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Abstract This study represents the transverse vibra-
tions of an axially accelerating Euler–Bernoulli beam
resting on multiple simple supports. This is one of
the examples of a system experiencing Coriolis ac-
celeration component that renders such systems gy-
roscopic. A small harmonic variation with a constant
mean value for the axial velocity is assumed in the
problem. The immovable supports introduce nonlin-
ear terms to the equations of motion due to stretching
of neutral axis. The method of multiple scales is di-
rectly applied to the equations of motion obtained for
the general case. Natural frequency equations are pre-
sented for multiple support case. Principal paramet-
ric resonances and combination resonances are dis-
cussed. Solvability conditions are presented for differ-
ent cases. Stability analysis is conducted for the so-
lutions; approximate stable and unstable regions are
identified. Some numerical examples are presented to
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and their locations.
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1 Introduction

Many real-life engineering devices, such as band and
chain-saws, conveyor belts, fiber textiles, magnetic
tapes, paper sheets, and threadlines, involve vibration
of axially accelerating beams. Some practical exam-
ples can be modeled as a moving string of thin or thick
beams. A vast literature can be found in references
[1, 2]. Transverse vibrations of axially moving strings
and beams are investigated by Wickert and Mote
[3] including axial tension. Wickert [4] discussed
tensioned beams, including nonlinear stretching ef-
fects for subcritical and supercritical speed region.
Pakdemirli and Ulsoy [5] obtained approximate ana-
lytical solutions for variable speed using the method of
multiple scales and compared direct-perturbation and
discretization-perturbation. Nayfeh et al. [6] showed
that direct-perturbation is better for quadratic and cu-
bic nonlinearities. The method of multiple scales and
other methods were applied to string–beam transi-
tion problem [7–11] for axially accelerating materi-
als. Yurddaş et al. [12, 13] investigated nonlinear vi-
brations of an axially moving string having nonideal
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Fig. 1 Axially moving beam on multiple supports

mid-support and multi-support conditions. The vari-
able velocity case for a moving beam was investigated
for different end conditions and different resonance
cases, including principal parametric and combination
types, were discussed in [14–19]. Infinite-mode analy-
sis was performed in [20]. There are also some studies
about axially moving beams composed of viscoelas-
tic materials [21–24]. Stationary beams with multi-
ple supports were also investigated in detail. Non-
linear free vibrations of multispan beams on elastic
supports were studied by Lewandowski [25], where
frequencies and nonlinear mode of vibrations were
found by using dynamic stiffness method, and the in-
fluence of support flexibility on the frequency ampli-
tude relations was examined. Beams simply supported
in span were discussed, and frequency response func-
tions were determined [26, 27]. Nonlinear vibrations
and 3:1 internal resonances on multiple supports were
investigated, and excitation frequency–frequency re-
sponse curves were drawn for different support num-
bers [28, 29]. Bağdatli et al. [30] dynamics of axi-
ally accelerating beams with an intermediate support.
Tekin et al. [31] investigated three-to-one internal res-
onances for multi-stepped beam systems. The cou-
pled longitudinal-transverse nonlinear dynamics of an
axially accelerating beam was determined [34], and
Ghayesh et al. [35] discussed the stability of an axially
moving beam supported by an intermediate spring.

In the current manuscript, transverse vibrations
of axially moving beams are presented. An Euler–
Bernoulli-type axially moving beam on multiple sup-
ports (simply supported) is considered. This type of
support may represent contact with multiple bound-
aries, e.g., cutting a wood or passing through holes.
Stretching of the neutral axis introduces a nonlinear ef-
fect to the problem. The beam travels with a harmonic
axial velocity slightly varying about a constant mean
value. The equations of motion are obtained using an

energy approach and solved using a perturbation tech-
nique. A general support condition in matrix form is
presented for multi-support case. Natural frequencies
are presented for different flexural rigidity values, sup-
port locations, and support numbers. Principal para-
metric resonances and stability are investigated.

2 Equations of motion

Figure 1 shows the axially accelerating beam on mul-
tiple supports. x∗, z∗, and t∗ are spatial and time vari-
ables, respectively, w∗ and u∗ denote the transverse
and axial displacements respectively, and v∗ is the ax-
ial velocity of the beam.

The Lagrangian of the system is given below.

£ = 1

2

n∑

m=0

∫ x∗
m+1

x∗
m

ρA
{(

ẇ∗
m+1 + w∗′

m+1v
∗)2

+ (
v∗ + u̇∗

m+1 + u∗′
m+1v

∗)2}
dx∗

−
n∑

m=0

[
1

2

∫ x∗
m+1

x∗
m

EA

(
u∗′

m+1 + 1

2
w∗′2

m+1

)2

dx∗

+ 1

2

∫ x∗
m+1

x∗
m

EIw∗′′2
m+1 dx∗

+
∫ x∗

m+1

x∗
m

P

(
u∗′

m+1 + 1

2
w∗′2

m+1

)
dx∗

]
, (1)

where ( · ) denotes the derivative with respect to time
(t∗), and ()′ denotes the derivative with respect to
the spatial variable (x∗). In Eq. (1) the rotary inertia
and shear effect are not included, and cross-sectional
area does not change during motion. x∗

m+1 denotes
the distance between any support and the origin. m =
0,1,2, . . . , n, where n is the number of supports. The
first two integrals inside the summation sign are ki-
netic energies between any successive supports (e.g.,
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1st–2nd, 2nd–3rd, 3rd–4th, and so on). The terms in
the second summation sign are elastic potential ener-
gies due to elongation, bending, and tensile force (P )
between any successive supports, respectively. x0 = 0,
and xn+1 = L is the total length, xp is the location of
multiple supports. The material properties in the equa-
tion are defined as follows: ρA is the mass per unit
length, EA is the longitudinal rigidity, and EI is the
flexural rigidity. After applying Hamilton’s principle
to Eq. (1), the equations of motion between any suc-
cessive supports can be obtained as follows:

(
ẅ∗

m+1 + 2ẇ∗′
m+1v

∗ + w∗′
m+1v̇

∗ + w∗′′
m+1v

∗2)

+ EI

ρA
w∗iv

m+1 − P

ρA
w∗′′

m+1

− E

ρ

(
u∗′′

m+1w
∗′
m+1 + u∗′

m+1w
∗′′
m+1

+ 3

2
w∗′2

m+1w
∗′′
m+1

)
= 0, (2)

(
ü∗

m+1 + 2u̇∗′
m+1v

∗ + u∗′
m+1v̇

∗ + v̇∗ + u∗′′
m+1v

∗2)

− E

ρ

(
u∗′

m+1 + 1

2
w∗′2

m+1

)′
= 0. (3)

Using the following parameters, one can make the
equations nondimensional:

wm+1 = w∗
m+1

L
, um+1 = u∗

m+1

L
, η = x∗

m+1

L
,

t = t∗
√

P

ρAL2
, (4)

v = v∗
√

P/ρA
, v2

b = EA

P
, v̄2

f = EI

PL2
,

where vb represents the longitudinal rigidity, and v̄f is
the flexural rigidity. The axial velocity is made nondi-
mensional by dividing with critical velocity. The ex-
planation for v2

b � 1 is given in reference [4]. After
performing necessary mathematical operations and in-
cluding damping, nondimensional integro-differential
equations of motion and boundary conditions for the
general case are obtained as follows:

(
ẅm+1 + 2ẇ′

m+1v + w′
m+1v̇

) + (
v2 − 1

)
w′′

m+1

+ v̄2
f wiv

m+1 + μ̄
(
ẇm+1 + vw′

m+1

)

= 1

2
v2
b

(
n∑

r=0

∫ ηr+1

ηr

w
′2
r+1 dx

)
w′′

m+1,

m = 0,1,2 . . . n, η0 = 0, ηn+1 = 1,

w1(0, t) = 0, wn+1(1, t) = 0, w′′
1(0, t) = 0,

w′′
n+1(1, t) = 0, (5)

wp(ηp, t) = 0, wp+1(ηp, t) = 0,

w′
p(ηp, t) = w′

p+1(ηp, t), w′′
p(ηp, t) = w′′

p+1(ηp, t)

(p = 1,2,3, . . . , n).

The right-hand side of the equation above represents
the stretching of the neutral axis. ẅm+1 is the lo-
cal acceleration, 2ẇ′

m+1v is the Coriolis acceleration,
v2
bw

′′
m+1 is the centripetal acceleration, and ηp are the

locations of intermediate supports. The transport ve-
locity with constant mean and arbitrary fluctuation fre-
quency can be written as follows:

v = v0 + εv1 sinΩt, (6)

where ε denotes a small variation. The displacement in
Eq. (5) can be assumed as wm+1 = √

εym+1 to guar-
antee that the longitudinal rigidity depending on non-
linear effects appears in higher orders of expansion.
Using Eqs. (5) and (6), the equation of motion and
boundary conditions become

ÿm+1 + 2ẏ′
m+1v0 + 2εẏ′

m+1v1 sinΩt

+ εy′
m+1v1Ω cosΩt + v̄2

f yiv
m+1

+ εμ̄
(
ẏm+1 + v0y

′
m+1

) + (
v2

0

+ ε2v2
1 sin2 Ωt + 2εv0v1 sinΩt − 1

)
y′′
m+1

(7)

= 1

2
v2
bεy

′′
m+1

(
n∑

r=0

∫ ηr+1

ηr

y
′2
r+1 dx

)
y′′
m+1,

y1(0, t) = 0, y′′
1 (0, t) = 0, yn+1(1, t) = 0,

yp(ηp, t) = 0, yp+1(ηp, t) = 0,

y′
p(ηp+1, t) = y′

p+1(ηp,t ) = 0(ηp, t),

y′′
p(ηp, t) = y′′

p+1(ηp, t).

One can make an arrangement for the orders of flex-
ural rigidity and viscous damping as v̄2

f = v2
f and

μ̄ = εμ. These equations will be solved analytically
in the next section.
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3 Perturbation analysis

For searching the approximate solutions of Eq. (7), the
method of multiple scales will be used. The displace-
ment functions for sections between any successive
two supports can be expanded as shown below:

ym+1(x, t; ε) = y(m+1)1(x, T0, T1))

+ εy(m+1)2(x, T0, T1 + · · · , (8)

where T0 = t and T1 = εt are the slow and fast time
scales, respectively. The first and second time deriva-
tives used in Eq. (7) are defined as follows:

d

dt
= D0 + εD1 + · · · ,

(9)
d2

dt2
= D2

0 + 2εD0D1 + · · · ,

where Di = ∂/∂Ti . Substituting Eqs. (8), (9) into Eq.
(7), one obtains equations at different orders of pertur-
bation expansion:

O(1) :
D2

0y(m+1)1 + 2v0D0y
′
(m+1)1 + (

v2
0 − 1

)
y′′
(m+1)1

+ v2
f yiv

(m+1)1 = 0,

y1(0, t) = 0, y′′
1 (0, t) = 0, yn+1(1, t) = 0, (10)

y′′
n+1(1, t) = 0,

yp(ηp, t) = 0, yp+1(ηp, t) = 0,

y′
p(ηp+1, t) = y′

p+1(ηp, t), y′′
p(ηp, t) = y′′

p+1(ηp, t).

O(ε):
D2

0y(m+1)2 + 2v0D0y
′
(m+1)2 + v2

f yiv
(m+1)2

+ (
v2

0 − 1
)
y′′
(m+1)2

= −2D0D1y(m+1)1 − 2v0D1y
′
(m+1)1

− 2v1 sinΩtD0y
′
(m+1)1 − 2y′′

(m+1)1v0v1 sinΩt

− y′
(m+1)1v1Ω cosΩt − μD0y(m+1)1

− μv0y
′
(m+1)1

+ 1

2
v2
b

(
n∑

r=0

∫ ηr+1

ηr

y′2
(m+1)1 dx

)
y′′
(m+1)1, (11)

y1(0, t) = 0, y′′
1 (0, t) = 0,

yn+1(1, t) = 0, y′′
n+1(1, t) = 0,

yp(ηp, t) = 0, yp+1(ηp, t) = 0,

y′
p(ηp+1, t) = y′

p+1(ηp, t),

y′′
p(ηp, t) = y′′

p+1(ηp, t).

The solution of Eq. (10) will give velocity-dependent
natural frequencies and mode shapes between adjacent
two supports. It can be assumed as follows:

y(m+1)1(x, T0, T1; ε) = A(T1)e
iωT0Y(m+1)(x)

+ Ā(T1)e
−iωT0 Ȳ(m+1)(x).

(12)

Inserting it into the equations gives

v2
f Y iv

m+1 + (
v2

0 − 1
)
Y ′′

m+1 + 2iv0ωY ′
m+1 − ω2Ym+1

= 0,

Y1(0) = 0, Yn+1(1) = 0, Y ′′
1 (0) = 0, (13)

Y ′′
n+1(1) = 0,

Yp(ηp) = 0, Yp+1(ηp) = 0, Y ′
p(ηp) = Y ′

p+1(ηp),

Y ′′
p (ηp) = Y ′′

p+1(ηp).

The following functions can be proposed for the solu-
tions of equations above:

Ym+1(x) = c4m+1
(
eiβ4m+1x + c4m+2e

iβ4m+2x

+ c4m+3e
iβ4m+3x + c4m+4e

iβ4m+4x
)
. (14)

Then we obtain the dispersion relation

v2
f β4

4m+1 + (
1 − v2

0

)
β2

4m+1 − 2ωv0β4m+1 − ω2 = 0

(m = 0,1,2, . . . , n). (15)

The support condition is obtained by applying the
boundary conditions similar to references [4, 14, 15]
(for two supports only) for multiple support case as
given below:
[
v2
f β4

4m+1 + (
1 − v2

0

)
β2

4m+1 − 2ωv0β4m+1

− ω2]eiβ4m+1x

+ [
v2
f β4

4m+2 + (
1 − v2

0

)
β2

4m+2 − 2ωv0β4m+2

− ω2]c4m+2e
iβ4m+2x

+ [
v2
f β4

4m+3 + (
1 − v2

0

)
β2

4m+3 − 2ωv0β4m+3
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− ω2]c4m+3e
iβ4m+3x

+ [
v2
f β4

4m+4 + (
1 − v2

0

)
β2

4m+4 − 2ωv0β4m+4

− ω2]c4m+4e
iβ4m+4x = 0. (16)

The coefficients in function (14) can be obtained from
the boundary conditions (13) in terms of one of the co-
efficients by equating the determinant of the following
matrix to zero. Numerical examples for linear frequen-
cies considering different cases will be presented later.
Support condition matrices for 3- and 4-support cases
and for a general form of the multiple support case are
given in the Appendix.

Order ε (11) represents the nonlinear behavior. The
following functions can be proposed for the solution:

y(m+1)2(x, T0, T1; ε) = φm+1(x, T1)e
iωT0

+ Wm+1(x, T0, T1) + cc, (17)

where the first term (φm+1) is related with the secular
terms, the second one (Wm+1) is related with the non-
secular terms (NST), and cc stands for the complex
conjugate of the preceding terms. After using these
substitutions, one gets
(
v2
f φiv

m+1 + (
v2

0 − 1
)
φ′′

m+1 + 2iv0ωφ′
m+1

− ω2φm+1
)
eiωT0

= −2
(
iωYm+1 + v0Y

′
m+1

)
D1AeiωT0

+ v1

(
−ωY ′

m+1 − Ω

2
Y ′

m+1 + iv0Y
′′
m+1

)

× Aei(Ω+ω)T0 + v1

(
ωȲ ′

m+1 − Ω

2
Ȳ ′

m+1

+ iv0Ȳ
′′
m+1

)
Āei(Ω−ω)T0

− μ
(
iωYm+1 + v0Y

′
m+1

)
AeiωT0

+ 1

2
v2
b

[
Ȳ ′′

m+1

(
n∑

r=0

∫ ηr+1

ηr

Y
′2
m+1 dx

)

+ 2Y ′′
m+1

(
n∑

r=0

∫ ηr+1

ηr

Y ′
m+1Ȳ

′
m+1 dx

)]

× A2ĀeiωT0 + cc + NST,

m = 0,1,2, . . . , n, η0 = 0, ηn+1 = 1. (18)

Since the left-hand sides of Eqs. (10) and (11) are the
same, and Eq. (10) has a nontrivial solution, a solvabil-
ity condition should be obtained for Eq. (11) to have a
solution. A function is chosen depending on whether
the problem is adjoint or self-adjoint. For this case, the
function is adjoint. The solvability condition can be
obtained by following reference [32]. These solutions
will be discussed for different velocity fluctuation fre-
quencies Ω .

3.1 Principal parametric resonances

When the velocity fluctuation frequency is close to two
times any natural frequency, the principal parametric
resonance will occur. This case can be represented by

Ω = 2ω + εσ, (19)

where σ is a detuning parameter. The solvability con-
dition can be obtained as follows:

D1A + k0ĀeiσT1 + μ

2
A − k3A

2Ā = 0, (20)

where

k0 = v1

[(
Ω
2 − ω

)(∑n
r=0

∫ ηr+1
ηr

Ȳ ′
m+1Ȳm+1 dx

) − iv0
(∑n

r=0

∫ ηr+1
ηr

Ȳ ′′
m+1Ȳm+1 dx

)]

2
[
iω

(∑n
r=0

∫ ηr+1
ηr

Ym+1Ȳm+1 dx
) + v0

(∑n
r=0

∫ ηr+1
ηr

Y ′
m+1Ȳm+1 dx

)] ,

(21)

k3 = 1

2
v2
b

[∑n
r=0

(∫ ηr+1
ηr

Ȳ ′′
m+1Ȳm+1 dx

)(∫ ηr+1
ηr

Y
′2
m+1 dx

) + 2
∑n

r=0

(∫ ηr+1
ηr

Y ′′
m+1Ȳm+1 dx

)(∫ ηr+1
ηr

Y ′
m+1Ȳ

′
m+1 dx

)]

2
[
iω

(∑n
r=0

∫ ηr+1
ηr

Ym+1Ȳm+1 dx
) + v0

(∑n
r=0

∫ ηr+1
ηr

Y ′
m+1Ȳm+1 dx

)] .

The amplitude in Eq. (20) can be written in polar
form as

A = 1

2
aeiθ . (22)

Amplitude and phase modulation equations are ob-

tained by separating Eq. (21) into real and imaginary
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parts as follows:

D1a = a

(
k0I sinγ − k0R

cosγ + 1

2
μ

)
, (23)

aD1γ = aσ + 2a(k0I cosγ + k0R
sinγ ) − 1

2
k3Ia

3,

(24)

where k0 = k0R
+ ik0I , k3 = ik3I , and the real part of

k3 is very small compared to the real part [14], and

γ = σT1 − 2θ. (25)

The transformation can be assumed for the phase
to seek the solution in steady-state region D1a = 0,
D1γ = 0:

F1(a, γ ) =
(

k0I sinγ − k0R
cosγ + 1

2
μ

)
, (26)

F2(a, γ ) = σ + 2(k0I cosγ + k0R
sinγ )

− 1

2
k3Ia

2. (27)

The solution of phase modulation equations with zero
amplitude is the trivial solution, and the other case is
the nontrivial solution. The relation between the ve-
locity fluctuation frequency and amplitude of the non-
trivial solution can be obtained as follows:

σ1,2 = 1

2
a2k3I ∓ 2

√
k2

0I
+ k2

0R
− 1

4
μ2. (28)

The Jacobian matrix can be constructed to investigate
the stability conditions of the nontrivial solution:
⎡

⎣
∂F1
∂a

∂F1
∂γ

∂F2
∂a

∂F2
∂γ

⎤

⎦
a=a0
γ=γ0

. (29)

The eigenvalues are obtained from the equation
[ −λ a( 1

4k3Ia
2 − σ

2 )

−k3Ia −μ − λ

]

a=a0
γ=γ0

(30)

as follows:

λ1,2 = 1

2

(
−μ ∓

√
μ + 2a2σk3I − a4k2

3I

)
. (31)

The complex amplitudes in the polar form

A = 1

2
(p + iq)aei σ

2 T1 (32)

are rewritten for the stability analysis of the trivial so-
lution. Then phase modulation equations are obtained
as follows:

D1p = −
(

k0R
− 1

2
μ

)
p +

(
σ

2
− k0I

)
q

− 1

4
k3Iq

(
p2 − q2), (33)

D1q =
(

k0R
− 1

2
μ

)
q +

(
σ

2
+ k0I

)
p

+ 1

4
k3Ip

(
p2 + q2). (34)

The eigenvalues are

λ1,2 = 1

2

(
−μ ∓

√
4
(
k2

0I
+ k2

0R

) − σ 2
)
, (35)

and the stability boundaries for the trivial solution are

2

√
k2

0I
+ k2

0R
− 1

4
μ2 ≤ σ ≤ −2

√
k2

0I
+ k2

0R
− 1

4
μ2.

(36)

There will be no nontrivial solutions in the regions at
which the trivial solutions are stable [33]. There exist
nontrivial solutions in the regions at which the trivial
solutions are unstable. In the latter case, amplitudes of
vibration increase.

3.1.1 Ω is away from 0 and 2ω

This is the case for the velocity fluctuation frequency
away from 0 and 2ω. The solvability condition is

D1A + μ

2
A − k3A

2Ā = 0, (37)

and phase modulation equations are

D1a + μ

2
a = 0, (38)

aD1θ − 1

4
k3I

a3 = 0. (39)

For undamped free vibrations, μ = 0, the amplitude is
constant (a = a0), and the phase is

θ = 1

4
k3Ia

2T1 + β0. (40)
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The nonlinear natural frequency is obtained as fol-
lows:

ωnl = ω + ε

(
1

4
k3Ia

2
)

. (41)

3.1.2 Ω is close to 0

The velocity fluctuation frequency is

Ω = εσ. (42)

The solvability condition is

D1A+ μ

2
A+(k1 cosσT1 +k2 sinσT1)A−k3A

2Ā = 0,

(43)

where

k1 = v1Ω(
∑n

r=0

∫ ηr+1
ηr

Y ′
m+1Ȳm+1 dx)

2[iω(
∑n

r=0

∫ ηr+1
ηr

Ym+1Ȳm+1 dx) + v0(
∑n

r=0

∫ ηr+1
ηr

Y ′
m+1Ȳm+1 dx)] ,

(44)

k2 = iv1ω(
∫ η

0 Y ′
1Ȳ1 dx + ∫ 1

η
Y ′

2Ȳ2 dx)

[iω(
∑n

r=0

∫ ηr+1
ηr

Ym+1Ȳm+1 dx) + v0(
∑n

r=0

∫ ηr+1
ηr

Y ′
m+1Ȳm+1 dx)] .

The amplitude for this case is

a = aoe
−μT1+

(k1R
cosσT1−k2R

sinσT1)

σ . (45)

Since | sinσT1| ≤ 1 and | cosσT1| ≤ 1, the complex
amplitudes are bounded in time, and thus there is no
instability for this case.

3.2 Combination resonances

In this section, we assume that there are two dominant
modes. Two cases are significant. The velocity varia-
tion frequency may either be nearly equal to the sum of
any two modes or to the difference of any two modes.
One can assume the following function for the solu-
tion of Eqs. (10) for combination resonances in which
the ath and bth modes are effective:

y(m+1)1(x, T0, T1; ε) = Aa(T1)e
iωaT0Y(m+1),a(x)

+ Ab(T1)e
iωbT0Y(m+1),b(x)

+ cc. (46)

Shape functions for the two modes can be proposed as
follows:

Y(m+1),p(x) = c4m+1,peiβ4m+1x + c4m+2,peiβ4m+2x

+ c4m+3,peiβ4m+3x + c4m+4,peiβ4m+4x,

p = a, b. (47)
Inserting the function above into the first order of ex-
pansion gives

v2
f Y iv

(m+1),p + (
v2

0 − 1
)
Y ′′

(m+1),p + 2iv0ωpY ′
(m+1),p

− ω2
pY(m+1),p = 0. (48)

The displacement function for the second order of ex-
pansion can be defined as follows:

y(m+1)2(x, T0, T1; ε)
= φ(m+1),a(x, T1)e

iωaT0 + φ(m+1),be
iωbT0

+ W(m+1)(x, T0, T1) + cc. (49)

The first two terms are related with secular terms
in the ath and bth modes, the third one is related
with nonsecular terms. Inserting the functions defined
above into the second order of expansion, we get

(
v2
f φiv

(m+1),a + (
v2

0 − 1
)
φ′′

(m+1),a + 2iv0ωaφ
′
(m+1),a − ω2

aφ(m+1),a

)
eiωaT0

+ (
v2
f φiv

(m+1),b + (
v2

0 − 1
)
φ′′

(m+1),b + 2iv0ωaφ
′
(m+1),b − ω2

aφ(m+1),b

)
eiωbT0



244 S.M. Bağdatli et al.

= −(2D1Aa + μAa)
(
iωaY(m+1),a + v0Y

′
(m+1)a

)
eiωaT0 − (2D1Ab + μAb)

(
iωbY(m+1),b + v0Y

′
(m+1),b

)
eiωbT0

+ Aav1

(
−ωaY

′
(m+1),a − Ω

2
Y ′

(m+1),a + iv0Y
′′
(m+1),a

)
ei(Ω+ωa)T0

+ Abv1

(
−ωbY

′
(m+1),b − Ω

2
Y ′

(m+1),b + iv0Y
′′
(m+1),b

)
ei(Ω+ωb)T0

+ Āav1

(
ωaȲ

′
(m+1),a − Ω

2
Ȳ ′

(m+1),a + iv0Ȳ
′′
(m+1),a

)
ei(Ω−ωa)T0

+ Ābv1

(
ωbȲ

′
(m+1),b − Ω

2
Ȳ ′

(m+1),b + iv0Ȳ
′′
(m+1),b

)
ei(Ω−ωb)T0

+ 1

2
v2
b

[[
A3

a

(
n∑

r=0

∫ ηr+1

ηr

Y
′2
(m+1),a dx

)
e3iωaT0 + AaĀ

2
a

(
n∑

r=0

∫ ηr+1

ηr

Ȳ
′2
(m+1),a dx

)
e−iωaT0

+ 2AaĀaĀb

(
n∑

r=0

∫ ηr+1

ηr

Ȳ ′
(m+1),aȲ

′
(m+1),b dx

)
e−iωbT0 + AaĀ

2
b

(
n∑

r=0

∫ ηr+1

ηr

Ȳ
′2
(m+1),b dx

)
ei(ωa−2ωb)T0

+ 2A2
aĀa

(
n∑

r=0

∫ ηr+1

ηr

Y ′
(m+1),aȲ

′
(m+1),a dx

)
eiωaT0 + 2A2

aĀb

(
n∑

r=0

∫ ηr+1

ηr

Y ′
(m+1),aȲ

′
(m+1),b dx

)
ei(2ωa−ωb)T0

+ 2AaĀaAb

(
n∑

r=0

∫ ηr+1

ηr

Ȳ ′
(m+1),aY

′
(m+1),b dx

)
eiωbT0 + 2AaAbĀb

(
n∑

r=0

∫ ηr+1

ηr

Y ′
(m+1),bȲ

′
(m+1),b dx

)
eiωaT0

+ 2A2
aAb

(
n∑

r=0

∫ ηr+1

ηr

Y ′
(m+1),aY

′
(m+1),b dx

)
ei(2ωa+ωb)T0

+ AaA
2
b

(
n∑

r=0

∫ ηr+1

ηr

Ȳ
′2
(m+1),b dx

)
ei(ωa+2ωb)T0

]
Y ′′

(m+1),a

+
[
A3

b

(
n∑

r=0

∫ ηr+1

ηr

Y
′2
(m+1),b dx

)
e3iωbT0 + Ā2

aAb

(
n∑

r=0

∫ ηr+1

ηr

Ȳ
′2
(m+1),a dx

)
ei(−2ωa+ωb)T0

+ 2ĀaAbĀb

(
n∑

r=0

∫ ηr+1

ηr

Ȳ ′
(m+1),aȲ

′
(m+1),b dx

)
e−iωaT0 + AbĀ

2
b

(
n∑

r=0

∫ ηr+1

ηr

Ȳ
′2
(m+1),b dx

)
e−iωbT0

+ 2AaĀaAb

(
n∑

r=0

∫ ηr+1

ηr

Y ′
(m+1),aȲ

′
(m+1),a dx

)
eiωbT0 + 2AaAbĀb

(
n∑

r=0

∫ ηr+1

ηr

Y ′
(m+1),aȲ

′
(m+1),b dx

)
eiωaT0

+ 2A2
aAb

(
n∑

r=0

∫ ηr+1

ηr

Y
′2
(m+1),a dx

)
ei(2ωa+ωb)T0 + 2ĀaA

2
b

(
n∑

r=0

∫ ηr+1

ηr

Ȳ ′
(m+1),aY

′
(m+1),b dx

)
ei(−ωa+2ωb)T0

+ 2A2
bĀb

(
n∑

r=0

∫ ηr+1

ηr

Y ′
(m+1),bȲ

′
(m+1),b dx

)
eiωbT0

+ 2AaA
2
b

(
n∑

r=0

∫ ηr+1

ηr

Y ′
(m+1),aY

′
(m+1),b dx

)
ei(ωa+2ωb)T0

]
Y ′′

(m+1),b

]
+ cc + NST. (50)
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3.2.1 Combination resonances of sum type

One can take two dominant modes (i.e., the ath and
bth modes)

Ω = ωa + ωb + εσ (51)

and obtain the solvability conditions as follows:

D1Aa + μ

2
Aa + k0ab

Ābe
iσT1 − k3ab

A2
aĀb

− k2ab
AaAbĀb = 0, (52)

D1Ab + μ

2
Ab + k0ba

Āae
iσT1 − k3ba

A2
bĀb

− k2ba
AaĀaAb = 0,

where

k0ab
= v1

[(
Ω
2 − ωb

)(∑n
r=0

∫ ηr+1
ηr Ȳ ′

(m+1),b
Ȳ(m+1),a dx

) − iv0
(∑n

r=0
∫ ηr+1
ηr Ȳ ′′

(m+1),b
Ȳ(m+1),a dx

)]

2
[
iωa

(∑n
r=0

∫ ηr+1
ηr Y(m+1),a Ȳ(m+1),a dx

) + v0
(∑n

r=0
∫ ηr+1
ηr Y ′

(m+1),a
Ȳ(m+1),a dx

)] ,

k0ba
= v1

[(
Ω
2 − ωa

)(∑n
r=0

∫ ηr+1
ηr Ȳ ′

(m+1),a
Ȳ(m+1),b dx

) − iv0
(∑n

r=0
∫ ηr+1
ηr Ȳ ′′

(m+1),a
Ȳ(m+1),b dx

)]

2
[
iωb

(∑n
r=0

∫ ηr+1
ηr Y(m+1),bȲ(m+1),b dx

) + v0
(∑n

r=0
∫ ηr+1
ηr Y ′

(m+1),b
Ȳ(m+1),b dx

)] ,

k2ab
= 1

2
v2
b

[
2
∑n

r=0
(∫ ηr+1

ηr Y ′′
(m+1),a

Ȳ(m+1),a dx
)(∫ ηr+1

ηr Y ′
(m+1),b

Ȳ ′
(m+1),b

dx
) + 2

∑n
r=0

(∫ ηr+1
ηr Ȳ ′′

(m+1),b
Ȳ(m+1),a dx

)(∫ ηr+1
ηr Y ′

(m+1),a
Y ′
(m+1),b

dx
)]

2
[
iωa

(∑n
r=0

∫ ηr+1
ηr Y(m+1),a Ȳ(m+1),a dx

) + v0
(∑n

r=0
∫ ηr+1
ηr Y ′

(m+1),a
Ȳ(m+1),a dx

)] ,

k2ba
= 1

2
v2
b

[
2
∑n

r=0
(∫ ηr+1

ηr Y ′′
(m+1),b

Ȳ(m+1),b dx
)(∫ ηr+1

ηr Y ′
(m+1),a

Ȳ ′
(m+1),a

dx
) + 2

∑n
r=0

(∫ ηr+1
ηr Ȳ ′′

(m+1),a
Ȳ(m+1),b dx

)(∫ ηr+1
ηr Y ′

(m+1),a
Y ′
(m+1),b

dx
)]

2
[
iωb

(∑n
r=0

∫ ηr+1
ηr Y(m+1),bȲ(m+1),b dx

) + v0
(∑n

r=0
∫ ηr+1
ηr Y ′

(m+1),b
Ȳ(m+1),b dx

)] ,

(53)

k3ab
= 1

2
v2
b

[∑n
r=0

(∫ ηr+1
ηr Ȳ ′′

(m+1),a
Ȳ(m+1),a dx

)(∫ ηr+1
ηr Y

′2
(m+1),a

dx
) + 2

∑n
r=0

(∫ ηr+1
ηr Y ′′

(m+1),a
Ȳ(m+1),a dx

)(∫ ηr+1
ηr Y ′

(m+1),a
Ȳ ′
(m+1),a

dx
)]

2
[
iωa

(∑n
r=0

∫ ηr+1
ηr Y(m+1),a Ȳ(m+1),a dx

) + v0
(∑n

r=0
∫ ηr+1
ηr Y ′

(m+1),a
Ȳ(m+1),a dx

)] ,

k3ba
= 1

2
v2
b

[∑n
r=0

(∫ ηr+1
ηr Ȳ ′′

(m+1),b
Ȳ(m+1),b dx

)(∫ ηr+1
ηr Y

′2
(m+1),a

dx
) + 2

∑n
r=0

(∫ ηr+1
ηr Y ′′

(m+1),b
Ȳ(m+1),b dx

)(∫ ηr+1
ηr Y ′

(m+1),b
Ȳ ′
(m+1),b

dx
)]

2
[
iωb

(∑n
r=0

∫ ηr+1
ηr Y(m+1),bȲ(m+1),b dx

) + v0
(∑n

r=0
∫ ηr+1
ηr Y ′

(m+1),b
Ȳ(m+1),b dx

)] .

To solve Eqs. (52) and (53), we assume the form

Aa = 1

2
aa(T1)e

iθa(T1), Ab = 1

2
ab(T1)e

iθb(T1)

(54)

and obtain

D1aa + aaiD1θa + μ

2
aa + k0ab

abe
iγ

− 1

4
k3ab

a3
a − 1

4
k2ab

aaa
2
b = 0,

(55)

D1ab + abiD1θb + μ

2
ab + k0ba

aae
iγ − 1

4
k3ba

a3
b

− 1

4
k2ba

a2
aab = 0.

We can make another transformation using γ =
σT1 − θa − θb. Since the complex coefficients in

Eq. (53) are k0ab = k0abR
+ ik0abI , k2ab = ik2abI ,

k3ab = ik3abI , k0ba = k0baR
+ ik0baI , k2ba = ik2baI , and

k3ba = ik3baI , we obtain the following amplitude mod-
ulation equations:

D1aa = −μ

2
aa + k0abIab sinγ − k0abR

ab cosγ = F1,

D1ab = −μ

2
ab + k0baIaa sinγ − k0baR

aa cosγ = F2,

D1γ = σ + 1

aaab

(
k0abR

a2
b + k0baR

a2
a

)
sinγ (56)

+ 1

aaab

(
k0abIa

2
b + k0baIa

2
a

)
cosγ

− a2
a

4
(k3abI + k2baI) − a2

b

4
(k2abI + k3baI) = F3.

Now we can consider the steady-state response D1aa =
0, D1ab = 0, D1γ = 0. Negative real parts of the
eigenvalues obtained from the Jacobian matrix shown
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below are stable. The positive roots of the real parts
are unstable.
⎡

⎢⎢⎢⎣

∂F1
∂aa

∂F1
∂ab

∂F1
∂γ

∂F2
∂aa

∂F2
∂ab

∂F2
∂γ

∂F3
∂aa

∂F3
∂ab

∂F3
∂γ

⎤

⎥⎥⎥⎦
aa=a0a
ab=a0b
γ=γ0

. (57)

One can write complex amplitudes in polar form to
perform a stability analysis for the trivial solutions

Aa = 1

2
(pa + ipa)e

i σ
2 T1 ,

(58)

Ab = 1

2
(pb + ipb)e

i σ
2 T1

and obtain the following amplitude phase modulation
equations:

D1pa = qa

(
σ

2
+ 1

4
k3abI

(
p2

a − q2
a

)

+ 1

4
k2abI

(
p2

b + q2
b

))

− μ

2
pa − k0abR

pb − k0abIqb = f1,

D1pb = qb

(
σ

2
+ 1

4
k3baI

(
p2

b − q2
b

)

+ 1

4
k2baI

(
p2

a + q2
a

))

− μ

2
pb − k0baR

pa − k0baIqa = f2, (59)

D1qa = pa

(
−σ

2
+ 1

4
k3abI

(
p2

a + q2
a

)

+ 1

4
k2abI

(
p2

b + q2
b

))

− μ

2
qa − k0abR

qb − k0abIpb = f3,

D1qa = pb

(
−σ

2
+ 1

4
k3baI

(
p2

b + q2
b

)

+ 1

4
k2baI

(
p2

a + q2
a

))

− μ

2
qb − k0baR

qa − k0baIpa = f4.

At the steady state, D1pa = 0, D1pb = 0, D1qa = 0,
D1qb = 0, and the Jacobian matrix is

⎡

⎢⎢⎢⎢⎢⎢⎣

∂f1
∂pa

∂f1
∂pb

∂f1
∂qa

∂f1
∂qb

∂f2
∂pa

∂f2
∂pb

∂f2
∂qa

∂f2
∂qb

∂f3
∂pa

∂f3
∂pb

∂f3
∂qa

∂f3
∂qb

∂f4
∂pa

∂f4
∂pb

∂f4
∂qa

∂f4
∂qb

⎤

⎥⎥⎥⎥⎥⎥⎦
pa=p0a

qa=p0apb=p0bqb=q0b

. (60)

3.2.2 Combination resonances of difference type

Now let us investigate combination resonances of dif-
ference type. The velocity variation may be nearly
equal to the difference of the ath and bth modes as-
suming that a > b without loss of generality:

Ω = ωa − ωb + εσ. (61)

Similarly, the following complex amplitude equations
are obtained:

D1Aa + μ

2
Aa − k4ab

Abe
iσT1 − k3ab

A2
aĀb

− k5ab
AaAbĀb = 0,

(62)
D1Ab + μ

2
Ab − k6ba

Aae
−iσT1 − k3ba

A2
bĀb

− k7ba
AaĀaAb = 0,

where

k4ab
= v1

[−(ωb + Ω
2 )

(∑n
r=0

∫ ηr+1
ηr

Y ′
(m+1),bȲ(m+1),a dx

) + iv0
(∑n

r=0

∫ ηr+1
ηr

Y ′′
(m+1),bȲ(m+1),a dx

)]

2
[
iωa

(∑n
r=0

∫ ηr+1
ηr

Y(m+1),aȲ(m+1),a dx
) + v0

(∑n
r=0

∫ ηr+1
ηr

Y ′
(m+1),a

Ȳ(m+1),a dx
)] ,

k5ab
= 1

2
v2
b

[(
n∑

r=0

∫ ηr+1

ηr

Y ′′
(m+1),aȲ(m+1),a dx

)(
n∑

r=0

∫ ηr+1

ηr

Y ′
(m+1),bȲ(m+1),b dx

)

+
(

n∑

r=0

∫ ηr+1

ηr

Ȳ ′′
(m+1),bȲ(m+1),a dx

)(
n∑

r=0

∫ ηr+1

ηr

Y ′
(m+1),aY

′
(m+1),b dx

)
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+
(

n∑

r=0

∫ ηr+1

ηr

Y ′′
(m+1),bȲ(m+1),a dx

)(
n∑

r=0

∫ ηr+1

ηr

Y ′
(m+1),aȲ

′
(m+1),b dx

)]

/[
iωa

(
n∑

r=0

∫ ηr+1

ηr

Y(m+1),aȲ(m+1),a dx

)
+ v0

(
n∑

r=0

∫ ηr+1

ηr

Y ′
(m+1),aȲ(m+1),a dx

)]
, (63)

k6ba
= v1

[
(ωa − Ω

2 )
(∑n

r=0

∫ ηr+1
ηr

Y ′
(m+1),a

Ȳ(m+1),b dx
) − iv0

(∑n
r=0

∫ ηr+1
ηr

Y ′′
(m+1),a

Ȳ(m+1),b dx
)]

2
[
iωb

(∑n
r=0

∫ ηr+1
ηr

Y(m+1),bȲ(m+1),b dx
) + v0

(∑n
r=0

∫ ηr+1
ηr

Y ′
(m+1),bȲ(m+1),b dx

)] ,

k7ba
= 1

2
v2
b

[(
n∑

r=0

∫ ηr+1

ηr

Y ′′
(m+1),bȲ(m+1),b dx

)(
n∑

r=0

∫ ηr+1

ηr

Y ′
(m+1),aȲ(m+1),a dx

)

+
(

n∑

r=0

∫ ηr+1

ηr

Ȳ ′′
(m+1),aȲ(m+1),b dx

)(
n∑

r=0

∫ ηr+1

ηr

Y ′
(m+1),aY

′
(m+1),b dx

)

+
(

n∑

r=0

∫ ηr+1

ηr

Y ′′
(m+1),aȲ(m+1),b dx

)(
n∑

r=0

∫ ηr+1

ηr

Y ′
(m+1),aȲ

′
(m+1),b dx

)]

/[
iωb

(
n∑

r=0

∫ ηr+1

ηr

Y(m+1),bȲ(m+1),b dx

)
+ v0

(
n∑

r=0

∫ ηr+1

ηr

Y ′
(m+1),bȲ(m+1),b dx

)]
.

The following transformation can be used:

Aa = 1

2
aa(T1)e

−iθa(T1), Ab = 1

2
ab(T1)e

iθb(T1).

(64)

Equations (60)–(61) become

D1aa − aaiD1θa + μ

2
aa − k4ab

abe
iγ − 1

4
k3ab

a3
a

− 1

4
k5ab

aaa
2
b = 0, (65)

D1ab + abiD1θb + μ

2
ab − k6ba

aae
−iγ − 1

4
k3ba

a3
b

− 1

4
k7ba

a2
aab = 0. (66)

Further, the transformation using γ = σT1 + θa +
θb shows that the coefficients have only imaginary
parts, k3ab = ik3abI , k4ab = k4abR

+ ik4abI , k5ab =
ik5abI , k6ba = k6baR

+ ik6baI , k7ba = ik7baI , and the
amplitude-phase modulations can be written as fol-
lows:

D1aa = −μ

2
aa − k4abIab sinγ + k4abR

ab cosγ = F1,

D1ab = −μ

2
ab + k6baIaa sinγ + k6baR

aa cosγ = F2,

D1γ = σ − 1

aaab

(
k4abR

a2
b + k6baR

a2
a

)
sinγ (67)

− 1

aaab

(
k4abIa

2
b − k6baIa

2
a

)
cosγ

− a2
a

4
(k3abI − k7baI) − a2

b

4
(k5abI − k3baI) = F3.

At steady state, D1aa = 0, D1ab = 0, and D1γ = 0.
Inserting into the Jacobian matrix

⎡

⎢⎢⎢⎣

∂F1
∂aa

∂F1
∂ab

∂F1
∂γ

∂F2
∂aa

∂F2
∂ab

∂F2
∂γ

∂F3
∂aa

∂F3
∂ab

∂F3
∂γ

⎤

⎥⎥⎥⎦
aa=a0a
ab=a0b
γ=γ0

, (68)

one can search for stability of the solutions.
The stability of trivial solutions can be obtained

similarly. We start by writing the complex amplitudes
in the polar form

Aa = 1

2
(pa + iqa)e

i σ
2 T1 ,

(69)

Ab = 1

2
(pb + iqb)e

−i σ
2 T1,
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Fig. 2 Variations of the first three modes with axial mean ve-
locity for locations η1 = 0.1 and η2 = 0.9 and for different vf

values (ω1:—, ω2:- - -, ω3:-·-)

and inserting into Eqs. (60) and (61), we obtain

D1pa

= qa

(
σ

2
− 1

4
k3abI

(
p2

a + q2
a

) − 1

4
k5abI

(
p2

b + q2
b

))

− μ

2
pa + k4abR

pb − k4abIqb = f1,

D1pb

= qb

(
−σ

2
− 1

4
k3baI

(
p2

b + q2
b

) − 1

4
k7baI

(
p2

a + q2
a

))

− μ

2
pb + k6baR

pa − k6baIqa = f2, (70)

D1qa

= pa

(
−σ

2
+ 1

4
k3abI

(
p2

a + q2
a

) + 1

4
k5abI

(
p2

b + q2
b

))

− μ

2
qa − k4abR

qb + k4abIpb = f3,

D1qb

= pb

(
σ

2
+ 1

4
k3baI

(
p2

b + q2
b

) + 1

4
k7baI

(
p2

a + q2
a

))

− μ

2
qb − k6baR

qa + k6baIpa = f4.

At the steady state, D1pa = 0, D1pb = 0, D1qa = 0,
D1qb = 0; then we construct the Jacobian matrix. No
instabilities arise up to the second order of expansion
for difference type of combination resonances.

Fig. 3 Variations of the first three modes with axial mean ve-
locity for locations η1 = 0.2 and η2 = 0.8 and for different vf

values (ω1:—, ω2:- - -, ω3:-·-)

Fig. 4 Variations of the first three modes with axial mean ve-
locity for locations η1 = 0.3 and η2 = 0.7 and for different vf

values (ω1:—, ω2:- - -, ω3:-·-)

4 Numerical results

The solution of these equations for different param-
eters give variation of frequency with the mean ax-
ial velocity. Material and geometric properties of the
moving beam are chosen as follows: E = 200 GPa,
L = 1 m, b = 0.002 m, h = 0.001 m, ρ = 7.8 gr/m3.
In Figs. 2, 3, 4 and 5, the variation is depicted for
four-support cases η1 − η2 = 0.1–0.9, η1 − η2 = 0.2–
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Fig. 5 Variations of the first three modes with axial mean ve-
locity for locations η1 = 0.4 and η2 = 0.6 and for different vf

values (ω1:—, ω2:- - -, ω3:-·-)

Fig. 6 Variation of the first three modes with axial mean veloc-
ity for vf = 0.2 and for different η1 − η2 locations (ω1:—, ω2:-
- -, ω3:-·-)

0.8, η1 − η2 = 0.3–0.7, and η1 − η2 = 0.4–0.6, re-
spectively, for different vf values in the first three
natural frequencies. Locating the supports toward the
middle section increases the frequencies. Frequencies
decrease with an increase in the axial mean velocity.
This situation is the characteristic for axially moving
systems. Increasing the flexural rigidity constant in-
creases the frequencies as expected. Variations of the
first three modes with axial mean velocity for vf = 0.2

Fig. 7 Nonlinear frequency–amplitude variation for different
v0 values and for the first mode (vf = 0.2, η1 = 0.3, η2 = 0.7)

Fig. 8 Nonlinear frequency–amplitude variation for different
v0 values and for the second mode (vf = 0.2, η1 = 0.3,
η2 = 0.7)

and for different η1 − η2 location values are depicted
in Fig. 6.

In Fig. 7, σ–a variation is depicted for the first
mode for vf = 0.2, η1 − η2 = 0.3–0.7, and v0 = 0.2,
0.8, and 1. In Fig. 8, σ–a variation is depicted for
the second mode, for vf = 0.2, η1 − η2 = 0.3–0.7,
and v0 = 0.2, 1 and 1.9, respectively. As the mean
speed increases, the unstable regions widen. Dashed
lines denote unstable solutions. When the interme-
diate supports are located close to the center, e.g.,
η = 0.3 and η1 − η2 = 0.3–0.7 as in Figs. 9 and
10, the unstable regions slightly widen, which can be
seen when a comparison made between three-support
and four-support cases. All figures are of hardening
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type, but as the intermediate supports are approached
to the midpoint, the behavior becomes more harden-
ing.

Fig. 9 Nonlinear frequency–amplitude variation for the first
mode (vf = 0.2, v0 = 0.2)

In Figs. 11, 12 and 13, variation of stability region
depending on mean speed and velocity fluctuation fre-
quency is shown for the first modes of vibration for

Fig. 10 Nonlinear frequency–amplitude variation for the sec-
ond mode (vf = 0.2, v0 = 0.2)

Fig. 11 Variation of
Ω − εv1 values for different
v0 values and for the first
natural frequency
(vf = 0.2,
η1 − η2 = 0.3–0.7)

Fig. 12 Variation of
Ω − εv1 values for different
v0 values and for the first
natural frequency
(vf = 0.6,
η1 − η2 = 0.3–0.7)
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Fig. 13 Variation of
Ω − εv1 values for different
v0 values and for the first
natural frequency (vf = 1,
η1 − η2 = 0.3–0.7)

Fig. 14 Variation of
Ω − εv1 values for different
v0 values and for the second
natural frequency
(vf = 0.6,
η1 − η2 = 0.3–0.7)

Fig. 15 Nonlinear frequency–amplitude variation for vf = 0.2
and support locations η1 = 0.3, η2 = 0.7 (the first mode)

vf = 0.2, 0.6, and 1.0, respectively. The support loca-
tions are the same and only four-support case is dis-
cussed. For the same vf (e.g., 0.2), the stability re-
gions become wider with increasing mean speed. The
second mode for vf = 0.6 and η1 − η2 = 0.3–0.7 is
shown in Fig. 14 as an example for higher modes only.

In Figs. 15, 16 and 17, the nonlinear frequency ver-
sus amplitude is depicted for vf = 0.2, η1 −η2 = 0.3–
0.7, for different mean speed values, and for the first
three modes, respectively. A hardening type behavior
is shown in all figures. Increasing the mean speed re-
duces nonlinear frequencies, but the behavior becomes
more hardening. Similar variations for different sup-
port locations are presented in Figs. 18, 19 and 20 for
the four-support case only. The support location has
different effects for different modes due to closeness
to the nodal points.



252 S.M. Bağdatli et al.

Fig. 16 Nonlinear frequency–amplitude variation for vf = 0.2
and support locations η1 = 0.3, η2 = 0.7 (the second mode)

Fig. 17 Nonlinear frequency–amplitude variation for vf = 0.2
and support locations η1 = 0.3, η2 = 0.7 (the third mode)

5 Conclusions

Transverse vibrations of an axial moving beam are ex-
amined. Equation of motion for an arbitrary number
of supports and extension of neutral axis is obtained.
The method of multiple scales is applied to these equa-
tions. The effects of supports, axial speed, and flexural
rigidity on frequencies are discussed. A support condi-
tion whose determinant gives eigenvalues for arbitrary
number of supports is presented in a general form.
Principal parametric resonances and combination res-
onances are investigated for the frequencies twice the
velocity fluctuation frequency. The general form of
frequency equation is presented in a matrix form for

Fig. 18 Nonlinear frequency–amplitude variation for
vf = 0.2 − v0 = 0.2 and different support locations (the first
mode)

Fig. 19 Nonlinear frequency–amplitude variation for
vf = 0.2 − v0 = 0.2 and different support locations (the second
mode)

any number of supports. The stable and unstable solu-
tion regions are presented. An increase in axial mean
speed decreases nonlinear frequencies. A more hard-
ening type for higher velocities was observed. This
is because of growing nonlinear corrections. Placing
the intermediate supports around middle of the beam
increases the corrections on the nonlinear frequen-
cies. As the mean velocity increases, unstable regions
widen for the same flexural values. Around zero-mean
velocity, unstable regions are small; around critical ve-
locity, it is wide. Increasing rigidity makes it narrow.
The amplitudes of vibrations increase in the nontriv-
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ial solution regions. An increase in rigidity decreases
nonlinear effects on the natural frequency. In com-

Fig. 20 Nonlinear frequency–amplitude variation for
vf = 0.2 − v0 = 0.2 and different support locations (the third
mode)

bination resonances, amplitudes belonging to higher
modes increase faster than those of lower modes.
There is no increase in the amplitudes in difference
types of combination resonances and no instability re-
gion in which trivial solution appears.

In Figs. 21 and 22, variation of combination reso-
nances of sum type is presented for vf = 0.2, η = 0.1,
v0 = 0.2, and two different frequency values (ωa =
5.0278, ωb = 13.583). Solid lines denote stable re-
gions, and dashed lines denote unstable regions. When
velocity fluctuation frequency is close to the sum of
the frequencies above, the behavior is more hardening
for the upper mode amplitude.
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Fig. 21 Variation of
amplitude with frequency
parameter for combination
resonances of sum type
(vf = 0.2, η = 0.1,
v0 = 0.2, ωa = 5.028,
ωb = 13.583)

Fig. 22 Variation of
amplitude with frequency
parameter for combination
resonances of sum type
(vf = 0.2, η = 0.1,
v0 = 0.2, ωa = 5.028,
ωb = 13.583)



254 S.M. Bağdatli et al.

Appendix

βn = βn+4 for n = 1,2, . . . ,m.

The # of intermediate supports is given by m =
0,1,2, . . . , n.

Size of the matrix 4(n + 1) × 4(n + 1),

m = 0,1,2, . . . , n.

By defining the following matrices we can write the
frequency matrix for arbitrary number of supports:

r1 =

⎡

⎢⎢⎣

1 1 1 1
β2

1 β2
2 β2

3 β2
4

0 0 0 0
0 0 0 0

⎤

⎥⎥⎦ ,

r2 =

⎡

⎢⎢⎣

0 0 0 0
0 0 0 0

eiβ1 eiβ2 eiβ3 eiβ4

β2
1eiβ1 β2

2eiβ2 β2
3eiβ3 β2

4eiβ4

⎤

⎥⎥⎦ ,

r3 =

⎡

⎢⎢⎣

eiβ1ηn eiβ2ηn eiβ3ηn eiβ4ηn

0 0 0 0
β1e

iβ1ηn β2e
iβ2ηn β3e

iβ3ηn β4e
iβ4ηn

−β2
1eiβ1ηn −β2

2eiβ2ηn −β2
3eiβ3ηn −β2

4eiβ4ηn

⎤

⎥⎥⎦ ,

r4 =

⎡

⎢⎢⎣

0 0 0 0
eiβ1ηn eiβ2ηn eiβ3ηn eiβ4ηn

−β1e
iβ1ηn −β2e

iβ2ηn −β3e
iβ3ηn −β4e

iβ4ηn

β2
1eiβ1ηn β2

2eiβ2ηn β2
3eiβ3ηn β2

4eiβ4ηn

⎤

⎥⎥⎦ ,

r0 =

⎡

⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤

⎥⎥⎦ .

For the three-support case (one intermediate support)
8 by 8 matrix, 1, ηn = 1:

r =
[

r1 r2

r3,n=1 r4,n=1

]
.

For the four-support case (two intermediate supports),
12 by 12 matrix:

r =
⎡

⎣
r1 r0 r2

r3,n=1 r4,n=1 r0

r0 r3,n=2 r4,n=2

⎤

⎦ .

For the (m + 2)-support case (m intermediate sup-
ports), 4(m + 1) by 4(m + 1) matrix:
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