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Abstract The Chinese government made a commitment to achieve a 40–45 % reduction

in carbon emissions per unit of gross domestic product (GDP) by 2020 compared with

2005. Most provinces followed the national commitment due to unified task of 40–45 %

reduction in carbon emissions. However, different industrial structures, energy consump-

tion structures and natural resources endowment of each province vary the emission

abatement costs. Each province should take the carbon dioxide abatement cost into con-

sideration for the carbon dioxide reduction target. Data envelopment analysis (DEA) and

linear programming (LP) methods were used to measure the marginal abatement cost in

previous studies. In this paper, we built a quadratic parametric directional distance function

(DDF) to measure the carbon dioxide marginal abatement cost of Chinese provinces. To

overcome the flaw of ignoring random errors in previous research, this paper compared

results of stochastic frontier analysis (SFA) method and DEA method. Because DEA

method only considers the inefficiency and SFA method can distinguish the random error

from inefficiency, the result of the average carbon dioxide marginal abatement cost of each

province calculated by SFA was 55 % lower than DEA method. As the random error may

be introduced by chosen function form, Spearman test and paired sample T test were used

to test the correlation of two methods’ MAC results. The results show that the ranking

order MAC results sequence of SFA method and DEA method is highly correlated. But the

MAC value of SFA and DEA methods has significant difference. As half of the error

comes from the random error, the MAC results calculated by SFA method are more precise

than DEA method. So SFA method is more appropriate than DEA in this paper. This result

reinforces the feasibility of the Chinese government carbon dioxide emission reduction

target. However, this study proved that the carbon dioxide emissions and marginal
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abatement cost varied from province to province. Furthermore, there was no distinct

correlation between carbon dioxide emissions and the marginal abatement cost. On the

contrary, the marginal abatement cost was related to the industrial structures, energy

consumption structures and natural resources endowment of each province. Therefore, two

policy suggestions are proposed as CO2 emission reduction principle: First, central gov-

ernment should establish CO2 emission reduction targets based on MAC and local eco-

nomic affordability. Second, resource endowments and embodied carbon transfer should

be considered.

Keywords Carbon dioxide � Marginal abatement cost � Directional distance function �
Stochastic frontier analysis � Policy suggestions

1 Introduction

The rapid development of the Chinese economy caused a large amount of carbon dioxide

(CO2) emissions. The CO2 emissions of China increased quickly since 2000 (Song 2010;

Guo et al. 2010), as the proportion of Chinese CO2 emissions in the global emissions

increased from 12.9 % in 2000 to approximately 23 % in 2010 (China Electricity Council

2011; Qi et al. 2014). According to a scientific forecast, the proportion will drastically

increase to one-third of the global emissions if no effective CO2 emission restriction is

imposed in China (Liao and Wei 2011). Facing both the awareness of environmental

protection and the international pressure on CO2 emission reduction, the Chinese gov-

ernment made a commitment to achieve a 40–45 % reduction in carbon emissions per unit

of GDP by 2020 compared with 2005 in the Climate Conference in Copenhagen in 2009

(China.com 2009). Lacking the central government’s differentiation carbon dioxide

reduction allocation, most provinces follow the national commitment. However, the

industrial structure, energy consumption structure and natural resources of each province

vary. Hence, it is not appropriate for all provinces1 to impose identical CO2 emission

reduction criterion. To address this issue, previous studies researched the CO2 emission

abatement costs of China as a whole, as well as in individual Chinese provinces. Policy

suggestions were also proposed by these studies.

The related studies about Chinese CO2 abatement cost can be divided into two aspects:

the marginal abatement cost (MAC) and macro-abatement cost (Wang et al. 2007; Fan

et al. 2010; Xu and Dong 2011; Chang 2014). The CO2 MAC, also called the CO2 shadow

price, is defined as the decrement amount of GDP when reduced to the last unit of CO2

emissions in a certain abatement technology status (Fan 2011; Chen 2010; Matsushita and

Yamane 2012). The CO2 macro-abatement costs are defined as the decrement of GDP

when imposing CO2 emission reduction measures in a certain period (Wang et al. 2007,

Fan et al. 2010, Xu and Dong 2011). The MAC can express the difficulty of CO2 reduction

more directly than the macro-abatement cost.

The directional distance function (DDF) was widely used in previous studies to cal-

culate the CO2 MAC. However, the different forms of the DDF model will lead to different

calculation results. In addition, the two methods commonly used by previous studies to

solve DDF, data envelopment analysis (DEA) and linear programming (LP), have flaws.

1 Beijing, Tianjin, Shanghai and Chongqing are municipalities.
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The DEA method cannot deal with random errors and wrap them into inefficiency terms.

Besides, the DEA method can only be applied when the distance function is differentiate

everywhere. Moreover, the different frontier of production function and direction vector of

the DEA method will lead to different CO2 MAC results. The LP method does not take the

measuring errors and approximation errors into consideration. Therefore, the calculated

results of the CO2 reduction cost varied in previous studies.

The DDF, followed by the stochastic frontier analysis (SFA) method, is able to dif-

ferentiate between random noise and inefficiency; therefore, it was used to accurately

measure the CO2 MAC of Chinese provinces in this paper. In this paper, we used DDF and

SFA method to overcome the flaw of ignoring random errors and approximation errors.

And the calculation of marginal abatement cost of Chinese provinces in this paper con-

tributed to proposing the policy suggestions.

This paper is organized as follows. Section 2 introduces the literature review of carbon

dioxide abatement costs. Section 3 describes the model and method. Section 4 constructs

the direction distance model and stochastic frontier analysis. The conclusion and policy

suggestions are given in Sect. 5.

2 Literature review

The existing studies showed that a multitude of quantitative models were used to measure

the CO2 MAC.

2.1 Distance function

The existing studies showed that distance function model, especially parametric DDF

model, was the most widely used model in CO2 MAC. The Shephard output distance

function was used by Lee (2005) and Rezek and Campbell (2007) to measure the American

power station’s MAC of sulfur dioxide, nitrogen dioxide, carbon dioxide and mercury.

Hailu and Veeman (2000) then used Shephard output distance function to measure the

Canadian paper industry’s sulfur dioxide MAC. Lee and Zhang (2012) used input distance

function to measure Chinese manufacturing industries’ MAC. Wang and Wei (2014) used

output distance function to measure CO2 MAC of energy sectors of 30 Chinese provinces.

The DDF was applied in many fields of MAC. (Färe et al. 2005) measured the MACs of

sulfur dioxide and carbon dioxide of 209 American power facilities. Matsushita and

Yamane (2012) measured the CO2 and low-level radioactive waste MACs of the Japanese

electric power sector. Gómez-Calvet et al. (2014) measured the MAC of undesirable output

in 25 European countries. Molinos-Senante et al. (2015) measured the MAC of Spanish

wastewater treatment plants. Wang et al. (2014a) measured the MACs of total nitrogen,

total phosphorus and chemical oxygen demand in the Chinese agriculture industry. In

addition, previous studies measured the CO2 MACs of the industrial sectors of China and

Chinese provinces using the DDF (e.g., Chen 2010; Qin et al. 2011; Wen and Wu 2011;

Wang et al. 2011a; Yuan et al. 2012; Chen 2013; Zhou et al. 2015).

Specifically, the CO2 MACs of Chinese provinces were calculated by previous studies.

Wang et al. (2011b) measured the CO2 MACs of 28 provinces in 2007 by nonparametric

DDF and DEA methods. Liu et al. (2011) measured the CO2 MACs of 30 provinces from

2005 to 2007 by nonparametric DF and DEA methods. Huang and Wei (2012) measured

the CO2 MACs of 29 provinces from 1995 to 2007 by DDF and LP methods. Zhang et al.
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(2014) measured the CO2 MACs of 30 provinces from 2006 to 2010 using DDF and LP

methods. He (2015) measured the CO2 MACs of 29 provinces from 2000 to 2009 using DF

and LP methods. Due to the different methods and samples, the CO2 MAC results varied

(see Table 1).

2.2 Other models

The marginal cost curve model, vector autoregression (VAR) model and MARKAL model

are commonly used in CO2 MAC calculation. The marginal cost curve model was used by

Li et al. (2010), Garg et al. (2014) and Wang et al. (2014b) to measure the CO2 MACs of

China, India and the Chinese energy sector, respectively. Ba and Wu (2010) and Xu and

Lin (2015) used the VAR model to measure the CO2 MACs of China and the Chinese

transportation sector, respectively. The MARKAL model and the MARKAL-MACRO

model were used to measure the CO2 MACs of China and Taiwan’s energy sectors(Chen

2005; Chen et al. 2007; Ko et al. 2010).

2.3 Comments on the literature

All of the above-mentioned models have room for improvement. Although the marginal

cost curve model is simple in computation, the form of the cost curve will lead to a fitting

error. The GDP was treated as the input in the VAR model and MARKAL model, while the

distance function model considered the GDP as the output. Therefore, the GDP and CO2

emission could be treated equally in the distance function model. Hence, the distance

function model was more suitable, as the MAC had close relationship with economic loss.

The parametric distance function and nonparametric distance function were two popular

methods used to measure CO2 MACs (Liu et al. 2011). The parametric distance function

needs to pre-establish a function which is different everywhere, while a specific function is

not needed in the nonparametric distance function. The parametric distance function can be

manipulated algebraically (Choi et al. 2012). In the 1970s, the Shephard output distance

function was first used to measure the MACs of pollutants (Shephard 1970). The desirable

and undesirable outputs were changed in the same ratio in the Shephard output distance

function (Tu 2009; Dou and Li 2012; Chen 2011). However, in the reality, we want to

increase the desirable output while decreasing undesirable output. The DDF which was

proposed by Chambers et al. (1996) and (Färe et al. 1993) can achieve what reality

requires. Besides, the directional distance function is invariant to affine data transformation

under variable returns to scale (Aparicio et al. 2016).

The DEA and LP methods are usually used to solve the distance function. However, the

DEA method can only be applied when the function is differentiable everywhere. More-

over, DEA method cannot deal with random errors and wrap it into inefficiency term (Lee

Table 1 Comparison of the estimated CO2 MACs of Chinese provinces

Studies Method Sample MAC (yuan/ton)

(Wang et al. 2011a, b) DDF/DEA 28 provinces, 2007 475

Liu et al. (2011) DF/DEA 30 provinces, 2005–2007 1739

Huang and Wei (2012) DDF/LP 29 provinces, 1995–2007 1128

Zhang et al. (2014) DDF/LP 29 provinces, 2006–2010 80.19

He (2015) DF/LP 29 provinces, 2000–2009 104
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et al. 2002; Vardanyan and Noh 2006). Although the LP method can guarantee that the

function is differentiable everywhere, the statistic noise will affect the results prominently,

when particular points are ignored in the LP method (Zhang and Choi 2014; Zhou et al.

2010). Hence, both the DEA and LP methods have flaws.

To measure the MAC more precisely, the DDF and SFA were used in this paper to

overcome DEA and LP defects. SFA method is included to overcome the flaw of ignoring

random errors. Moreover, the SFA has a translation property, which can consider the

influence of statistical noise on the model (Du and Mao 2015).

3 Model and Method

The DDF model measuring the MAC of undesirable output was proposed by Chambers

et al. (1996) and (Färe et al. 1993) separately. The DDF depicts an input–output process

with multiple inputs and outputs based on production function. Then, a production pos-

sibility curve (PPC) in the two-dimensional space was built. However, the PPC boundary

optimal cannot be touched as the restriction of technology. Hence, the MAC can be

measured by the distance between the output set and PPC boundary.

3.1 Establishment of DDF

In a certain Chinese province, we considered a production process that employs three

inputs: capital (Xk), labor (XL) and energy (XE), one desirable output GDP (y) and one

undesirable output CO2 emission (b). The production technology set P can be defined as:

P ¼ y; bð Þ : X can produce y; bð Þf g ð1Þ

The set has the following properties:

(1) Inputs are free disposability: The increase in inputs will lead to increased output,

that is to say, if x0 � x,then Pðx0Þ � PðxÞ.
(2) Weak disposability of undesirable outputs: The proportionate reduction of desirable

and undesirable outputs simultaneously is possible with the given inputs; in other

words, (y, b)[P, 0 B h B 1, then (hy, hb)[P.

(3) Free disposability of desirable: The desirable output reduction is possible with the

given inputs and undesirable output, so, (y, b)[P, y0 B y, then (y0, b)[P.

(4) Null-jointness: The desirable output must be accompanied by the generation of

undesirable, and the only way to avoid desirable and undesirable outputs is to stop

all production activities, which means (y, b)[P, and b = 0, then y = 0.

Let g = (gy, gb) as the directional vector which indicates the expansion of GDP in the

direction of gy and the reduction of CO2 in the direction of gb, then the DDF can be defined

as:

D~ðX; y; b; gÞ ¼ supfb : ðyþ bgy; b� bgcÞ 2 P ð2Þ

where b represents the maximum proportion of expansion or reduction. b = 0 when the

decision-making unit lies on the production frontier.

Figure 1 shows the schematic diagram of the DDF and the MAC of CO2 emission.

Point A stands for a certain region in the production technology set P, while coordinate

axis y and axis b represent the GDP and CO2 emission in this region, respectively. A moves
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toward point B, which not only reduces the undesirable output (CO2 emission), but also

increases the desirable output (GDP). Hence, the DDF is measured by b = AB/Og.

3.2 Calculation of DDF

Translog and the quadratic form of function are used to calculate the DDF. The translog

form of function depicts a simultaneously proportionate transformation of desirable and

undesirable output. The quadratic form of function depicts a transformation of the increase

in the desirable output, while decreasing the undesirable output at the same time (Wei et al.

2013). Hence, the quadratic form is suitable for reality.

D~ðx; y; b; gy;gbÞ ¼ a0 þ
X

i¼K;L;E

aixiþayyþ abbþ
1

2

X

i¼K;L;E

X

j¼K;L;E

aijxixj þ
1

2
ayyy

2 þ 1

2
abbb

2

þ
X

i¼K;L;E

aiyxiyþ
X

i¼K;L;E

aibxibþ
X

i¼K;L;E

aibxibþ aybyb ð3Þ

subject to:

gyby � gbcb ¼ �1;

gybyy � gblyb ¼ 0;

gylyb � gbcbb ¼ 0;

gy
X

i¼K; L;E

di � gb
X

i¼K; L;E

gi ¼ 0;

g2
ybyy þ g2

bcbb � gygblyb ¼ 0;

ð4Þ

where a0, ai, ab, aij, ayy, abb, aiy, aib and ayb are the coefficients of the DDF function. by,
byy, cb, cbb, lyb, di and gi are the coefficients of the constrains of DDF function.

The DEA and LP methods are usually used to solve DDF. However, the production

function form will distinctly affect the results (Zhou et al. 2015). Hence, the SFA method,

which can manage random errors, was used to solve DDF in this paper.

The SFA method was proposed by Aigner et al. (1977). Färe et al. (2005) applied the

SFA to DDF.

D~0ðxn; yn; bn; gy; �gbÞ þ vn � un ¼ 0 ð5Þ

where v represents random noise (random error) and satisfies a normal distribution (i.e.,

vn �Nð0; r2
vÞ, and u represents the inefficiency and satisfies a half-normal distribution (i.e.,

un �Nþð0; r2
nÞ:

y 

B (y+βgy,b-βgc)

C A (y,b)

g=(gy,gb) P

O D b 

Fig. 1 Directional distance
function

510 Nat Hazards (2017) 85:505–521

123



The revenue of a certain region can be defined as:

R ¼ p½yþ ð1 � D~0Þgy� � pb½bþ ð1 � D~0Þgb� ð6Þ

where p represents the price of GDP (p = 1). pb represents the price of CO2 and indicates

the MAC in this paper.

The MAC expressed by Eq. 7 after taking the partial derivation of b and y on Eq. 6 is:

pb ¼
oD~0

ob
� oy

oD~0

ð7Þ

Equation 3 is the first-order homogeneous equation, which contains desirable and

undesirable outputs. To measure the MAC, the natural logarithm was taken as the nor-

malization process on Eq. 3.

lnD0 ¼ lnðD0=yÞ ¼ lnD0 � ln y ð8Þ

Hence,

� ln y ¼ a0 þ ak ln xk þ al ln xl þ ae ln xe þ cb ln bþ 1

2
akl ln xk ln xl þ

1

2
ale ln xl ln xe

þ 1

2
ake ln xk ln xe þ

1

2
cbbðln bÞ2 þ gk ln xk ln bþ gl ln xl ln bþ ge ln xe ln b� lnD0

ð9Þ

Therefore, if 0\D0\ 1, then lnD0\ 0.

According to Eq. 4 and the numerical values of the inputs and outputs, the MAC can be

expressed as:

pb ¼ � y

b

o lnD0

o ln b
=
o lnD0

o ln y

� �

¼ � y

b
cb þ cbb ln bþ gk ln xk þ gl ln xl þ ge ln xeð Þ ð10Þ

3.3 Data

3.3.1 Data resources

The inputs in this study included capital, labor and energy. The perpetual inventory method,

which is proposed by Goldsmith in 1951, is generally accepted by previous studies to measure

capital stoke. The perpetual inventory method was widely used in the measurement of Chi-

nese capital stoke (e.g., Zhang et al. 2004; Shan 2008; Xiang and Ye 2011; Fan 2012). The

labor and GDP were derived from the 2014 China Statistic Yearbook (CSY 2014), and the

energy consumption was derived from the 2014 China Energy Statistic Yearbook (CESY

2014). Moreover, the energy consumption was estimated as standard coal by considering the

standard coal coefficient. The CO2 emission was measured by the IPCC method.

3.3.2 Measurement of CO2 emission

The CO2 emission coefficient method is the most commonly used method to measure CO2

emissions. According to the IPCC 4th Climate Change Assessment Report, 90 % of CO2
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emissions came from the combustion of fossil fuels in developed countries. Fossil fuels are

the main energy resource in undeveloped countries, like China. Therefore, the CO2

emissions from fossil fuels account for more than 90 % in China (Diakoulaki and Man-

daraka 2007).

Due to the specific application of energy resources from the 2014 China Energy Statistic

Yearbook, seven energy resources were chosen to measure CO2 emissions: coal, coke,

kerosene, gasoline, fuel oil, diesel and natural gas. Most crude oil is used to produce fuel

oil and gasoline. Hence, crude oil was not taken into account in this study.

According to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories

(IPCC 2006), the CO2 emissions can be calculated by Eq. 11:

Ci ¼ Eij � dj ð11Þ

where Ci represents the CO2 emissions of province i, Eij represents the consumption of

energy j in province I, and dj represents the coefficient of CO2 emissions of energy j.

The emission factors of energy resources were discussed in previous studies (e.g., Xu

et al. 2006; Wang and Zhu 2008). The U.S. Department of Energy Information Admin-

istration, the Chinese Academy of Engineering, the Sustainable Development Strategy

Research Group of the Chinese Academy of Sciences, the Energy Research Institute of the

National Development and Reform Commission and the Institute of Policy and Manage-

ment of the Chinese Academy of Sciences all measure the emission factors of energy.

However, the different varieties of energy and carbon contents of energy caused mixed

results.

The measurement of the CO2 emission factor proposed by the IPCC is shown by Eq. 12.

dj ¼ Mj � bj � ej � x ð12Þ

where Mj represents the net calorific value of energy j, bj represents carbon content of the

unit heat value of energy j, and ej represents the carbohydrate oxidation of energy j. x
represents the gasification coefficient of CO2 and has a constant value of 44/12. According

to the standard coal coefficient, net calorific power, carbon content and oxygenation

efficiency in the 2014 China Energy Statistic Yearbook and Eq. 11, the CO2 emission

factors were measured (see Table 2).

By placing the energy consumption data and CO2 emission factors of each energy in

Eq. 10, the CO2 emissions of Chinese provinces could be calculated.

3.4 Measurement of CO2 MAC

Table 3 shows the descriptive statistics of five variables.

Take the logarithm of variables to unify the dimension.

Table 2 CO
2

emission factors
of energy unit: kg-CO

2
/kg

Energy CO2 emission
factor

Energy CO2 emission
factor

Coal 2.3816 Fuel oil 3.1704

Coke 2.8526 Diesel oil 3.0959

Kerosene 3.0333 Natural gas 2.1650

Gasoline 2.9250
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The DDF’s coefficient was calculated by using the CO2 emission values in Eq. 10 and

the Fronter4.1 software (see Table 4).

The CO2 MACs of Chinese provinces can be measured by Eq. 10.

4 Results and discussion

4.1 Results

4.1.1 CO2 emissions

According to Fig. 2, the CO2 emissions of Chinese provinces differed drastically. The

large CO2 emitters, like Shandong Province, Hebei Province and Inner Mongolia, were

provinces with flourishing industries. The small CO2 emitters were classified into two

groups. Beijing City and Tianjin City had small territories and well-developed tertiary

industries. Provinces which are less developed like Ningxia Province, Gansu province and

Qinghai Province were also small emitters.

4.1.2 MAC

In this paper, we used DEA and SFA methods to calculate the 30 provinces’ carbon dioxide

MAC in 2013. Fronter4.1 and Deap2.1 softwares are used.

According to Fig. 3, the MACs of Chinese provinces differed exceedingly. The cal-

culation results of the SFA method were as follows. The eastern provinces, like Beijing and

Shanghai, had high MACs, while the western and southern provinces, like Guizhou and

Gansu, had low MACs. Provinces with affluent industries, like Shanxi and Inner Mongolia,

also had low MACs. The results of the DEA method shows that Beijing, Shanghai,

Guangdong and Tianjin have over 200 yuan/ton MACs and the MAC value of Inner

Mongolia and Ningxia is 0.

The average result of the MAC calculated by the SFA method was 55 % lower than the

DEA method.

Table 3 Descriptive statistics of input and output variables

Capital
(109 yuan)

Labor
(105 persons)

Energy
(105 TCE)

GDP
(109 yuan)

CO2

(105 ton)

Mean 23898.26 4506.8 86358.48 20973.39 1610511

Maximum 58895.16 10644 210072.1 62163.97 4295983

Minimum 4443.382 578 13300.89 2101.05 143943.6

Table 4 DDF’s coefficient
Coefficient Value Coefficient Value

rb -0.038 gl -0.019

rbb 0.068 ge 0.008

gk -0.031
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4.2 Discussion

4.2.1 Comparison between SFA and DEA methods

SPSS 21.0 software was used to conduct Spearman test and paired sample T test. Figure 4

shows the correlation coefficient in Spearman test is 0.818 which means the ranking order

of MAC results of SFA and DEA methods is highly related. The MAC ranking order of

most of the provinces is stable except Heilongjiang, Shandong, Henan and Sichuan.

Heilongjiang and Shandong have huge CO2 output. Henan and Sichuan have large energy

input. Besides, the capital input in Sichuan is also high. The large difference between

inputs and outputs will lead to different production frontier, and the MAC ranking order

will be different.

Fig. 2 CO2 emission of Chinese provinces in 2013 (units: 10 thousand tons)

Fig. 3 CO2 MAC of Chinese provinces in 2013 using the SFA and DEA methods (units: yuan/ton)
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Figure 5 shows the basic information of MAC sequence calculated by SFA and DEA.

The mean value, standard deviation and the standard error mean of SFA sequence were

lower than those of DEA sequence. So the SFA sequence is more stable than DEA

sequence.

Figure 6 shows the absolute value of paired sample T test is 7.182 and it is higher than

the critical value when the degree of freedom is 29. Hence, the value of SFA and DEA

sequence has significant difference.

4.2.2 Reliability test of the SFA result

Fronter4.1 software was used to measure the coefficient of DDF. The result showed that

c2 ¼ r2
u=r

2 ¼ 0:5. The result of r represents that half of the error was caused by random

errors. Hence, the SFA method is appropriate in this paper.

Meanwhile, the coefficient of Eq. 10, standard deviation and statistical tests at 1 %

significance are shown in Table 5.

The critical value of 19� of freedom was 1.729, as determined from the critical value

table of the t test. The absolute value of the t ratio value in Table 4 was greater than the

critical value, which meant that the t test of coefficient was significant and the coefficient

result was reliable.

Our calculation results of the average carbon dioxide MAC of those provinces are 55 %

less than the previous calculations, so from the economic point of view, the national CO2

emission reduction target of 40–45 % is feasible.

4.2.3 Influence factor analysis of MAC

The composition of CO2 emissions and the comparison between CO2 emission and MACs

are shown in Figs. 7 and 8, respectively.

Fig. 4 Spearman test correlations

Fig. 5 Basic information of MAC sequence calculated by SFA and DEA
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In general, there were no distinct correlations between the CO2 emissions and MACs of

the Chinese provinces. Industrial structures, energy consumption structures and natural

resources were the factors that influenced the CO2 emissions and MACs of Chinese

provinces.

(1) Industrial structures

Figure 7 shows that large CO2 emitters like Shandong, Hebei, Shanxi and Inner

Mongolia were highly developed industry provinces. According to the 2013 China Statistic

Yearbook (CSY 2014), the ratios of the secondary industries of large emitters were more

than 50 %. High-carbon secondary industries, such as the steel industry and mining

industry, were the leading industries in those large emitters. Hence, the MACs of large

emitters were low. Small emitters were divided into two groups. The first group consisted

of provinces with highly developed, but low-carbon tertiary industries, such as the financial

industry, wholesale and retail trade industry and catering accommodation industry. Beijing,

Fig. 6 Paired sample test value

Table 5 Coefficient of DDF,
standard deviation and t ratio

Coefficient Coefficient value Standard deviation T ratio

rb -0.038 2.682 -1.825

rbb 0.068 2.041 3.376

gk -0.031 1.374 -2.319

gl -0.019 1.298 -1.923

ge 0.008 1.147 -7.082

Fig. 7 CO2 emissions of Chinese provinces in 2012
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Tianjin, Shanghai and Hainan were in the first group. The ratios of the low-carbon

industries in those provinces were more than half of the total ratio of the tertiary industries.

Low-carbon industries emit little CO2, and it would be a large economic loss to reduce CO2

emission. Therefore, the MACs of the first group of small emitters were low. The other

group of small emitters included western provinces, like Ningxia, Gansu and Qinghai, with

rising new energy industries. However, there were still metallurgy industries with large

CO2 emissions in those provinces. Hence, with relatively small CO2 emissions, the MACs

of the second group of provinces were low.

(2) Energy consumption structures

Coal was the main emitter of CO2 emissions in the whole country (see Fig. 7). The

average ratio of the CO2 emissions from the coal combustion of 30 Chinese provinces was

80 %. Coal was mainly used for power generation, the production of building materials

and domestic use. Moreover, coke, mainly used in metal smelting, had the second large

CO2 emission. Hebei Province, one of the largest steel provinces in China, consumed a

large amount of coke for metal smelting, with 23 % of the CO2 emissions coming from

coke. Diesel oil was mainly used as fuel for large vehicles and vessels. Gasoline was the

fuel for compact cars. The blossoming trade and large demand for transportation in

Shanghai, Guangdong and Zhejiang consumed large amounts of diesel oil and gasoline.

Small amounts of kerosene and fuel oil were consumed, and natural gas is a relatively

clean energy. The CO2 emissions from these three energies were low. It is easier to reduce

high-carbon energy’s CO2 emission. Therefore, the MACs of Hebei Province and Shan-

dong Province were low, while Beijing and Shanghai were high.

(3) Natural resources

Southern provinces, such as Hubei, Sichuan and Yunnan provinces, had abundant

hydropower. The ratios of hydropower in Hubei, Sichuan and Yunnan provinces among all

provinces were 16, 17 and 14 % in 2013, respectively. Inner Mongolia, Hebei and

Liaoning provinces had affluent wind power resources, and the ratios of installed capacity

Fig. 8 Comparison between CO2 emission and MAC of Chinese provinces
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of wind-driven power among all provinces were 35, 10 and 9 %, respectively (2014 China

Energy Statistic Yearbook). Hydropower and wind power are clean energy and will not

produce CO2 emissions. Hence, the MACs of the above-mentioned provinces were high.

5 Conclusion and the policy suggestions

5.1 Conclusion

(1) As SFA method can distinguish the random error from inefficiency, the MAC results

were more precise than DEA method. But SFA MAC average results were 55 % less

than the DEA method’s results in this study as random errors were taken into

account. So from the economic point of view, the national CO2 emission reduction

of 40–45 % is feasible.

(2) The ranking order MAC results sequence of SFA method and DEA method is highly

correlated. But the MAC value of SFA and DEA methods has significant difference.

(3) There were no distinct correlations between CO2 emissions and MACs.

(4) The CO2 emissions and MACs of each province varied, due to the different

industrial structures, energy consumption structures and natural resources among

Chinese provinces.

5.2 Policy suggestions

According to the results of this study, MAC of each province is substantially different.

Hence, the central government should formulate a fair CO2 emission reduction principle

considering the MAC, the different industrial structure and the level of economic of each

province. Two suggestions are made as follows:

5.2.1 Formulate CO2 emission reduction targets principle based on MAC
and affordability of the local economy

The MAC and the affordability of the local economy should be considered when allocating

the annual CO2 emission reduction target of each province. On the other hand, the central

government should highlight the leading role of the developed provinces. Each province

has different MAC due to the different industry structure and leading industry in the

province. The major industries of less developed provinces are mostly high CO2 emission

and low value-added secondary industries such as thermal power, steel and chemical

industries. The MAC of those provinces is relatively lower, and their CO2 emission

reduction is easier. The developed provinces, on the contrary, have high economic

development level and high value-added tertiary industries. The MAC of developed pro-

vinces is high, and their CO2 emission reduction is more challenging.

Therefore, the central government should first ensure the accomplishment of the total

CO2 emission reduction task and demonstrate the CO2 emission reduction determination.

Based on the principle that lower MAC reduces more CO2 emissions and higher MAC

reduces less, the annual CO2 emission reduction targets of each provinces can then be

determined by reasonably increasing the targets in lower MAC provinces and appropriately

decreasing the targets in higher MAC ones. Furthermore, as the developed provinces with

high MAC reduce less CO2 emissions, a feedback mechanism in which developed
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provinces compensate developing provinces should be established. Finally, the leading role

of developed provinces in CO2 emission reduction should be established, while industrial

structure transformation and tertiary industry developing should be encouraged in devel-

oping provinces.

5.2.2 CO2 emission reduction targets should consider natural resource endowments
and embodied carbon transfer

When determining the annual emission reduction targets, the central government should

establish a corresponding subsidy mechanism in accordance with the supply and demand of

raw material and energy between the provinces. The transportation of raw material and

energy between provinces will result in embodied carbon transfer. CO2 emission reduction

target should consider the natural resource endowment and raw material and energy

import/export situation. A subsidy mechanism should be established to compensate raw

material and energy output provinces to ensure that the emission reduction targets of the

provinces are fair and reasonable.
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