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Abstract One subject of spatial epidemiology is spa-
tial variation in disease risk or incidence. The spread
of epidemics can result in strong spatial patterns of
such risk or incidence: for example, pathogen disper-
sal might be highly localized, vectors or reservoirs
for pathogens might be spatially restricted, or sus-
ceptible hosts might be clumped. Here, spatial pat-
tern of an epidemic model with nonlinear incidence
rates is investigated. The conditions for Hopf bifurca-
tion and Turing bifurcation are gained and, in partic-
ular, exact Turing domain is found in the two param-
eters space. Furthermore, numerical results show that
force of infection, namely β, plays an important role in
the spatial pattern. More specifically, different patterns
emerge as β increases. The mathematical analysis and
numerical results well extend the finding of pattern
formation in the epidemic models and may well ex-
plain the field observed in some areas.

Keywords Spatial epidemic model · Nonlinear
incidence rates · Pattern formation

1 Introduction

Over the past decade, there has been renewed pub-
lic and official concern about infectious disease as a
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major public health threat. Indeed, the concern has
arisen against a background of some surprise. In the
past quarter of a century, we have encountered the
emergence of Legionnaire’s disease, Lyme disease,
HIV/AIDS, Ebola virus, human mad cow disease, the
Nipah virus, West Nile fever and SARS, as well as
resurgent adversaries such as tuberculosis, cholera,
dengue fever, and malaria [1].

Since emerging infectious diseases are a growing
agent of global change that present compelling chal-
lenges in public health, agriculture, and wildlife man-
agement [2–5], predicting the spread of an infectious
disease depends on understanding the spatiotemporal
dynamics of an epidemic model. On the other hand,
the understanding of the spread of epidemics has be-
come a goal in itself because, as well as possessing
complex dynamics, it has a very simple natural his-
tory and, therefore, many plausible population mod-
els [6].

Most researchers pay their attention to the tem-
poral development of epidemics. However, many im-
portant epidemiological phenomena are strongly in-
fluenced by space because of the localized nature of
transmission or other forms of interaction [7–12]. The
spread of invading organisms [13, 14] is very impor-
tant and recent events have focused attention on the
spread of human, livestock, crop, and wildlife diseases
[15–19]. As a result, mathematical models with time
and space are useful in investigating the process of epi-
demic spreading. Epidemic wavefronts may be found
in reaction–diffusion models, which were observed in
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the real world, such as in the spread of the Black Death
in Europe from 1347 to 1350 [20–22].

The studies presented in this paper want to know
that how populations diseases transmit in both space
and time, which can enhance the understanding of
the epidemiological features of diseases in the pop-
ulations. To this end, we will investigate pattern for-
mation of a spatial SI model with nonlinear inci-
dence rates in this paper. More specifically, we will
reveal that how force of infection, namely β , has in-
fluence on the distribution of the infected popula-
tions.

2 Model

To begin this section, we firstly give two main assump-
tions, which are as follows.

(i) The population, in which a pathogenic agent is
active, comprises two subgroups: the healthy individ-
uals who are susceptible (S) to infection and the al-
ready infected individuals (I ) who can transmit the
disease to the healthy ones. Both S and I are functions
of time.

(ii) The disease-related death rate from the infected
is d and the natural death rate of both the suspectable
and the infected is μ.

Liu et al. [23, 24] concluded that the bilinear mass
action incidence rate due to saturation or multiple ex-
posures before infection could lead to nonlinear in-
cidence rate βSpIq . Therefore, the incidence rate is
assumed to be nonlinear βSpIq without a periodic
forcing which has much wider range of dynamical be-
haviors in comparison to bilinear incidence rate βSI .
Here, β is the force of infection or the rate of transmis-
sion. Simple case, by their own nature, cannot incor-
porate many of the complex biological factors. How-
ever, they often provide useful insights to help our un-
derstanding of complex process [25–27]. Thus, in the
present paper, we set p = 1 and q = 2.

The model we employ is as follows:

∂S

∂t
= A − dS − βSpIq + D1∇2S, (1a)

∂I

∂t
= βSpIq − (d + μ)I + D2∇2I, (1b)

where A is the recruitment rate of the population, d

is the natural death rate of the population, and μ is
the disease-related death rate from the infected. x and

y mean the space. Here, ∇2 = ∂2/∂x2 + ∂2/∂y2 is
the usual Laplacian operator in two-dimensional space
and D1, D2 are, respectively, the susceptible and in-
fected individuals diffusion coefficients. From the bi-
ological point of view, we assume all the parameters
are positive throughout the paper.

The model (1a), (1b) needs to be analyzed with the
initial populations

S(0) > 0, I (0) > 0,

and the boundary conditions

∂S

∂n

∣
∣
∣
∣
(x,y)

= ∂I

∂n

∣
∣
∣
∣
(x,y)

= 0, (2)

where n is space, (x, y) ∈ ∂Ω and Ω is the spatial
domain.

3 Bifurcation analysis

In order to provide Turing instability of the reaction-
diffusion system, it is important to consider the local
dynamics of the system [28]. The corresponding non-
diffusion model is

dS

dt
= A − dS − βSpIq � f (S, I ), (3a)

dI

dt
= βSpIq − (d + μ)I � g(S, I ). (3b)

The dynamics in the biologically meaningful re-
gion S ≥ 0, I ≥ 0 are of interest. By considering
the nullclines f = 0, g = 0, and the intersection
of these curves in phase space, we give the linear
stability analysis of the system. Simple calculations
show that the system (3a), (3b) has three equilibrium
points:

(i) E1 = (A
d
,0), which is corresponding to extinc-

tion of the epidemic
(ii)

E2 =
(

Aβ + √

A2β2 − 4d3β − 8d2βμ − 4dβμ2

2dβ
,

2d(d + μ)

Aβ + √

A2β2 − 4d3β − 8d2βμ − 4dβμ2

)

,

which is corresponding to the coexistence of the
S and I
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(iii)

E∗ =
(

Aβ − √

A2β2 − 4d3β − 8d2βμ − 4dβμ2

2dβ
,

2d(d + μ)

Aβ − √

A2β2 − 4d3β − 8d2βμ − 4dβμ2

)

,

which is corresponding to the coexistence of the
S and I .

By direct calculations, we know that E2 is unstable,
which is a saddle. Thus, we are interested to study the
stability behavior of the interior equilibrium point E∗.
The Jacobian corresponding to this equilibrium point
is that

J =
(

a11 a12

a21 a22

)

,

where

a11 = −2dAβ

Aβ − √

A2β2 − 4d3β − 8d2βμ − 4dβμ2
,

a12 = −2d − 2μ,

and

a21 = 4βd2(d + μ)2

(Aβ − √

A2β2 − 4d3β − 8d2βμ − 4dβμ2)2
,

a22 = d + μ.

Following the standard linear analysis of the reac-
tion–diffusion equation [20, 29], we address the tem-
poral stability of the uniform states which is associated
with nonuniform perturbations
(

S

I

)

=
(

S∗

I ∗

)

+ θ

(
Sk

Ik

)

eλt+ikx + c.c. + O
(

θ2), (4)

where λ is the perturbation growth rate, k is the
wavenumber, and c.c. stands for complex conjugate.
The linear instability (θ � 1) of each one of the uni-
form states, is deduced from the dispersion relations.
Substituting expression (4) into (1a), (1b) and neglect-
ing all nonlinear terms in S and I , we obtain that the
eigenvalue is the root of the following equation:

λ2 + αkλ + ηk = 0, (5)

where

αk = (D1 + D2)k
2 − (a11 + a22), (6a)

ηk = D1D2k
4 − (D2a11 + D1a22)k

2

+ a11a22 − a12a21. (6b)

Therefore, the solution of (5) reduces to

λk =
−αk ±

√

α2
k − 4ηk

2
. (7)

The reaction–diffusion systems have led to the
characterization of three basic types of symmetry-
breaking bifurcations responsible for the emergence
of spatiotemporal patterns. The onset of Hopf instabil-
ity corresponds to the case, when a pair of imaginary
eigenvalues cross the real axis from the negative to the
positive side. And this situation occurs only when the
diffusion vanishes [30, 31]. Mathematically speaking,
the Hopf bifurcation occurs when

Im(λk) �= 0, Re(λk) = 0 at k = 0. (8)

Then we can get the critical value of the transition,
Hopf bifurcation parameter—β , equals to that

βH = d4 + 4d3μ + 6d2μ2 + 4dμ3 + μ4

μA2
. (9)

Turing bifurcation occurs when

Im(λk) = 0, Re(λk) = 0 at k = kT �= 0, (10)

with

kT =
(

a11a22 − a12a21

D1D2

) 1
4

. (11)

By direct calculation, we can obtain the critical value
of bifurcation parameter β equals

βT =D1
(

d3 + 3d2μ + 3dμ2 + μ3)

× [

d2D2
1 + 3d2D1D2

+ 8d2D2
2 + 2dD1

(

dD1 + μD1 − √
P

)

+ 2dμD1 + 4dD2
(

dD1 + μD1 − √
P

)

+ 3dμD1D2 + 2D1
(

dD1 + μD1

− μ
√

P + μ2D2
1

)]
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Fig. 1 (Color online) Bifurcation diagram of model (1a), (1b).
We set the parameter values are A = 1, d = 1, D1 = 6, and
D2 = 1. The figure shows the Turing space (where is marked
by III) which is the area bounded by the Turing bifurcation line
(the red one) and the Hopf bifurcation line (the green one)

/
[

A2D2
(

d2D2
1 + 2d2D1D2 + d2D2

2

+ 2dμD2
1 + 2dμD1D2 + μ2D2

1

)]

,

where

P = 2d2D2
1 + 4dμD2

1 + 2μ2D2
1 − 2d2D1D2

− 2dμD1D2.

Now, let us discuss the bifurcations represented by
these formulas in the parameter space spanned by the
parameters β and μ which can be seen from Fig. 1.
The whole class of the spatial model is included in this
parameter space. The upper part of the displayed pa-
rameter space (where is marked by IV) corresponds
to systems with homogeneous equilibria, which is un-
conditionally stable. If this region is left via a bifurca-
tion (Turing or Hopf), the qualitative behavior of such
equilibria changes. If an equilibrium is represented by
a point in the part of the parameter space, where is
marked by I, it can be destabilized by a homogeneous
oscillations. In Domain II, both Hopf and Turing in-
stability occur. The equilibria that can be found in the
area, where is marked by III, is stable with respect
to homogeneous perturbations but loose their stabil-
ity with respect to perturbations of specific wave num-
bers k. In this region, stationary inhomogeneous pat-
terns can be observed. Figure 2 shows the real part of
the character value of (7) as β increases.

4 Main results

Since the dynamical behavior of the spatial model can-
not be studied by using analytical methods or nor-
mal forms, we have to perform numerical simulations
by computer. The continuous problem defined by the
reaction-diffusion system in two-dimensional space is
solved in a discrete domain with M × N lattice sites.
The space between the lattice points is defined by the
lattice constant 	h. The time evolution is also dis-
crete, i.e., the time goes in steps of 	t . The time
evolution can be solved by using the Euler method.
In the present paper, we set 	h = 1, 	t = 0.01 and
M = N = 200. And it was also checked that a further
decrease of the step values did not lead to any signifi-
cant modification of the results.

In the following, we will perform a series of nu-
merical simulations of the spatially extended model
(1a), (1b) in two-dimensional spaces, and the quali-
tative results are shown by figures. We keep A = 1,
μ = 1.8, d = 1, D1 = 6, and D2 = 1 and β is regarded
as a parameter. All our numerical simulations are em-
ployed with a system size of 200 × 200 space units.
We run the simulations until they reach a stationary
state or until they show a behavior that does not seem
to change its characteristics anymore. In this paper, we
want to know the distribution of the infected. As a re-
sult, we can restrict our analysis of pattern formation
of I.

Figure 3 shows the evolution of the spatial pattern
of infected population at 0, 500, 20,000, and 50,000
iterations, with small random perturbation of the sta-
tionary solution S∗ and I ∗ of the spatially homoge-
neous systems when the parameter values are in the
domain of Turing space. In this case, one can see
that for the model (1a), (1b), the random initial dis-
tribution leads to the formation of a strongly irregu-
lar transient pattern in the domain. After the irregular
pattern forms, it grows slightly and jumps alternately
for a certain time, and finally the network-like pat-
terns prevail over the whole domain, and the dynamics
of the system does not undergo any further changes.
These patterns are different from the previous results
[31, 32].

The parameter values of Figs. 4–5 are in the domain
of Turing space. All of the figures show the evolution
of the spatial pattern of the at 10, 1,000, 10,000 and
100,000 iterations, with small random perturbation of
the stationary solution S∗ and I ∗ of the spatially ho-
mogeneous systems. From Figs. 4–5, we can see that
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Fig. 2 (Color online) The
real part of the character
value as p is increased. We
set the parameter values are
that A = 1, μ = 1.8, d = 1,
D1 = 6, and D2 = 1. And
the values of β are that
a: β = 35; b: β = 38;
c: β = 40

Fig. 3 (Color online)
Snapshots of contour
pictures of the time
evolution of the I at
different instants with
A = 1, μ = 1.8, d = 1,
D1 = 6, and D2 = 1, and
β = 32, which are in the
Turing space.
(A): 0 iteration; (B): 500
iterations; (C): 20,000
iterations and (D): 50,000
iterations

the regular stripe patterns prevail over the whole do-
main at last, and the dynamics of the system does not
undergo any further changes. Note that although the
dynamics of the system starts from the same initial
condition as previous cases, there is an essential differ-
ence for the spatially extended model. Specifically, the
direction of the stripe of the two figures are different.

Figure 6 shows that stationary stripe and spot pat-
terns emerge mixed in the distribution of the infected
population density. After the stripe-like patterns form,
they grow steadily with time until they reach certain
arm length, and the spatial patterns become distinct.

Finally, the spotted spatial patterns prevail the whole
domain and the dynamics of the system does not un-
dergo any further changes.

5 Discussion and conclusion

From the analysis in Sect. 3 and the above figures, we
can see that the numerical results correspond perfectly
to our theoretical findings, that is to say, there are a
range of parameters where different spatial patterns
emerge. More specifically, typical dynamics of pop-
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Fig. 4 (Color online)
Snapshots of contour
pictures of the time
evolution of the I at
different instants with
A = 1, μ = 1.8, d = 1,
D1 = 6, and D2 = 1, and
β = 35, which are in the
Turing space. (A): 10
iterations; (B): 1,000
iterations; (C): 10,000
iterations and (D): 100,000
iterations

Fig. 5 (Color online)
Snapshots of contour
pictures of the time
evolution of the I at
different instants with
A = 1, μ = 1.8, d = 1,
D1 = 6, and D2 = 1, and
β = 40, which are in the
Turing space. (A): 10
iterations; (B): 1,000
iterations; (C): 10,000
iterations and (D): 100,000
iterations

ulation density variation, i.e., stripe-like or spotted or
coexistence of both, which are the formation of iso-
lated groups are obtained.

If considered in a somewhat broader epidemic per-
spective, our results have an intuitively clear meaning.

There has been a growing understanding during the
past years that, what transitions between different dy-
namical regimes arising as a result of perturbation of
the system’s parameters [33]. From this standpoint, it
seems interesting to know how the dynamics varies
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Fig. 6 (Color online)
Snapshots of contour
pictures of the time
evolution of the I at
different instants with
A = 1, μ = 1.8, d = 1,
D1 = 6, and D2 = 1, and
β = 42, which are in the
Turing space. (A): 10
iterations; (B): 1,000
iterations; (C): 10,000
iterations and (D): 100,000
iterations

when the parameters move across the diagram [34].
For simplicity, let us assume that only one parameter
is changing, such as β , others remaining fixed. An in-
crease of the β plays an important role in the pattern
formation. More specifically, stripe only, coexistence
of stripe and spotted, and spotted only emerge succes-
sively.

In [31], we investigated a spatial SI model with
logistic growth and nonlinear incidence rates βSpIq

with p +q = 1. However, in this paper, we assume the
population grows with constant rate and set p = 1 and
q = 2. Moreover, in the previous paper [29–31], we
did not focus our attention on the infection rate which
may have great influence on pattern formations of dis-
ease and we reveal it by numerical simulations in the
present paper.

To explain spatial patterns arising from the spatial
epidemic model in the real world, here we present
some observations of the spatial and temporal dy-
namics of hantavirus pulmonary syndrome during the
1990s. In [35], it shows spatial patterns of location
of hantavirus pulmonary syndrome in southwestern
USA. Our results well capture some key features of the
complex variation and explain the observation in spa-
tial structure to most species by comparing Figs. 3–6
with the pictures in [35]. In other words, modeling the
epidemics using reaction-diffusion form can help us

understand the distribution of disease in both time and
space.
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