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Abstract Seismic catalogues of past earthquakes have compiled a substantial amount of

information about historical seismicity for Europe and the Mediterranean. Using two of the

most recent European seismic databases (AHEAD and EMEC), this paper employs GIS

spatial analysis (kernel density estimation) to explore the representativeness and reliability

of data captured for late medieval earthquakes. We identify those regions where the

occurrence of earthquakes is significantly higher or lower than expected values and

investigate possible reasons for these discrepancies. The nature of the seismic events

themselves, the methodology employed during catalogue compilation and the availability

of medieval written records are all briefly explored.

Keywords Earthquakes � Historical seismicity � Late medieval Europe � GIS � Kernel
density estimation � Risk

1 Introduction

A key initiative in historical seismology in recent years has been the collection of earth-

quake data at a continental scale, especially for Europe. AHEAD (Archive of Historical

Earthquake Data; Locati et al. 2014; http://www.emidius.eu/ahead/main/) and SHEEC

(SHARE European Earthquake Catalogue 1000–1899; Stucchi et al. 2013; http://www.

emidius.eu/SHEEC/sheec_1000_1899.html) have developed systematic catalogues of past

seismic events between AD 1000 and 1899, generating and publishing a robust archive of

macroseismic information. A third project, EMEC (the European–Mediterranean
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Earthquake Catalogue; Grünthal and Wahlström 2012), consists of a unified catalogue of

earthquakes with an Mw higher than 3.5 in Europe, Mediterranean Africa, Turkey and

Cyprus up to 2006. In contrast to the other two catalogues, EMEC is mainly based on

instrumental recording of recent seismic events.

These metadata archives are primarily intended as inputs into the seismic hazard

assessments which remain fundamental to the development of strategies for earthquake risk

reduction (through, in the case of the SHARE project, Seismic Hazard Harmonization in

Europe). The valuable contribution of historical seismology to national and international

earthquake catalogues has long been recognised (Ambraseys 1971; Gürpinar 1989; Vogt

1991; Caputo and Helly 2008), but these new larger databases now open up fresh possi-

bilities for research. Not only do they add a remarkable volume of data which has been

standardised according to published criteria, but both AHEAD (http://www.emidius.eu/

ahead/main/) and EMEC (http://emec.gfz-potsdam.de) also operate on open-access online

platforms and embed useful tools for geographical and chronological interrogation.

For more than a generation, research tools have been available to seismologists to help

evaluate the completeness of historical earthquake catalogues as time series data (e.g.

Stepp 1972; Weichert 1980; Woessner and Wiemer 2005; Hakimhashemi and Grünthal

2012; Alamilla et al. 2014), but it is now possible to supply a spatial as well as a

chronological assessment of past events. In this paper, therefore we explore the use of

kernel density estimation (KDE) to investigate the representativeness of the historical

seismic activity in Europe in the late Middle Ages (here defined as AD 1000–1550) from a

geographical perspective. We identify those European regions where our knowledge of

medieval seismicity is especially weak, and we ask whether medieval seismicity is

sometimes overestimated.

2 The earthquake record over time

It is well understood from numerous case studies that the available information for some

European regions and periods is better than it is for others (for instance, Guidoboni and

Comastri 2005 for eleventh- to fifteenth-century earthquakes in the Mediterranean region),

and this point is quickly underlined by an analysis of the AHEAD dataset for the last

1000 years (Fig. 1). As has been noted previously for other datasets (Daniell et al. 2011),

the number of recorded earthquakes per year increases through time: there are far more

earthquakes known from the modern period of instrumental monitoring than there are from

patchy historical records. Thus, the number of recorded earthquakes in the eleventh century

(n = 30), for example, represents less than 2 % of the earthquakes catalogued for the

nineteenth century (n = 2432). In fact, the number of known earthquakes approximately

doubles with each passing century.

The reasons for this disparity are also well rehearsed (Guidoboni and Ebel 2009, for

example). They include the comprehensiveness and reliability of any individual account of

a historical seismic event, the preservation and transmission of that record (which may be

one of a number which provide evidence of a single event) and the capacity of modern

compilers and analysts to recognise and catalogue the event. When researchers claim that

‘libraries may hide hundreds of treasures that are mostly unknown to seismologists’(Vogt

1991), they concede the degree to which research intensity varies across European regions.

In short, it cannot be assumed that current catalogues, vital though they may be, are

homogeneous in their representation of past seismicity. The key question to ask is precisely

where the strengths and weaknesses of the data might lie.
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3 KDE analysis

Point density analysis is a technique that permits the visualisation and consideration of

clusters in a spatial dataset and facilitates comparison of trends (Conolly and Lake 2006).

In this case, we have used this approach to undertake an evaluation of earthquake distri-

bution across Europe in the late Middle Ages, matched against later seismic activity. By

taking earthquake epicentres and magnitudes as the input point layer, a continuous density

surface is created. Applying kernel density estimation (KDE), a nonparametric technique

(Illian et al. 2008; Wand and Jones 1995), the probabilistic density of earthquake epi-

centres is then calculated within a circular area (the KDE ‘search radius’). The density

value of each output raster cell is obtained by summing the values of all the kernel surfaces

calculated for the population of points, the kernel function being based on the quadratic

function described in Silverman (1986, p. 76, equation 4.5) and available in Esri ArcGis

10.3. The resultant KDE maps (Figs. 2–5) apply a search radius of 200 km to measure

densities in point distribution at a regional scale with an output resolution (pixel dimen-

sion) of 5 km.

In order to obtain a mean to compare earthquake distributions over time, KDE analysis

was undertaken for selected datasets showing medieval earthquakes (AD 1000–1550),

post-medieval or early modern historical earthquakes (AD 1551–1899), and twentieth-

century (AD 1900–1999) earthquakes. Calculations were applied both to the entire number

of the recorded earthquakes collected within each dataset and for to earthquakes with

Mw C 5, introducing a threshold which excludes events that cause little damage. The KDE

maps are then displayed using a coloured key which defines density trends. To avoid

redundancies during comparison, the density values in each case were homogenised to a

range of values ranging from 0 to 100. The mean values of density were extracted from the

maps using a zonal statistic analysis and assigned to a shape file displaying the provinces

(1248 in total) of all European countries. This allows differences in mean value density to

be calculated and then displayed.

Figure 2 is the KDE map of known late medieval earthquakes for the period AD

1000–1550. Some 567 events are shown, displaying a density peak across northern and

central Italy. The highest values are concentrated in Umbria, Northern Tuscany and

Marche, and the central and the east Po Plain, including the Eastern Alps between Friuli

Fig. 1 Numbers of recorded earthquake events across Europe by century (Source: AHEAD 2014)
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and Slovenia. High values are also identified for the central Apennines and south towards

Campania, eastern Sicily (including the area of Reggio Calabria in Calabria) and the Rhine

Graben area, which corresponds to the Basel region, Lower Alsace and Baden-Württem-

berg. Lower values are found in the eastern Pyrenees, Transylvania in central Romania,

Central and Southern Dalmatia, around Aachen (Germany) and between Brussels (Bel-

gium) and Cologne (Germany). If a threshold for stronger earthquakes equal to Mw C 5 is

applied to this dataset (Fig. 3), the map shows a marked concentration of high values in

central and northern Italy.

Figure 4 processes the epicentres of post-medieval earthquakes (AD 1551–1899;

n = 3840) using the same methodology. Although central Italy and the Strait of Messina

are still characterised by high values, higher density values still are visible in both

Switzerland and Slovenia. For this period, medium values are found across Transylvania

(Romania) and along the western border between Slovakia and Hungary. Again, Greece,

Fig. 2 Distribution of late medieval (1000–1550 AD; Source: AHEAD 2014) earthquake epicentres (sx)
and the associated KDE (dx)

Fig. 3 Distribution of late medieval (1000–1550 AD; Source: AHEAD 2014) earthquake epicentres with
Mw C 5 (sx) and the associated KDE (dx)

1628 Nat Hazards (2016) 84:1625–1636

123



Albania and Andalusia show lower values, comparable with those for the Pays de la Loire

(France) and Aachen region (Germany). If a threshold of Mw C 5 is applied to this dataset,

the post-medieval map changes dramatically (Fig. 5). Peak values shift to central Italy,

Transylvania in Romania, and the Adriatic coast of Albania and Greece. Higher values are

also obtained for the Strait of Messina and Calabria (Italy), Slovenia and the Belgrade area

in Serbia. Average values are registered for Eastern Bulgaria and southern Andalusia

(Spain), and lower ones for Switzerland, the Aachen area, the Pyrenees and southern

Portugal.

Figure 6 presents the KDE for twentieth-century earthquakes extracted from the EMEC

database (n = 23,438). Here, the picture for the instrumental period is very different from

the catalogue of historical earthquakes. The area with the highest peak of density values

now focuses on Greece and Albania, extending southward to the Hellenic Arc and

including Crete and Rhodes. Transylvania in Romania represents another peak but, taken

Fig. 4 Distribution of post-medieval (1551–1899 AD; Source: AHEAD 2014) earthquake epicentres (sx)
and the associated KDE (dx)

Fig. 5 Distribution of post-medieval (1551–1899 AD; Source: AHEAD 2014) earthquake epicentres with
Mw C 5 (sx) and the associated KDE (dx)
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together, this pronounced clustering makes the visualisation of areas with lower values

appear undifferentiated. Fortunately, this can be overcome by introducing a nonlinear

binning technique, such that the application of breaks in the data has geometric rather than

linear break to emphasise the distribution of lower value events. This makes it possible to

identify other regions for which seismic activity is noteworthy. This includes the Balkan

Peninsula as a whole, Slovenia and the eastern Alpine arch between Italy and Austria,

central Italy and the area of the Strait of Messina, Switzerland, and Iceland. Areas char-

acterised by lower seismic activity are the western Pyrenees, the Aachen region, Andalusia

and Murcia and around Lisbon.

In this case, introducing a magnitude threshold of Mw C 5 does not change the picture

significantly (Fig. 7). The highest values still centre onGreece, Albania and theHellenicArc,

with a new peak now identifiable in Iceland. Italy, northern Switzerland, and the Rhine

Graben are still characterised by high seismicity, though Andalusia, Murcia and Lisbon area

are also included in this class. Lower values are assigned to the western Pyrenees, northern

Portugal and Galicia, with two smaller zones to the north of Aachen and in western Belgium.

4 Discussion

The maps presented in Figs. 2 to 6 confirm that there are significant differences in our

understanding of seismicity for different periods of our historic past. To draw out these

patterns further, Fig. 8 evaluates differences in the spatial distributions in the density of

recorded earthquake events from the twentieth century and the later medieval period. This

map was created through a three-step process. First, given that density maps of different

periods have differing value ranges, these values have been normalised to obtain a common

value ranging from 0 to 100. Second, zonal statistical analyses facilitate the interrogation

of the KDE maps against a vector shape file of the modern-day provinces of the European

Union and adjoining territories. This generates mean values of epicentre density for each of

the 1248 European districts which, in turn, can be exported to produce tables for late

medieval, post-medieval and twentieth-century epicentre densities and then joined with the

Fig. 6 Distribution of twentieth-century earthquake epicentres (sx; Source: EMEC 2012) and the associated
KDE (dx)
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Fig. 7 Distribution of twentieth-century earthquake epicentres with Mw C 5 (sx; Source: EMEC 2012) and
the associated KDE (dx)

Fig. 8 Calculated difference between the KDEs for medieval and twentieth-century earthquakes
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shape files so as to visualise differences in density trends between the KDE raster maps.

Third, for ease of identification, differences in density values between late medieval KDE

maps and twentieth-century KDE maps have been calculated for all the epicentres as well

as for epicentres with Mw C 5.

By comparing several datasets, Fig. 8 highlights the extent to which the recorded dis-

tribution of twentieth-century seismic events differs from those that occurred in the Middle

Ages. Once more, it is possible to identify where higher and lower than anticipated levels

of activity are located. Negative values (in blue on Fig. 8), which indicate lower than

anticipated levels of medieval seismicity, are focused on two areas: eastern Europe and the

eastern Mediterranean, including the Balkans, Romania, Greece and Crete, and Iceland.

The most under-represented areas lie in the south of Albania, around the Gulf of Corinth

and Crete. By contrast, those regions showing a higher-than-expected level of medieval

seismicity (in red on Fig. 8), when compared to contemporary seismicity, can be found in

Western Europe, especially in Andalusia, the eastern Pyrenees, Switzerland, the Aachen

region, northern and central Italy, the Strait of Messina, Slovenia and Dalmatia. Peaks in

positive values centre on northern and central Italy.

The higher-than-expected spatial density of earthquakes may in part be explained by the

nature of the seismic event itself. While it could be argued that, over a period of a century,

the spatial and temporal distribution of small to medium earthquakes on a continental scale

might be approximately constant, the recurrence interval of seismic events scales with

time, such that the largest earthquakes occur the least frequently; the recurrence period of a

large earthquake on a given active fault might be typically in the order of a century to a few

millennia. The largest earthquakes, because they have much longer return periods, intro-

duce greater temporal and spatial variability. Once more, there may be a high occurrence

of aftershocks after a very large seismic event and, where a large earthquake has occurred,

it would be expected that a number of small to medium earthquakes might also strike in the

same region.

It is also the case that two earthquakes of the same magnitude may not have the same

consequences for above-ground structures because of the nature of local geology and

geomorphology. For example, variations in rupture speed may affect the frequency of the

shaking experienced at ground level, changing the damage potential of the earthquake. In

addition, different continental areas have different attenuation characteristics which affect

the distribution of ground shaking. In central Greece, for example, strong earthquakes have

been described with a Mw between 6.5 and 7.2 but with only very localised impacts

(Ambraseys and Jackson 1990; Stiros and Pytharouli 2014). Another important influence

on our mapping is the method by which events have been recorded by catalogue compilers.

The observed peaks of post-medieval earthquakes in Switzerland and Slovenia, for

example, are probably due to the recording of a large number of low-impact aftershocks as

independent earthquake events in these regions and also to some extent the comprehensive

research which has been undertaken by the Swiss Seismological Service (Fäh et al. 2011;

Živčić 2009, as reported in Stucchi et al. 2013: 533).

Question marks concerning over- and under-reporting may apply equally to the later

medieval period and, to investigate this possibility further, Fig. 9 displays the KDE map of

medieval earthquakes but this time including all late medieval cities with a population

above 10,000 inhabitants (Jotischky and Hull 2005: 73). What emerges is a positive

relationship between the density of recorded seismic events and the distribution of these

more significant settlements. Thus, larger numbers of people in medieval urban areas,

particularly those in literate institutions such as monasteries and universities, presented

greater opportunities not only for damage to occur but also for that damage to be observed
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and recorded as a seismic episode. Towns and cities which were better connected to

national and European trading networks with substantial numbers of visitors, pilgrims and

merchants also multiplied many times over the opportunity for comment well outside the

affected region. Furthermore, in a risk-sensitive society in which earthquakes occurred

more frequently and measures of hazard adaptation and mitigation were better understood

(e.g. structural assessments, financial relief, reconstruction) there was perhaps a greater

propensity to evaluate and record in order to justify a civic or State response (Gerrard and

Petley 2013). As an illustration of this, one of the best documented and most destructive

seismic events in the Late Medieval Italy struck the southern Apennines and the Naples

region in December 1456 with an estimated Mw = 7 ± 0.30 and a maximum intensity

Io = 11 (total destruction) (Meletti et al. 1988). Information about this earthquake which

was probably composed of three distinct, but coincident seismic events (Teramo et al.

1999) is derived from more than 60 different historical sources, including royal privileges

given in the aftermath, ambassadors’ letters, reports, chronicles, scientific treatises and

inscriptions (Figliuolo 1988; Guidoboni and Comastri 2005). Not surprisingly, the number

of known affected locations is also remarkably high; 199 different places recorded the

event in one form or another. On the other hand, the Xylokastro earthquake, which affected

Fig. 9 Medieval cities with a population higher than 10 k inhabitants (in AD 1300 ca.) and the KDE of late
medieval earthquakes
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the Gulf of Corinth in June 1402, was one of the strongest earthquakes recorded in the late

medieval Greece (Guidoboni and Comastri 2005). This tsunamigenic event had an esti-

mated Mw = 6.6 ± 0.35 and Io = 10 (University of Thessaloniki 2003), and yet just eight

places are recorded as being affected along the shores of the Gulf, and only two historical

sources provide any information at all about the event: one is a letter written by a Venetian

merchant, and the other a chronicle from the city of Ferrara (in Italy).

If the earthquake data for Italy and Greece are examined over time rather than spatially,

further patterns emerge. Figure 10 shows the 269 known earthquakes in Italy between 1000

and 1550 AD at 50-year intervals, plotted alongside the 48 recorded earthquakes for Greece.

Whereas the trend for Italy is quite simple if nonlinear, with more earthquakes in more recent

centuries, that forGreece ismore variable.With the exception of limited numbers ofmonastic

archives (such as those at Monte Athos and island of Patmos), documents for the Middle and

the Late Byzantine period are almost completely absent (Tsougarakis and Angelomatis-

Tsougarakis 2012). From the thirteenth century, the situation improves as commercial con-

tacts improved with the West, for example with Venice, and the presence of new institutions

such as the Military Orders on Rhodes, Cyprus and elsewhere (e.g. during the 1493 earth-

quake ofKos; Figliuolo 2002).Only from thefifteenth century did archives become richer as a

consequence of integration into the Ottoman Empire with a subsequent growth of ecclesi-

astical and monastic archives (Tsougarakis and Angelomatis-Tsougarakis 2012).

5 Conclusion

This paper highlights some of the strengths and weakness of current historic earthquake

meta-datasets. While seismologists have long been aware of the incompleteness of their

catalogues, we offer this KDE comparison as another tool in the toolbox, one that provides

better geographical definition. The results immediately suggests an agenda for further

investigation, particularly across eastern Europe and the eastern Mediterranean where our

Fig. 10 Recorded seismic events in Greece and Italy between 1000 and 1550 AD, here calculated for
50-year intervals
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methodology suggests that there were more and more powerful seismic events during the

Middle Ages than have hitherto been recorded. For some of these areas, archaeoseismo-

logical and palaeosesimological projects might shed new light on historical seismic events;

otherwise, a more detailed assessment is required of the information gap resulting from a

scarcity of written documents. Finally, we also highlight here the issue of over-recording,

something which may be explained by the nature of the seismic event and the density of

human settlement combined with regional cultural and social factors, including the more

sophisticated development of risk-sensitive tactics.
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