Skip to main content

Advertisement

Log in

Coupled model for simulation of landslides and debris flows at local scale

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

This research connects different but sequential processes of slope failure: landslide occurrence, debris-flow initiation from landslides, and debris-flow propagation to lowlands. The coupled model presented in this study consists of a deterministic landslide susceptibility model that estimates the landslide source and local geomorphological mobilization criteria for selecting debris-flow initiation points, and an empirical debris-flow model that simulates the transport and propagation of failed materials from the identified source areas. The debris flow initiation in the spreading analysis was estimated from the landslide source by landslide analysis. Then, its inspection using the mobilization criteria was used to determine if the landslide transformed into a debris flow. While the geomorphological criteria were calibrated using data obtained from Gyeong-gi Province, the validation of the coupled approach was done at Mt. Woomyeon. In comparison with a landslide inventory map, the model simulations resulted in reasonable estimates of all the mountain hazards caused by slope failures as a sequential process on a local scale. The coupled analysis proposed in this study affirms that it is important to manage them together because of the correlation between landslides and debris flows. Thus, if it is parameterized and calibrated for local conditions the suggested model, linking landslides and debris flows with the mobilization analysis, provides a powerful tool for decision makers in territorial planning and disaster preparedness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Bathurst JC, Burton A, Ward TJ (1997) Debris flow runout and landslide sediment delivery model tests. J Hydraul Eng 123:410–419

    Article  Google Scholar 

  • Bathurst JC, Bovolo CI, Cisneros F (2009) Modelling the effect of forest cover on shallow landslides at the river basin scale. Ecol Eng 36(3):317–327

    Article  Google Scholar 

  • Baum RL, Savage WZ, Godt JW (2002) TRIGRS—a FORTRAN program for transient rainfall infiltration and grid-based regional slope stability analysis. US Geological Survey Open-File Report, 2002-424, 38 pp

  • Baum RL, Savage WZ, Godt JW (2008) TRIGRS—a FORTRAN program for transient rainfall infiltration and grid-based regional slope stability analysis, version 2.0. US Geological Survey Open-File Report, 2008-1159, 75 pp

  • Begueria S (2006) Validation and evaluation of predictive models in hazard assessment and risk management. Nat Hazards 37:315–329. doi:10.1007/s11069-005-5182-6

    Article  Google Scholar 

  • Beven KJ, Kirkby MJ (1979) A physically based, variable contributing area model of basin hydrology. Hydrol Sci Bull 24:43–69

    Article  Google Scholar 

  • Blahut J, Horton P, Sterlacchini S, Jaboyedoff M (2010a) Debris flow hazard modelling on medium scale: Valtellina di Tirano, Italy. Nat Hazards Earth Syst Sci 10:2379–2390. doi:10.5194/nhess-10-2379-2010

    Article  Google Scholar 

  • Blahut J, van Westen CJ, Sterlacchini S (2010b) Analysis of landslide inventories for accurate prediction of debris-flow source areas. Geomorphology 119:36–51

    Article  Google Scholar 

  • Brabb EE (1984) Innovative approaches to landslide hazard and risk mapping. In: Proceedings of 4th international symposium on landslides, Canadian Geotechnical Society, Toronto, vol 1, pp 307–374

  • Brabb EE (1991) The world landslide problem. Episodes 14(1):52–61

    Google Scholar 

  • Caine N (1980) The rainfall intensity–duration control of shallow landslides and debris flows. Geogr Ann A62:23–27

    Article  Google Scholar 

  • Cannon SH, Kirkham RM, Parise M (2001) Wildfire-related debris-flow initiation processes, Storm King Mountain, Colorado. Geomorphology 39:171–188

    Article  Google Scholar 

  • Carranza E, Castro O (2006) Predicting lahar-inundation zones: case study in West Mount Pinatubo, Philippines. Nat Hazards 37:331–372

    Article  Google Scholar 

  • Catani F, Lagomarsino D, Segoni S, Tofani V (2013) Landslide susceptibility estimation by random forests technique: sensitivity and scaling issues. Nat Hazards Earth Syst Sci 13:2815–2831. doi:10.5194/nhess-13-2815-2013

    Article  Google Scholar 

  • Chen CY, Yu FC (2011) Morphometric analysis of debris flows and their source areas using GIS. Geomorphology 129:387–397

    Article  Google Scholar 

  • Chen CY, Chen TC, Yu FC, Lin SC (2005) Analysis of time-varying rainfall infiltration induced landslide. Eng Geol 48:466–479

    Article  Google Scholar 

  • Chiang SH, Chang KT, Mondini AC, Tsai BW, Chen CY (2012) Simulation of event-based landslides and debris flows at watershed level. Geomorphology 138:306–618

    Article  Google Scholar 

  • Choi DY, Paik JC (2012) Characteristics of runout distance of debris flows in Korea. J Korean Soc Civ Eng 32(3B):193–201 (in Korean with English abstract)

    Google Scholar 

  • Claessens L, Heuvelink GBM, Schoorl JM, Veldkamp A (2005) DEM resolution effects on shallow landslide hazard and soil redistribution modeling. Earth Surf Proc Land 30:461–477. doi:10.1002/esp.1155

    Article  Google Scholar 

  • Conoscenti C, Di Maggio C, Rotigliano E (2008) GIS analysis to assess landslide susceptibility in a fluvial basin of NW Sicily (Italy). Geomorphology 94:325–339

    Article  Google Scholar 

  • Corominas J, Westen CV, Frattini P, Cascini L, Malet JP, Fotopoulou S, Catani F, Eeckhaut MVD, Mavrouli O, Agliardi F, Pitilakis K, Winter MG, Pastor M, Ferlisi S, Tofani V, Hervas J, Smith JT (2014) Recommendations for the quantitative analysis of landslide risk. Bull Eng Geol Environ 73:209–263. doi:10.1007/s10064-013-0538-8

    Google Scholar 

  • Costanzo D, Rotigliano E, Irigaray C, Jimenez-Peralvarez JD, Chacon J (2012) Factors selection in landslide susceptibility modelling on large scale following the gis matrix method: application to the River Beiro basin (Spain). Nat Hazards Earth Syst Sci 12:327–340. doi:10.5194/nhess-12-327-2012

    Article  Google Scholar 

  • Delmonaco G, Leoni G, Margottini C, Puglisi C, Spizzichino D (2003) Large scale debris-flow hazard assessment: a geotechnical approach and GIS modeling. Nat Hazards Earth Syst Sci 3:443–455. doi:10.5194/nhess-3-443-2003

    Article  Google Scholar 

  • Dikau R, Schrott L (1999) The temporal stability and activity of landslides in Europe with respect to climatic change (TESLEC): main objectives and results. Geomorphology 30(1–2):1–12

    Article  Google Scholar 

  • Ellen SD, Mark RK, Wieczorek GF, Wentworth CM, Ramsey DW, May TE (1997) Map showing principal debris-flow source areas in the San Francisco Bay region, California. US Geological Survey Open-File Report 97(745 E), 8 pp

  • Ercanoglu M, Gokceoglu C (2002) Assessment of landslide susceptibility for a landslide-prone area (North of Yenice, NW Turkey) by fuzzy approach. Environ Geol 41:720–730

    Article  Google Scholar 

  • Felicisimo A, Cuartero A, Remondo J, Quiros E (2012) Mapping landslide susceptibility with logistic regression, multiple adaptive regression splines, classification and regression trees, and maximum entropy methods: a comparative study. Landslides 10(2):175–189. doi:10.1007/s10346-012-0320-1

    Article  Google Scholar 

  • Fischer L, Rubensdotter L, Sletten., Stalsberg K, Melchiorre C, Horton P, Jaboyedoff M (2012) Debris flow modeling for susceptibility mapping at regional to national scale in Norway. In: Proceedings of the 11th international and 2nd North American symposium on landslides, Banff, Alberta, Canada

  • Gamma P (2000) dfwalk—Ein Murgang-Simulationsprogramm zur Gefahrenzonierung. Geographisches Institut der Universit at Bern (in German)

  • Gokceoglu C, Sonmez H, Nefeslioglu HA, Duman TY, Can T (2005) The 17 March 2005 Kuzulu landslide (Sivas, Turkey) and landslide-susceptibility map of its near vicinity. Eng Geol 81:65–83

    Article  Google Scholar 

  • Gomes RAT, Guimaraes RF, Carvalho Júnior OA, Fernandes NF, Amaral EV Jr (2013) Combining spatial models for shallow landslides and debris flows prediction. Remote Sens 5:2219–2237

    Article  Google Scholar 

  • Griswold JP, Iverson RM (2008) Mobility and statistics and automated hazard mapping for debris flows and rock avalanches. US Geological Survey Scientific Investigations Report 2007-5276

  • Guzzetti F, Carrarra A, Cardinali M, Reichenbach P (1999) Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology 3:181–216

    Article  Google Scholar 

  • Guzzetti F, Cardinali M, Reichenbach P, Carrara A (2000) Comparing landslides maps: a case study in the Upper Tiber basin, Central Italy. Environ Manag 25:247–263

    Article  Google Scholar 

  • Haeberli W (1983) Frequency and characteristics of glacier floods in the Swiss Alps. Ann Glaciol 4:85–90.

    Google Scholar 

  • Holmgren P (1994) Multiple flow direction algorithms for runoff modelling in grid based elevation models: an empirical evaluation. Hydrol Process 8:327–334. doi:10.1002/hyp.3360080405

    Article  Google Scholar 

  • Horton P, Jaboyedoff M, Bardou E (2008) Debris flow susceptibility mapping at a regional scale. In: Locat J, Perret D, Turmel D, Demers D, Leroueil S (eds) Proceedings of the 4th Canadian conference on geohazards, Quebec, Canada, 20–24 May, pp 339–406

  • Horton P, Loye A, Jaboyedoff M (2009) Debris flows and avalanches susceptibility hazard mapping for Pakistan—modelling of the two pilot districts Muzaffarabad and Manshera. Technical report, Faculty of Geosciences and Environment, Institute of Geomatics and Risk Analysis, University of Lausanne, Switzerland

  • Horton P, Jaboyedoff M, Zimmermann M, Mazotti B, Longchamp C (2011) Flow-R, a model for debris flow susceptibility mapping at a regional scale—some case studies. In: Proceedings of the 5th international conference on debris-flow hazards mitigation: mechanics, prediction and assessment Padua, Italy 14–17 June, pp 875–884. doi:10.4408/IJEGE.2011-03.B-095

  • Horton P, Jaboyedoff M, Rudaz B, Zimmermann M (2013) Flow-R, a model for susceptibility mapping of debris flows and other gravitational hazards at a regional scale. Nat Hazards Earth Syst Sci 13:869–885. doi:10.5194/nhess-13-869-2013

    Article  Google Scholar 

  • Huang JC, Kao SJ (2006) Optimal estimator for assessing landslide model performance. Hydrol Earth Syst Sci 10:957–965. doi:10.5194/hess-10-957-2006

    Article  Google Scholar 

  • Huggel C, Kaab A, Haeberli W, Teysseire P, Paul F (2002) Remote sensing based assessment of hazards from glacier lake outbursts: a case study in the Swiss Alps. Can Geotech J 39(2):316–330

    Article  Google Scholar 

  • Hungr O, Morgan GC, Kellerhals R (1984) Quantitative analysis of debris torrent hazards for design of remedial measures. Can Geotech J 21:663–677. doi:10.1139/t84-073

    Article  Google Scholar 

  • Hutchinson JN (1995) Keynote paper: landslide hazard assessment, In: Bell DH (ed) Landslides. Balkema, Rotterdam, pp 1805–1841

  • Iverson RM, Reid ME, LaHusen RG (1997) Debris-flow mobilization from landslides. Annu Rev Earth Planet Sci 25:85–138

    Article  Google Scholar 

  • Johnson AM (1984) Debris flow. In: Brunsden D, Prior DB (eds) Slope instability. Wiley, New York, pp 257–361

    Google Scholar 

  • Kappes MS, Malet JP, Remaître A, Horton P, Jaboyedoff M, Bell R (2011) Assessment of debris-flow susceptibility at medium-scale in the Barcelonnette Basin, France. Nat Hazards Earth Syst Sci 11:627–641

    Article  Google Scholar 

  • Kappes MS, Gruber K, Frigerio S, Bell R, Keiler M, Glade T (2012) The MultiRISK platform: the technical concept and application of a regional-scale multihazard exposure analysis tool. Geomorphology 151–152:139–155. doi:10.1016/j.geomorph.2012.01.024

    Article  Google Scholar 

  • Kim J, Jeong S, Park S, Sharma J (2004) Influence of rainfall-induced wetting on the stability of slopes in weathered soils. Eng Geol 75:251–262

    Article  Google Scholar 

  • Kim SW, Lee JH, Chun KW (2008) Recent increases in sediment disasters in response to climate change and land use, and the role of watershed management strategies in Korea. Int J Eros Control Eng 1(2):44–53

    Article  Google Scholar 

  • Kim D, Im S, Lee SH, Hong Y, Cha KS (2010) Predicting the rainfall-triggered landslides in a forested mountain region using TRIGRS model. J Mt Sci 7:83–91

    Article  Google Scholar 

  • Kirkby MJ (1975) Hydrograph modelling strategies. In: Peel R, Chisholm M, Haggett P (eds) Process in physical and human geography. Heinemann, London

    Google Scholar 

  • Korean Geotechnical Society (2011) Research contract report: addition and complement causes survey of Mt. Woomyeon landslide. Korean Geotechnical Society, 268 pp

  • Korean Society of Civil Engineers (2012) Research contract report: causes survey and restoration work of Mt. Woomyeon landslide. Korean Society of Civil Engineers, 435 pp

  • Lari S, Frattini P, Crosta GB, Jaboyedoff M, Horton P (2011a) Rockfall and debris flow societal and economic risk assessment at the regional scale. In: Acts 10th World Water Day, Accademia Nazionale dei Lincei, Rome, 22 Mar 2010, Atti dei Convegni Lincei, pp 179–187

  • Lari S, Crosta GB, Frattini P, Horton P, Jaboyedoff M (2011b) Regional-scale debris-flow risk assessment for an alpine valley. In: 5th international conference on debris-flow hazards mitigation, Padua, Italy, Italian Journal of Engineering Geology and Environment, pp 933–940. doi:10.4408/IJEGE.2011-03.B-101

  • Lee S, Ryu JH, Kim IS (2007) Landslide susceptibility analysis and its verification using likelihood ratio, logistic regression, and artificial neural network models: case study of Youngin, Korea. Landslides 4:327–338

    Article  Google Scholar 

  • Liao Z, Hong Y, Kirschbaum D, Adler RF, Gourley JJ, Wooten R (2011) Evaluation of TRIGRS (transient rainfall infiltration and grid-based regional slope-stability analysis)’s predictive skill for hurricane-triggered landslides: a case study in Macon County, North Carolina. Nat Hazards 58:325–339

    Article  Google Scholar 

  • Liu CN, Wu CC (2008) Mapping susceptibility of rainfall triggered shallow landslides using a probabilistic approach. Environ Geol 55:907–915

    Article  Google Scholar 

  • Montgomery DR, Dietrich WE (1989) Source areas, drainage density, and channel initiation. Water Resour Res 25:1907–1918

    Article  Google Scholar 

  • Montgomery DR, Dietrich WE (1994) A physically based model for the topographic control on shallow landsliding. Water Resour Res 30:1153–1171

    Article  Google Scholar 

  • Moore ID, Grayson RB, Ladson AR (1991) Digital terrain modeling: a review of hydrological, geomorphological, and biological applications. Hydrol Process 5:3–30

    Article  Google Scholar 

  • National Forestry Cooperative Federation (2011) Official archive for restoration work of Mt. Woomyeon landslide. National Forestry Cooperative Federation, Seoul

    Google Scholar 

  • Nefeslioglu HA, Sezer E, Gokceoglu C, Bozkir AS, Duman TY (2010) Assessment of landslide susceptibility by decision trees in the metropolitan area of Istanbul, Turkey. Math Probl Eng. doi:10.1155/2010/901095

    Google Scholar 

  • O’Callaghan JF, Mark DM (1984) The extraction of drainage networks from digital elevation data. Comput Vis Graph 28(3):323–344. doi:10.1016/S0734-189X(84)80011-0

    Article  Google Scholar 

  • Pachauri AK, Pant M (1992) Landslide hazard mapping based on geological attributes. Eng Geol 32:81–100

    Article  Google Scholar 

  • Park DW, Nikhil NV, Lee SR (2013) Landslide and debris flow susceptibility zonation using TRIGRS for the 2011 Seoul landslide event. Nat Hazards Earth Syst Sci 13:2833–2849

    Article  Google Scholar 

  • Pereira S, Zezere JL, Bateira C (2012) Technical Note: assessing predictive capacity and conditional independence of landslide predisposing factors for shallow landslide susceptibility models. Nat Hazards Earth Syst Sci 12:979–988. doi:10.5194/nhess-12-979-2012

    Article  Google Scholar 

  • Perla R, Cheng TT, McClung DM (1980) A two-parameter model of snow-avalanche motion. J Glaciol 26(94):197–207

    Google Scholar 

  • Prochaska AB, Santi PM, Higgins J, Cannon SH (2008) Debris-flow runout predictions based on the average channel slope (ACS). Eng Geol 98:29–40

    Article  Google Scholar 

  • Quinn P, Beven K, Chevallier P, Planchon O (1991) The prediction of hillslope flow paths for distributed hydrological modeling using digital terrain models. Hydrol Process 5:59–80

    Article  Google Scholar 

  • Quinn P, Beven K, Lamb R (1995) The in(a/tanβ) index: how to calculate it and how to use it within the topmodel framework. Hydrol Process 9:161–182. doi:10.1002/hyp.3360090204

    Article  Google Scholar 

  • Rickenmann D, Zimmermann M (1993) The 1987 debris flows in Switzerland: documentation and analysis. Geomorphology 8:175–189. doi:10.1016/0169-555X(93)90036-2

    Article  Google Scholar 

  • Safaei M, Omar H, Huat BK, Yousof ZBM, Ghiasi V (2011) Deterministic rainfall induced landslide approaches, advantage and limitation. Electron J Geotech Eng 16:1619–1650

    Google Scholar 

  • Salciarini D, Godt JW, Savage WZ, Baum RL, Conversini P (2008) Modeling landslide recurrence in Seattle, Washington, USA. Eng Geol 102:227–237

    Article  Google Scholar 

  • Seibert J, McGlynn BL (2007) A new triangular multiple flow direction algorithm for computing upslope areas from gridded digital elevation models. Water Resour Res 43:W04501. doi:10.1029/2006WR005128

    Google Scholar 

  • Sorbino G, Sica C, Cascini L (2010) Susceptibility analysis of shallow landslides source areas using physically based models. Nat Hazards 53:313–332

    Article  Google Scholar 

  • Takahashi T (1978) Mechanical characteristics of debris flow. J Hydraul Div 104(8):1153–1169

    Google Scholar 

  • Takahashi T (1981) Estimation of potential debris flows and their hazardous zones: soft countermeasures for a disaster. Nat Disaster Sci 3(1):57–89

    Google Scholar 

  • Tarboton DG (1997) A new method for the determination of flow directions and contributing areas in grid digital elevation models. Water Resour Res 33(2):309–319

    Article  Google Scholar 

  • Vieira BC, Fernandes NF, Filho OA (2010) Shallow landslide prediction in the Serra do Mar, São Paulo, Brazil. Nat Hazards Earth Syst Sci 10:1829–1837. doi:10.5194/nhess-10-1829-2010

    Article  Google Scholar 

  • Wang C, Marui H, Furuya G, Watanabe N (2013) Two integrated models simulating dynamic process of landslide using GIS. Landslide Sci Pract 3:389–395

    Article  Google Scholar 

  • Westen VCJ, Seijmonsbergen AC, Mantovani F (1999) Comparing landslide hazard maps. Nat Hazards 20:137–158

    Article  Google Scholar 

  • Wieczorek GF, Mandrone G, DeCola L (1997) The influence of hillslope shape on debris-flow initiation. In: ASCE first international conference water resources engineering division, San Francisco, pp 21–31

  • Wilson JP, Gallant JC (2000) Digital terrain analysis. In: Wilson JP, Gallant JC (eds) Terrain analysis. Wiley, New York, pp 1–27

    Google Scholar 

  • Wood EF, Sivapalan M, Beven KJ (1990) Similarity and scale catchment storm response. Rev Geophys 28:1–18

    Article  Google Scholar 

  • Xu W, Yu W, Jing S, Zhang G, Huang J (2013) Debris flow susceptibility assessment by GIS and information value model in a large-scale region, Sichuan Province (China). Nat Hazards 65:1379–1392

    Article  Google Scholar 

  • Zhang W, Montgomery D (1994) Digital elevation model grid size, landscape representation, and hydrologic simulations. Water Resour Res 30:1019–1028. doi:10.1029/93WR03553

    Article  Google Scholar 

  • Zimmermann M, Mani P, Gamma P (1997) Murganggefahr und Klimaanderung—ein GIS-basierter Ansatz. NFP 31 Schlussbericht, Hochschulverlag an der ETH, Zurich (in German)

  • Zonghu LYH, Kirschbaum D, Adler RF, Gourley JJ, Wooten R (2011) Evaluation of TRIGRS (transient rainfall infiltration and grid-based regional slope-stability analysis)’s predictive skill for hurricane-triggered landslides: a case study in Macon County, North Carolina. Nat Hazards 58:325–339. doi:10.1007/s11069-010-9670-y

    Article  Google Scholar 

Download references

Acknowledgment

This study was supported by the National Research Foundation of Korea under the Ministry of Education, Science, and Technology (under Grant No. 2012M3A2A1050974).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. R. Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, D.W., Lee, S.R., Vasu, N.N. et al. Coupled model for simulation of landslides and debris flows at local scale. Nat Hazards 81, 1653–1682 (2016). https://doi.org/10.1007/s11069-016-2150-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-016-2150-2

Keywords

Navigation