Zk3haab
k7baa ap =0. (66)

Further, the transformation using y = o771 + 6, +
6p shows that the coefficients have only imaginary
parts, k3up = ikaab;, kaab = kaaby + ikaapy, ksap =
iksapys keba = kebag + iképays k7ba = 1k7pa;, and the
amplitude-phase modulations can be written as fol-
lows:

I .
Dia, = —Eaa — kagpap sSiny + kaqppap cosy = Fi,

“m .
Diap = —Eah ~+ k6baaa SINY + Kepapaa cosy = 2,

1 2 2\ o
" (kaapgaj, + kepagay) siny (67)

a

Diy=0—

1
- (k4ab1ab Kobay a2 )cosy

aqap
2 2

a a
- Ia(k3ab1 — k7pay) — Zh(kSabI — k3pay) = F3.

At steady state, Dja, =0, Dyap =0, and D;y = 0.
Inserting into the Jacobian matrix

aF OF OR
dag dap ay

TR VoV
day dap ay > (68)
JF3 0F3 JF3

day day oy Zzzggz
Y=Y0

one can search for stability of the solutions.

The stability of trivial solutions can be obtained
similarly. We start by writing the complex amplitudes
in the polar form

1 . iCT
Ay = E(Pa +igq)e'z’!,
(69)

1 . i
Ap = E(Pb-l-l%)e 270,
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40r

20

16

Fig. 2 Variations of the first three modes with axial mean ve-
locity for locations 71 = 0.1 and 12 = 0.9 and for different v
values (w:—, wy:- - -, W3:--)

and inserting into Egs. (60) and (61), we obtain

D1 pa

o 1 1
ZQa<5 - Zk3ah1(l7§ +CIa2) - ZkSahI(Plz +CI§))

n
~5Pa + kaabg Pb — Kaapgp = f1,

Dipp

o 1 1
=qp (—5 - Zk3ba1 (P;% +q§) - anml(l?g + qﬁ))

m
— 5P + kepag Pa — kebarqa = f2, (70

D1qq

o 1 1
= Pa (—5 + 7Kaan (P2 +4q2)+ JKsan (pp + qi))

n
— 54— kaabrqp + kaab pb = f3,
D1gp

1 1
= Pb(% + Zk3ba1 (Pi + qZ) + Zk7ba1 (PZ, + f]i))

I

— 5~ kebagga + kebas pa = f4-
At the steady state, Dy p, =0, D1p, =0, Dig, =0,
D1qp = 0; then we construct the Jacobian matrix. No
instabilities arise up to the second order of expansion
for difference type of combination resonances.
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Fig. 3 Variations of the first three modes with axial mean ve-
locity for locations 1y = 0.2 and 5, = 0.8 and for different v
values (w1:—, wy:- - -, W3:---)

Fig. 4 Variations of the first three modes with axial mean ve-
locity for locations 1y = 0.3 and 12 = 0.7 and for different v
values (w):—, wy:- - -, W3:---)

4 Numerical results

The solution of these equations for different param-
eters give variation of frequency with the mean ax-
ial velocity. Material and geometric properties of the
moving beam are chosen as follows: E =200 GPa,
L=1m,b=0.002m, h=0.00l m, p=7.8 gr/m>.
In Figs. 2, 3, 4 and 5, the variation is depicted for
four-support cases n; — n2 = 0.1-0.9, n; — 2 =0.2—
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Fig. 5 Variations of the first three modes with axial mean ve-
locity for locations 71 = 0.4 and 12 = 0.6 and for different v
values (w1 :—, wy:- - -, W3:-+-)

sof T 1

45 e 1

Fig. 6 Variation of the first three modes with axial mean veloc-
ity for vy = 0.2 and for different n; — n; locations (w:—, w;:-
- w3i--)

0.8, n1 — np = 0.3-0.7, and n; — n2 = 0.4-0.6, re-
spectively, for different vy values in the first three
natural frequencies. Locating the supports toward the
middle section increases the frequencies. Frequencies
decrease with an increase in the axial mean velocity.
This situation is the characteristic for axially moving
systems. Increasing the flexural rigidity constant in-
creases the frequencies as expected. Variations of the
first three modes with axial mean velocity for vy = 0.2

0.05F
0.045
0.04
0.035
0.03|
0.025
0.02
0.015f
0.01}

0.005

Fig. 7 Nonlinear frequency—amplitude variation for different
vo values and for the first mode (vy =0.2, 71 = 0.3, 52 =0.7)

0.05

0.045

0.04 -

0.035

0.03

0.025

0.02

0.015+

0.01+

0.005 -

Fig. 8 Nonlinear frequency—amplitude variation for different
vo values and for the second mode (vy = 0.2, 7 = 0.3,
m =0.7)

and for different n; — 1, location values are depicted
in Fig. 6.

In Fig. 7, o—a variation is depicted for the first
mode for vy = 0.2, n; — 12 =0.3-0.7, and v = 0.2,
0.8, and 1. In Fig. 8, o—a variation is depicted for
the second mode, for vy = 0.2, n; — n2 = 0.3-0.7,
and vp = 0.2, 1 and 1.9, respectively. As the mean
speed increases, the unstable regions widen. Dashed
lines denote unstable solutions. When the interme-
diate supports are located close to the center, e.g.,
n =0.3 and n; — n = 0.3-0.7 as in Figs. 9 and
10, the unstable regions slightly widen, which can be
seen when a comparison made between three-support
and four-support cases. All figures are of hardening
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type, but as the intermediate supports are approached
to the midpoint, the behavior becomes more harden-

;: T]1=0,3
i n2=0.7

ng.
x 10
15
10+
n=0.3
© 1,=0.3
n2=0.7
5 .
0
L 1
3 2 -1

Fig. 9 Nonlinear frequency—amplitude variation for the first

mode (vy =0.2, v9=0.2)

Fig. 11 Variation of

2 — gv; values for different
vg values and for the first
natural frequency
(vy=0.2,

n1 —n2 =0.3-0.7)

Fig. 12 Variation of

2 — gv; values for different
vg values and for the first
natural frequency

(vy =0.6,

n1 —n2 =0.3-0.7)
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In Figs. 11, 12 and 13, variation of stability region
depending on mean speed and velocity fluctuation fre-
quency is shown for the first modes of vibration for

x 10
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n=0.3 1n=0.3 ]
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[
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Fig. 10 Nonlinear frequency—amplitude variation for the sec-
ond mode (vy =0.2, v9 =0.2)
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Fig. 13 Variation of

£2 — ev; values for different
vg values and for the first
natural frequency (vy =1,
n1 —n2 =0.3-0.7)

150

0.8
0.6
EVy 04
0.2
0.0
Fig. 14 Variation of
2 — gv; values for different
vg values and for the second
natural frequency 150
(vy =0.6,
n1 —n2=0.3-0.7) 06
0.4
&Vy
0.2
0.0

0.5

0.45+ B
0.4r B
0.35¢ B
0.3+ B

@ 025} / b
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0.15+ B
0.1+ B

0.05+ B

On

Fig. 15 Nonlinear frequency—amplitude variation for vy = 0.2
and support locations n; = 0.3, ny = 0.7 (the first mode)

100

100

Vo

50

Vo

vy =0.2,0.6, and 1.0, respectively. The support loca-
tions are the same and only four-support case is dis-
cussed. For the same vy (e.g., 0.2), the stability re-
gions become wider with increasing mean speed. The
second mode for vy = 0.6 and n; — 72 = 0.3-0.7 is
shown in Fig. 14 as an example for higher modes only.

In Figs. 15, 16 and 17, the nonlinear frequency ver-
—n = 0.3—
0.7, for different mean speed values, and for the first
three modes, respectively. A hardening type behavior
is shown in all figures. Increasing the mean speed re-
duces nonlinear frequencies, but the behavior becomes
more hardening. Similar variations for different sup-
port locations are presented in Figs. 18, 19 and 20 for
the four-support case only. The support location has
different effects for different modes due to closeness
to the nodal points.

sus amplitude is depicted for vy = 0.2, n;
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Fig. 16 Nonlinear frequency—amplitude variation for vy = 0.2
and support locations 1 = 0.3, 2 = 0.7 (the second mode)
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Fig. 17 Nonlinear frequency—amplitude variation for vy = 0.2
and support locations 1 = 0.3, n, = 0.7 (the third mode)

5 Conclusions

Transverse vibrations of an axial moving beam are ex-
amined. Equation of motion for an arbitrary number
of supports and extension of neutral axis is obtained.
The method of multiple scales is applied to these equa-
tions. The effects of supports, axial speed, and flexural
rigidity on frequencies are discussed. A support condi-
tion whose determinant gives eigenvalues for arbitrary
number of supports is presented in a general form.
Principal parametric resonances and combination res-
onances are investigated for the frequencies twice the
velocity fluctuation frequency. The general form of
frequency equation is presented in a matrix form for
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Fig. 18 Nonlinear frequency—amplitude variation for
vy = 0.2 — vo = 0.2 and different support locations (the first
mode)
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14r
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Fig. 19 Nonlinear frequency—amplitude variation for
vy =0.2 — vg = 0.2 and different support locations (the second
mode)

any number of supports. The stable and unstable solu-
tion regions are presented. An increase in axial mean
speed decreases nonlinear frequencies. A more hard-
ening type for higher velocities was observed. This
is because of growing nonlinear corrections. Placing
the intermediate supports around middle of the beam
increases the corrections on the nonlinear frequen-
cies. As the mean velocity increases, unstable regions
widen for the same flexural values. Around zero-mean
velocity, unstable regions are small; around critical ve-
locity, it is wide. Increasing rigidity makes it narrow.
The amplitudes of vibrations increase in the nontriv-
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ial solution regions. An increase in rigidity decreases
nonlinear effects on the natural frequency. In com-

0.8

0.6

0.4

0.2+

1 1 1 1
0 50 100 150 200 250 300
o,

nl

Fig. 20 Nonlinear frequency—amplitude variation for
vy =0.2 —vp = 0.2 and different support locations (the third
mode)

Fig. 21 Variation of 0.05
amplitude with frequency
parameter for combination

0.04
resonances of sum type
(vy=02,7=0.1,
vo =0.2, w, =5.028, 0.03
wp = 13.583)

Aq
0.02
001
0

Fig. 22 Variation of 008

amplitude with frequency

parameter for combination 0.05 4

resonances of sum type
(vf=02,7=0.1,

v = 0.2, @, = 5.028, 0041
wp = 13.583) ap
0.03 4
0.02 4

0.01 4

bination resonances, amplitudes belonging to higher
modes increase faster than those of lower modes.
There is no increase in the amplitudes in difference
types of combination resonances and no instability re-
gion in which trivial solution appears.

In Figs. 21 and 22, variation of combination reso-
nances of sum type is presented for vy = 0.2, n =0.1,
vo = 0.2, and two different frequency values (v, =
5.0278, wp = 13.583). Solid lines denote stable re-
gions, and dashed lines denote unstable regions. When
velocity fluctuation frequency is close to the sum of
the frequencies above, the behavior is more hardening
for the upper mode amplitude.
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Appendix

Bn=PBnya forn=1,2,...,m.

The # of intermediate supports is given by m =
0,1,2,...,n.

Size of the matrix 4(n + 1) x 4(n + 1),
m=0,1,2,...,n.

By defining the following matrices we can write the
frequency matrix for arbitrary number of supports:

0 0 0 0
eiP1mn eiP2mn eiP3mn eiPamn
AT e _pyeifrin _Bapifim _geifann |
,312@“3' Tl ﬂ%eiﬂz Tl '33261‘/33 Tl ﬂ%eim Tl
0 0 0O
- 00 00
°Zlo 00 0
00 00

For the three-support case (one intermediate support)
8 by 8 matrix, 1, n, = 1:

1 1 1 1
2 2 2
_ ,31 ,32 ﬂ3 ,34 _ ri )
ry = s r = .
0O o0 0 O I3n=1 T4n=1
L0 0 0 O ) )
For the four-support case (two intermediate supports),
B 12 by 12 matrix:
0 0 0 0
P 0 0 0 0 r o r
2T e eiP2 eiPs P r=|ra=1 Fran=1 ro
| Beit Bt Gl pleits o Tame2 Tanc2
eiB1m £iB2mn B3 oiBimn For the (m + 2)-support case (m intermediate sup-
0 0 0 0 ports), 4(m + 1) by 4(m + 1) matrix:
r3= ‘Bleiﬁl Mn ﬂzeiﬁznn ﬂ3eiﬁ377n ﬂ4eiﬁ47hx
_ﬁ]2€iﬂ1 T _ﬁ%eiﬁznn _ﬂgeiﬂsnn _ﬂgeiﬂwn
[ i r |
75 =1 Ty n=1 . . . . .
. B3 n=2 Tan=2 : : : O .
r= 0
-
-
L r3.n:m rd.n:m La(m+1)ca(m+1)
3. Wickert, J.A., Mote, C.D. Jr.: Classical vibration analysis
of axially moving continua. J. Appl. Mech. 57, 738-744
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