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Abstract In quantitative risk assessment, risk is expressed as a function of hazard, ele-

ments at risk exposed, and vulnerability. Vulnerability is defined as the expected degree of

loss for an element at risk as a consequence of a certain event, following a natural-scientific

approach combined with economic methods of loss appraisal. The resulting value ranges

from 0 (no damage) to 1 (complete destruction). With respect to torrent processes, i.e.,

fluvial sediment transport, this concept of vulnerability—though widely acknowledged—

did not result in sound quantitative relationships between process intensities and associated

degrees of loss so far, even if considerable loss occurred during recent years. To close this

gap and establish this relationship, data from three well-documented torrent events in the

Austrian Alps were used to derive a quantitative vulnerability function applicable to res-

idential buildings located on torrent fans. The method applied followed a spatially explicit

empirical approach within a GIS environment and was based on process intensities, the

spatial characteristics of elements at risk, and average reconstruction values on a local

scale. Additionally, loss data were collected from responsible administrative bodies and

analysed on an object level. The results suggest a modified Weibull distribution to fit best

to the observed damage pattern if intensity is quantified in absolute values, and a modified

Frechet distribution if intensity is quantified relatively in relation to the individual building

height. Additionally, uncertainties resulting from such an empirical approach were studied;

in relation to the data quality a 90% confidence band was found to represent the data range

appropriately. The vulnerability relationship obtained allows for an enhanced quantifica-

tion of torrent risk, but also for an inclusion in comprehensive vulnerability models

including physical, social, economic, and institutional vulnerability. As a result, vulnera-

bility to mountain hazards might decrease in the future.
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1 Introduction

During the last decades, an increase in land-use activity could be observed in European

mountain regions. Taking the Republic of Austria as an example, settlements have been

expanded, leading to extensive land consumption and associated population growth. Since

the 1970s, the average useable living space increased from 22 m2 per person in 1972 to

38 m2 in 2001 (Statistik Austria 2004). As a major part of Austria is located in mountain

areas above 1,000 m a.s.l. (this is approximately 36% of the territory, and approximately

19% of it is located above 1,500 m a.s.l.), areas appropriate for permanent settlement are

limited (Holub and Fuchs 2009). In the entire country, 37.2% of the land area is suitable for

permanent settlement and associated economic activities, while in some Federal States, the

values remain noticeably below one-third of the area. Due to this scarcity, land-use

activities have repeatedly been extended into areas, which are endangered by natural

hazards such as mass movements, torrent processes, and avalanches. As a consequence,

property values prone to these processes increased accordingly (Fuchs et al. 2005; Keiler

et al. 2006a).

Until now, only few studies addressed the development of natural hazard events and

associated losses in alpine countries. These studies were mostly focused on distinct events

or reference periods, not on assessing the topic from a broader point of view by compiling

a comprehensive database, e.g., SLF (2000), Nöthiger et al. (2002), Fuchs and Bründl

(2005), and Hilker et al. (2009) for Switzerland, as well as Embleton-Hamann (1997), Fliri

(1998), Luzian (2002), and Oberndorfer et al. (2007) for Austria. Though, with respect to

the concept of integral risk management, such information is required in order to be able to

plan and implement sustainable mitigation strategies. Sustainable mitigation strategies, as

outlined by Holub and Fuchs (2009) in more detail, have to be pillared on a complementary

multiplicity of risk treatment options acting upon the maxim of cost efficiency in relation

to the targeted expenditures and the aspired decrease in risk. Given the significance of

these expenditures, risk-based appraisal of the costs and benefits (in terms of risk reduc-

tion) of major capital works is now customary in many alpine countries (e.g., Haering et al.

2002; BMLFUW 2005), although vulnerability assessment and partly hazard analysis is

still in need of improvement.

In Austria, two comprehensive databases on torrent events exist. A database of

destructive torrent events was established on the basis of information from the Austrian

Torrent and Avalanche Control Service1 and analysed concerning monetary losses by

Oberndorfer et al. (2007). A total number of 4,894 damaging torrent events were reported

between 1972 and 2004. For almost 4,300 events, the process type could be determined

ex-post due to the event documentation carried out by the Austrian Torrent and Avalanche

Control Service. This resulted in a classification between floods (0.3%), flooding with

bedload transport (21.8%), hyperconcentrated flows (49.2%), and debris flows (28.7%).

The average direct loss per event due to these 4,300 records amounted to approximately

€ 170,000 (in 2009 values), and annual losses due to torrent events amounted to around

€ 25 million. Approximately two-thirds of the losses could be ascribed to buildings and

one-third to infrastructure facilities (Fuchs 2009). Within the period under investigation,

21 people were physically harmed and 49 people died. The annual distribution of the losses

showed that considerable cumulative damage exceeding € 1 million per event occurred in

1975, 1978 and 1991. In contrast, in 1976 and 1984, the average damage per event summed

1 The Austrian Torrent and Avalanche Control Service is a federal institution operating throughout Austria
to protect the population from torrent hazards and other mountain hazards (Republik Österreich 1975).
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up to € 11,000 and € 16,000, respectively. A considerable number of events were reported

from 1974, 1990 and 2002, leading to the conclusion that a high number of events do not

necessarily result in high losses, and vice versa.

A second database was derived from a reanalysis of written reports, which were

compiled during the implementation of hazard maps by the Austrian Torrent and Ava-

lanche Control Service and completed by the integration of additional historical sources

(Hübl et al. 2010). The analysis of these data had shown a decreasing trend related to the

overall number, which was exceeding twice the number of the database analysed by

Oberndorfer et al. (2007) [N = 11,185; annual mean = 186]. However, considerable

events were observed in individual years, in particular, in the western part of Austria (see

Fig. 1). An above-average number of events were reported from 1959, 1965, 1966, 1975,

1991, 2002 and 2005.

Obviously, the two data sets show some similarities and some differences even if they

theoretically root in the same set of data. Despite these databases, which are not consistent

if compared to each other, and besides many national and European efforts to reduce

natural hazard impact on society (Commission of the European Communities 2007),

considerable damage has still occurred in recent years in European mountain regions.

Particularly in the 1990s, substantial damage occurred all over the Alps due to avalanches

(winter 1998/1999), torrent processes (1999, 2002, 2005) and inundation (2002, 2005,

2006), even though the overall amount of losses was moderate compared to previous

decades. Consequently, greater availability of information of natural hazard occurrence on

a scientific basis but also due to broader media coverage resulted in an increase in hazard

awareness on a societal level, in particular due to a perceived increase in property damage

and fatalities. As a result, the general public progressively more realised—also on the

political level—that a complete protection against natural hazards is neither socially

affordable nor economically justifiable (cf. Fuchs and McAlpin 2005). People and political

decision-makers have become more and more aware of the impacts resulting from hazards

and thus in some Alpine countries a paradigm shift from hazard reduction to a risk culture

has been initiated (e.g., by political action, cf. PLANAT 2004 in response to Nationalrat

2000).

The shift from hazard to risk obviously requires a completely different approach with

respect to necessary management issues. The concept of risk, defined as a function of

hazard and consequences, seems to be a suitable and promising approach with respect to

these needs. Despite the comprehensive experiences that have been made by applying the

concept of risk to mountain hazard management, in particular in Switzerland (Kienholz

1994; Hollenstein 1995; Heinimann 1998), considerable questions with respect to the

methods developed for an operational implementation of the risk concept still remain

open.

The review of the concept of risk of alpine countries resulted in gaps concerning

appropriate tools for the assessment of vulnerability of elements at risk and of communities

exposed. To overcome these shortcomings, studies on vulnerability have been undertaken

aiming at (1) the methodological development of loss functions with respect to build-

ings located in the run-out areas of torrent processes (Fuchs et al. 2007a); and (2) the

conceptualisation of an overarching vulnerability model including structural, economic,

social and institutional vulnerability (Fuchs 2009).

Focusing on the first, and expanding previous results published by Fuchs et al. (2007a),

data related to losses originating from three torrents in Austria were analysed with respect

to process intensities and the elements at risk exposed. The study followed a spatial

approach and focused on the implementation of a vulnerability function in order to
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improve hazard and risk assessment for alpine torrents. A spatial approach is thereby

understood as a spatially explicit determination of the involved variables using a GIS

environment.
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Fig. 1 Data related to torrent events collected from the reports which were compiled during the
implementation of hazard maps by the Austrian Torrent and Avalanche Control Service for the period
1950–2009 (illustrated on a district level). Even if a spatial concentration of events can be proven for the
western part of Austria, the overall trend is decreasing, which is in line with studies by Oberndorfer et al.
(2007) although their studies were based on another universal set of data. With respect to avalanches, an
equivalent decrease was reported by Fuchs and Bründl (2005) for the western part of Switzerland (Data
source: Institute of Mountain Risk Engineering, University of Natural Resources and Life Sciences, Vienna)
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2 Methodology

Vulnerability functions are developed to link the susceptibility of elements at risk to the

magnitude of the respective hazardous processes and are used within integral risk man-

agement to quantitatively assess individual and collective risk.

For torrent processes, mainly qualitative and semi-quantitative methods are available so

far for the quantification of vulnerability towards debris flow processes, for an overview

compare Fuchs et al. (2007a). Due to these shortcomings, Fuchs et al. (2007a) developed a

quantitative vulnerability function for alpine debris flows in Austria, which was applied by

Akbas et al. (2009) using data from the Italian Alps and by Tsao et al. (2010) using data

from Taiwan. However, only little information is available until now with respect to other

torrent processes, particularly fluvial sediment transport, even if considerable amounts of

damage can be ascribed to this process type. Hence, the overall objective of this study was

to provide such data in order to compile comprehensive information on physical vulner-

ability of elements at risk located on alpine torrent fans.

2.1 Fluvial sediment transport

In a European context, the term torrent refers to steep rivers within a mountainous envi-

ronment. Torrents are defined as constantly or temporarily flowing watercourses with

strongly changing perennial or intermittent discharge and flow conditions (Aulitzky 1980;

ONR 2009), originating within small catchment areas (Slaymaker 1988). Catchment

characteristics, such as watershed area and longitudinal slope, are alternatively used to

define torrents, whereas the delimitation criteria are often not as clear. While some authors

refer only to the area of the watershed for a delimitation of torrents from other types of

linear watercourses, others additionally include information on the longitudinal slope (see

Table 1).

Torrent events include a process group, which shows a variety of different flow char-

acteristics including discharge composed from pure water run-off, discharge with variable

sediment concentration and debris flows (Costa 1984). Therefore, the major characteristics

of the respective events in the different test sites have to be defined. The sediment con-

centration is employed in conventional engineering approaches to distinguish between

different processes, although the use of one individual parameter as a decision rule is

reported to be insufficient (Costa 1984). However, Hungr et al. (2001) recommend peak

discharge as a reliable criterion to differentiate between different process types, i.e., debris

flows and debris floods.

While debris floods are usually associated with considerable transport of coarse sedi-

ment, hyperconcentrated flows, partly used as a synonym for debris floods (Costa 1984,

1988), are characterised by larger amounts of fine sediment in suspension (Scheidl and

Table 1 Definition of torrents
based on implicit (§) and explicit
(r) classification

Source Watershed
area (km2)

Longitudinal
slope (%)

Aulitzky (1980) § \100 –

Rickenmann and Zimmermann (1993) r \22 [19

Marchi and Brochot (2000) r \20–30 –

Marchi and D’Agostino (2004) r \35 [10

Rickenmann et al. (2008) § \25 [5–10
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Rickenmann 2010). A sediment concentration of 70% by weight (47% by volume) as a

threshold between hyperconcentrated flows and debris flows is suggested (Costa 1988). In

this study, the understanding of the terms debris flow and debris flood is based on the

classification presented by Hungr et al. (2001): While debris floods typically produce

relatively thin, wide sheets of material, debris flows produce thicker, more hummocky and

lobate depositions.

Fluvial sediment transport, in contrast, also referred to as water floods (Costa 1988) or

sediment-laden flow (Wan and Wang 1994), is characterised by a lower sediment con-

centration than debris floods (Scheidl and Rickenmann 2010). A sediment concentration of

40% by weight (20% by volume) as a threshold between fluvial sediment transport and

hyperconcentrated flows is suggested (Costa 1988). Within fluvial sediment transport

processes, sediment and water are moving with different velocities as two distinct and

separate phases (Costa 1988). During one individual event, the respective processes in the

torrent often change due to the temporal and spatial variability of sediment concentration.

As a result, the dominant process in the central part of the deposition zone should be used

to define the entire event characteristics (Hungr et al. 2001). However, sediment con-

centration (Costa 1984, 1988) and peak discharge (Hungr et al. 2001) cannot be determined

for historical events, nor are such characteristics widely used in recent event documen-

tations. Due to this lack of data, an alternative procedure to determine the general pre-

disposition of a catchment to a certain torrent process was applied. This approach is based

on a relation between the Melton number ME and the average fan slope Sf (Bardou 2002),

see Fig. 2. The Melton number ME resulted from a combination of maximum elevation

difference in a catchment divided by the square root of the catchment area according to

Melton’s ruggedness number (Melton 1965) and represents a relative and dimensionless
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Fig. 2 Relation between average fan slope and Melton number of the three test sites in comparison with
results from the literature indicated. Threshold line A separates fluvial sediment transport processes from
mixed processes, and threshold line B separates mixed processes from debris flows. The following
abbreviations were used: DF debris flow, DFL debris flood and FST fluvial sediment transport, ME Melton
number, Sf average fan slope (modified from Scheidl and Rickenmann 2010)
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parameter for the basin relief. Two threshold lines were proposed to distinguish between

different torrent processes (Fig. 2). By threshold line A fluvial sediment transport processes

are separated from mixed processes, and by threshold line B mixed processes are separated

from debris flows (Bardou 2002; Scheidl and Rickenmann 2010).2 A Melton number below

0.3 is typical for watersheds dominated by fluvial sediment transport (Wilford et al. 2004).

It is shown in Fig. 2 that two test sites (Vorderbergerbach and Stubenbach, see Sect. 2.2)

are situated within or close to the area of fluvial sediment transport processes. Simulta-

neously, the Melton number of these two test sites is below or close to 0.3, which is a

further indication for a general predisposition of these catchments towards fluvial sediment

transport processes. As indicated in Fig. 2, the Schnannerbach torrent is situated in the area

of mixed transport processes.

2.2 Test sites

Event data of three Austrian torrent catchments were included in this study. To be

applicable for this study, the test sites had to fulfil the following requirements: (1) well-

documented events; (2) incurring damage on dwelling houses caused by fluvial sediment

transport processes; and (3) damage quantitatively registered in terms of monetary loss.

The selected catchments are situated in the western and southern parts of the Republic of

Austria in the provinces of Tyrol and Carinthia (Fig. 3). The general morphometric

parameters of the catchments are given in Table 2.

The Vorderbergerbach torrent is located in southern Austria in the province of Carinthia

close to the city of Hermagor. The basin is part of the northern Carnic Alps, which

represent the border to Italy. Lithologically, the basin comprises mainly limestone of local

type (Eder chalk) and Ordovician shale. The upper parts of the catchment are covered by

glacial deposits from the Wurmian glaciation, whereas the lower parts are characterised by

Quaternary deposition of unconsolidated sediment (Hübl et al. 2004). Fluvial sediment

transport processes are predominant in this watershed. The torrent Vorderbergerbach

discharges within the municipality of Sankt Stefan into the Gail river. Although a number

of damaging torrent events are recorded in the event registry (Hübl et al. 2004), the event

of 29 August 2003 was used for this study due to the availability of respective data.

The Stubenbach torrent is situated in the western part of Austria in the province of Tyrol

close to the Swiss border. The basin is part of the Samnaun mountain range. Geologically,

the basin is located within the Engadin window, a Mesozoic ocean basin, which was lifted

and then over-thrusted by older layers (Silvretta and Ötztal layer). The dominant lithology

of the basin comprises several local types of shale with interbedded strata of quartzites

(BMLFUW 2006). The torrent Stubenbach, characterised by fluvial sediment transport

processes and debris floods, is a tributary of the Inn river. The fan is located in the

municipality of Pfunds, where several damaging torrent events are recorded in the event

registry since 1831. The well-documented event of 22 August 2005 was used for this

analysis (Fig. 4).

The Schnannerbach torrent is located in the western part of Austria in the province of

Tyrol close to the city of Landeck. The basin is part of the Lechtaler Alps. The lithology of

the Lechtaler Alps comprises mainly limestone, dolomite, marl, shale and sandstone.

2 Apart from combining the Melton number with the average fan slope, alternative empirical combinations
of the Melton number with watershed length or relief ratio (watershed relief divided by watershed length)
were used to differentiate between catchments prone to fluvial sediment transport, debris flood and debris
flow (Wilford et al. 2004).
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The headwater of the torrent consists of several small creeks, and the sediment transported

downstream originates from large talus cones in the upper part of the catchment. The

middle reaches of the Schnannerbach torrent are characterised by a gorge cut into bedrock,

and the torrent discharges via its own fan into the Rosanna river (BMLFUW 2006; Hübl

et al. 2006). The fan is located in the municipality of Pettneu am Arlberg, where several

damaging torrent events are recorded since 1852. For this study, the event of 22 August

2005 was chosen.

Fluvial sediment transport was found to be the dominant process in the accumulation

area of the considered events. The low sediment concentration and the typical two-phase

regime observed proved this process classification. Using the Melton number and a relation

between Melton number and the average fan slope, a general predisposition of the

Vorderbergerbach torrent and the Stubenbach torrent towards fluvial sediment transport

processes is evident (Fig. 2). Although the Schnannerbach torrent generally tends to debris

floods (Fig. 2), the low sediment availability of the considered event resulted in a fluvial

sediment transport process (Hübl et al. 2006). The back-calculated sediment concentration

based on water and sediment volume of this event is equal to approximately 2% (Chiari

and Rickenmann 2007).

Fig. 3 Location of the test sites in the Austrian Alps, indicated by red dots. Layers comprising
administrative bodies and shaded relief provided by Environmental Systems Research Institute, Inc. (ESRI)

Table 2 General morphometric
parameters of the catchments
including Melton number and
average fan slope

Test site Catchment
area (km2)

Range in
elevation (m)

Melton
number

Average fan
slope (%)

Stubenbach 29.5 1,011–3,035 0.37 0.10

Schnannerbach 6.6 1,240–2,889 0.64 0.13

Vorderbergerbach 25.3 588–2,052 0.29 0.03
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2.3 Quantification of vulnerability

Following the axiom that natural hazard risk is a function of hazard and consequences, the

ability to determine vulnerability either quantitatively or qualitatively is an essential

prerequisite for reducing these consequences and therefore natural hazard risk. The

assessment of vulnerability requires an ability to both identify and understand the sus-

ceptibility of elements at risk and—in a broader sense—of the society to these hazards

(Birkmann 2006). Studies related to vulnerability of human and natural systems to

mountain hazards, and of the ability of these systems to adapt to changes in the functional

chain of hazards, are a relatively recent field of research that brings together experts from a

wide range of disciplines, including natural science, social science, disaster management,

policy development and economics, to name only a few. Researchers from these fields

bring their own conceptual models to study vulnerability and adaptation, models which

often address similar problems and processes using different languages (Brooks 2003).

However, apart from the overall discussion on linguistic placements and semantic

dimensions of the term (Cutter 1996, 2003; Alexander 2005), vulnerability in the context

of mountain natural hazards in Europe is, from a practitioner’s side such as the Austrian

Torrent and Avalanche Control Service, usually defined as the physical impact of haz-

ardous events on elements at risk. Accordingly, if quantitatively assessed, vulnerability is

defined as the expected degree of loss for an element at risk due to the impact of a defined

hazardous event within a defined period of time and a defined location. These events are

themselves conditioned by a certain intensity, frequency and duration, all of which affect

vulnerability. From this technical point of view, as a general rule, vulnerability assessment

Fig. 4 The event of 22 August 2005 at the Stubenbach torrent in the municipality of Pfunds (courtesy of
ASI Tirol)
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is based on the evaluation of parameters and factors such as building categories or types,

construction materials and techniques, state of maintenance, presence of protection

structures and presence of warning systems (Fell et al. 2008). For this reason, vulnerability

values describe the susceptibility of elements at risk to damage, which is conceptualised by

a damage ratio between loss and the value of affected elements at risk, facing different

process types with different spatial and temporal distributions of process intensities (e.g.,

flow depths, accumulation heights, flow velocities and pressures).

The damage ratio was quantified using an economic approach by establishing a ratio

between the loss and the reconstruction value of every individual element at risk exposed.

In a second set of calculations, this ratio obtained for every individual element at risk was

attributed to the respective process intensities. The relation between damage ratio and

process intensity was defined as vulnerability. Therefore, information on the elements at

risk exposed on the individual torrent fans was necessary, as well as data on the process

intensities of the particular hazardous events. As a result, scatterplots were developed

linking process intensities to object vulnerability values. These data were analysed using

regression approaches in order to develop vulnerability functions, which served as a proxy

for the structural resistance of buildings with respect to fluvial sediment transport processes

on the fan of torrents.

2.3.1 Elements at risk

Elements at risk were defined as those dwelling houses of the settlements, which were

located on the individual torrent fans. These were analysed in a spatially explicit way by

using GIS. Following suggestions outlined in Kranewitter (2002) as well as Keiler et al.

(2006b), values at risk were obtained by assigning values to these buildings; therefore, the

reconstruction value was calculated for every individual element at risk within this study.

This neglected any risk-dependent changes in the demand within the real estate market

(Fuchs et al. 2007a). Furthermore, this value serves as a basis for the expressed preferences

of the societal accepted value of protection against natural hazards in Austria (Fuchs et al.

2007b). The sets of calculation were based on the building size, and an average value

applied by Austrian building insurers of € 1,670 per square metre was used as a basis for

calculation. The building size was derived from digital cadastral maps (scale 1:1,000),

which were provided by the respective local community administration. As the spatial

quality and temporal actuality of the cadastral maps was found to be variable, particularly

with respect to the number of storeys, the building height and the use of individual storeys

as well as their state of repair, these data were updated by the interpretation of multi-

temporal aerial photographs as well as field studies. The prices finally obtained represent

reconstruction values of the individual buildings. Since residential property in the ground

floor and in the first floor is more expensive than in cellars and attics, Eq. 1 was developed

to take into account these differences accordingly. Furthermore, Eq. 1 acknowledges that

due to the volume of interior walls the usable area for living has to be reduced by 10%.

V ¼ 0:9 � AfUA þ UC þ nS½ULð1� rÞ�g ð1Þ

where V = value of the building; A = area of the building; nS = number of storeys;

U = unit price; r = reduction factor for state of maintenance and interior conditions; the

indices L, A and C stand for living space, attic and cellar.

Loss data were collected using information derived from the individual administrative

bodies on the Austrian Länder level. Professional damage appraisers of these administrative
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bodies estimated the loss of any individual element at risk in monetary terms on an object

level. Losses which can be attributed to the building envelope only were identified and

prepared for the subsequent analysis. These monetary loss assessments were applied within

this study for the calculation of the damage ratio of every individual element at risk, defined

by the ratio between loss and reconstruction value.

2.3.2 Process intensity

The intensity of a process defines the impact and the effect on an element at risk, whereas

in contrast the process magnitude is a measure for the size of the process (e.g., sediment

volume). Since process magnitudes are often not directly measured during an event, the

intensity is used instead in order to classify the size of a hazard. It is widely acknowledged

that different processes and different process intensities lead to different vulnerabilities due

to a different physical impact on the elements at risk. Depending on the natural phe-

nomenon, different parameters are applicable for the development of vulnerability-inten-

sity relationships, such as impact pressures and flow velocities.

The process characteristics of the studied events were determined by using information

derived from process documentations, i.e., a documentation of deposition heights and flow

depths. These documentations are regularly carried out subsequently after individual

events by the Austrian Torrent and Avalanche Control Service. As a result, deposition

heights were assigned to individual buildings in terms of a proxy for respective process

intensities. The data set was supplemented by the analysis of data obtained from a nearest

neighbourhood interpolation carried out in a GIS environment for those buildings that were

not directly assessed during the field campaigns of the Austrian Torrent and Avalanche

Control Service.

With respect to the derived process intensities, two complementary sets of calculation

were subsequently carried out. First, the deposition height as an absolute intensity per

building was used to attribute loss heights, which followed an approach recently outlined in

Fuchs et al. (2007a) with respect to debris flows. Secondly, a relative intensity was cal-

culated based on the observation that the cellar and ground floor of any exposed building is

more susceptible to torrent processes than any other storey including the attic. Conse-

quently, the vulnerability of large buildings would be over-estimated, and the vulnerability

of small buildings would be under-estimated if the intensities were rated based on an

absolute value, in particular for medium process intensities. Therefore, a normalised rel-

ative intensity IR was introduced, composed from a ratio between the deposition height

I and the height of the affected building H (see Eq. 2).

IR ¼
I

H
ð2Þ

2.3.3 Loss functions

The derived scatterplots for vulnerability values, linking process intensities to individual

degrees of loss, were analysed using regression approaches in order to develop vulnera-

bility functions. The distributions had to comply with the mathematical requirements of:

• defining vulnerability as the depending variable in a both-sided confined interval [0;1];

• steady and monotonic increasing within the interval of its explaining variable

(intensity);

• steadiness with respect to higher orders within the defined interval; and
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• definition of its explaining variable either in a both-sided unconfined interval

(-?; ??) or in a left-sided confined interval [0; ??).

Theoretically, an infinite set of distributions would be possible to meet these require-

ments. An extensive description of available approaches and distributions is given in Plate

(1993). Approaches used in extreme value statistics were considered; these were the

Gumbel, Frechet, and Weibull distribution. Additionally, an exponential and a logistic

distribution were tested. These distributions have the following characteristics: steadiness,

a steady derivation is possible also in higher orders, and the dependent variable ranges in a

both-sided confined interval [0;1]. At the same time, the explaining variable can range in a

both-sided unconfined interval (-?; ??) or in a left-sided confined interval [0; ??). In

Table 3, possible distributions are summarised and their characteristics are outlined.

The interval of the explaining variable of the functional approaches presented in

Table 3 is generally defined as a both-sided unconfined interval (-?; ??), apart from the

Frechet distribution, which shows a left-sided confined interval [0; ??). As the intensity

of any vulnerability function ranges from 0 to theoretically ??, the functional approaches

of Table 3 had to be modified to fit to the left-sided confined interval [0; ??) of the

explaining variable (intensity). Additionally, to introduce further parameters, a shift was

inserted and scaled to fit in the left-sided confined interval [0; ??). This mathematical

operation increased the number of unknown and fittable parameters, which allowed a better

fitting of the chosen approaches to the given data. Theoretically, an approach containing an

infinite number of parameters will return the best-fitting function because the vector of

unknown parameters can be optimised to maximise the coefficient of determination. The

modified distributions, which were used in this study, are compiled in Table 4. To provide

proper mathematical theory and to achieve better applicable functions for the modified

Weibull distribution and the modified Frechet distribution, the number of unknown

parameters was limited to a maximum of three parameters.

The distributions shown in Table 4 were used for a parameter estimation procedure of

the data. The used procedure of regression analysis and parameter estimation followed an

approach in statistic analysis of extreme values and rare events (Plate 1993). As all the

functions fulfil the necessary preconditions, the choice of the best-fitting function was

Table 3 General functional
approaches for regression analy-
sis of vulnerability

Distribution Mathematical
notation

Number of
unknown
parameters

Interval of the
explaining variable

Weibull 1� e�axb 2
a, b

(-?; ??)

Modified
Weibull

1� e�aðx�bÞc 3
a, b, c

(-?; ??)

Exponential 1� e�axþb 2
a, b

(-?; ??)

Gumble e�e�ðx�aÞ 1
a

(-?; ??)

Fisher-
Tippett

e�e
�x�a

b 2
a, b

(-?; ??)

Frechet e�x�a
1
a

[0; ??)

Logistic 1
1þae�bx 2

a, b
(-?; ??)
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made by analysing quantitative factors. Similar to an Analytic Hierarchy Process used for

decision-making procedures or utility analysis (Saaty 1980), different factors were chosen

to determine the applicability of the distributions. The sum of these factors represented a

value of utility. The higher the value of utility of a certain distribution is, the better is the

fitting behaviour of this distribution. The factors chosen were (1) the coefficient of

determination; (2) the maximum upper residual and (3) the maximum lower residual. The

residuals were included in the utility analysis to give consideration to the importance of the

outliers during the parameter estimation procedure. Generally, all quantitative factors are

weighted equally, while within this study more emphasis was given to the coefficient of

determination. Hence, a weighting factor of 0.5 was assigned to the coefficient of deter-

mination, whereas a weighting factor of 0.25 was used both for the upper and for the lower

residuals. The higher the coefficient of determination is, the higher its influence on the

value of utility. The residuals, defined as the difference between the individual data point

and the fitted function value, influence the value of utility in the opposite way. The smaller

the residuals are, the better the applicability of the respective function (see Eq. 3).

U ¼ CD � 0:5þ ð1� RUÞ � 0:25þ ð1� RLj jÞ � 0:25 ð3Þ

where U = value of utility; CD = coefficient of determination; RU = maximum upper

residual and RL = maximum lower residual.

As outlined earlier, relative intensity was introduced in this study as a normalised

parameter. A relative intensity larger than the value of 1 would imply a burying of the

building above the building size, which was excluded in this study due to missing

observations with respect to torrent fans located in the European Alps. Therefore, it was

assumed that the normalised relative intensity does not exceed the value of 1; conse-

quently, the interval of absolute intensity changes from a left-sided confined interval

[0; ??) to a both-sided confined interval [0;1]. The interval of vulnerability [0;1]—as the

dependent variable—remains unchanged. As the distributions presented in Table 4 were

suitable for a left-sided confined interval [0; ??) of the explaining variable, a transfor-

mation was needed if the normalised relative intensity was used. An appropriate method of

transforming a variable defined in a left-sided confined interval [0; ??) into a variable

defined in a both-sided confined interval [0;1] is given by a tangent-transformation

(Bronštejn et al. 2008). By substituting the term x in the distributions shown in Table 4 by

the term tan(x � p/2), these distributions can equally be used for the description of

normalised relative intensities.

Table 4 Modified functional
approaches for regression analy-
sis of vulnerability

As Frechet distributions with
different numbers of parameters
are tested, a numeral suffix is
used to distinguish between them

Distribution Mathematical
notation

Number of
unknown
parameters

Interval of the
explaining
variable

Modified Weibull 1� e�a xþb
b �1ð Þc 3

a, b, c
[0; ??)

Modified exponential 1� e�a xþb
b �1ð Þ 2

a, b
[0; ??)

Modified Frechet no. 1 e�
xþb

b �1ð Þ�a
2
a, b

[0; ??)

Modified Frechet no. 2 e�c xþb
b �1ð Þ�a

3
a, b, c

[0; ??)

Logistic 1

1þ xþa
a �1ð Þ�b 2

a, b
[0; ??)
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2.3.4 Estimation of uncertainty

Confidence bands for different confidence levels are used in regression analysis to show the

uncertainty inherent to regression functions. The confidence bands were calculated by

using a linear transformation approach (Plate 1993). First, the best-fitting function for

absolute as well as relative intensity was converted into a linear form (Eq. 4).

ytrans ¼ atrans � xþ btrans ð4Þ
The parameters atrans and btrans were calculated based on the exponents and factors of

the original regression functions. The values for degree of loss and for intensity (absolute

as well as relative) were transformed into the linear system.

Secondly, by means of these transformed values, intermediate values needed for the

determination of the linear confidence bands (Qx, Qy, Qxy and sxy) were calculated. Con-

fidence bands with different confidence levels (90, 95 and 99%) were calculated based on

quantile values of the t-distribution. The linear confidence bands were based on the fol-

lowing general form (Eq. 5):

yu;l
transðxÞ ¼ atrans � xþ btrans � t1�a

2
;n�2 � sxy �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n
þ ðx� �xtransÞ2

Qx

s

ð5Þ

where ytrans
u,l = upper and lower confidence value of the linear function at the location x;

t = t-distribution value with a level of significance and n degrees of freedom and

�xtrans = arithmetic mean of the transformed intensity value.

Thirdly, the linear confidence bands were transformed back to fit to the original

regression functions. The back-transformation was conducted for absolute intensity by

applying Eq. 6a and, in case of relative intensity, by applying Eq. 6b.

ya
u;lðxÞ ¼ 1� e�e

y
u;l
trans

ðlnxÞ
ð6aÞ

ya
u;lðxÞ ¼ e�e

y
u;l
trans

ln tan x�p
2ð Þð Þð Þ

ð6bÞ

where yu,l
a = upper and lower confidence value of the original regression function at the

location x.

3 Results

In total, 116 buildings were damaged in the three test sites due to the studied events. Since

the focus of this study was on the development of a vulnerability function for residential

buildings, the 67 dwelling houses situated on the individual torrent fans were assessed

(Table 5).

The total damage of the considered houses amounted to approximately € 5.5 million.

The total amount of reconstruction values according to the procedure used by the Austrian

insurance business was equal to € 37.6 million. Due to the different intensities, the severity

of damage varies considerable. The individual loss amounted from € 438 to € 828,240.

Because of different building sizes, the reconstruction values showed a wide range from

about € 221,000 to € 1.34 million. These variations lead to individual vulnerabilities

ranging from 0.001 to 1.0. The mean vulnerability per exposed building is equal to 0.168.
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In Table 6, damage and property values, the range of vulnerability and the mean vulner-

ability per exposed residential building for the individual test sites are shown.

In Figs. 5 and 6, the vulnerability relation for detached dwelling houses is shown, based

on absolute deposition heights (Fig. 5a) and relative intensity (Fig. 6a) as proxies for

process intensities in the affected area. The process intensity is plotted on the abscissa, and

the degree of loss is plotted on the ordinate. In general, vulnerability increases with

increasing intensity. In both figures, the shape of the Weibull, Frechet and Logistic dis-

tributions is similar. For low process intensities (I \ 1 m for absolute intensities and

IR \ 0.1 for relative intensities), these distributions show a slow increase in vulnerability.

For medium process intensities (1 m B I B 2.5 m for absolute intensities and

0.1 B IR B 0.3 for relative intensities), the highest rate of increase in vulnerability is

observed, following an almost linear curve. For high process intensities (I [ 2.5 m for

absolute intensities and IR [ 0.3 for relative intensities), the observed rate of increase in

vulnerability slows down again and the curves converge towards 1. Due to these specific

shapes, the effect of an increase in process intensity is different in the three sections of

these curves; an increase in process intensity of 0.5 m causes as such more additional

damage at medium intensities compared to low and high intensities. A deviation from this

pattern is observed for the exponential curve, given the nature of this distribution.

In Fig. 5a, the distributions for absolute process intensities are shown, which are

grouped in steps of 0.25 and 0.5 m, respectively. Mainly in the process intensity categories

of 1.0 and 1.5 m, the statistical spread of the vulnerability values is considerable, which

can be attributed to a possible intrusion of material through building openings (Fuchs et al.

2007a). As windowsills are generally situated at a height of approximately 1.0 m, the

quality of the windows, their location regarding the main impact direction and the impact

force of the process define whether or not the interior of the building is harmed. The best-

fitting function to describe the range in the analysed data (highest value of utility) was the

modified Weibull distribution (see Eq. 7), which is highlighted in Fig. 5a. Their value of

utility equals 0.792 while the coefficient of determination is equal to 0.914.

VE ¼ 1� e�0:443 Iþ1:442
1:442

�1ð Þ2:233

ð7Þ

Table 5 Number of damaged
buildings and number of build-
ings considered in this study for
each test site

Test site Date of event Buildings
damaged

Buildings
considered

Stubenbach 22 August 2005 60 28

Schnannerbach 22 August 2005 15 10

Vorderbergerbach 29 August 2003 41 29

Total 116 67

Table 6 Reported loss, property
value, range of vulnerability and
mean vulnerability for each test
site

The values refer to the number of

considered buildings

Test site Reported

loss (€)

Property

value (€)

Range of

vulnerability

Mean

vulnerability

Stubenbach 4,851,800 13,483,267 0.013–1.0 0.369

Schnannerbach 403,700 6,444,471 0.005–0.131 0.045

Vorderbergerbach 260,509 17,629,091 0.001–0.045 0.015
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In Table 7, the mathematical notation (where, VE = economic vulnerability and

I = absolute intensity), the coefficient of determination, the maximum upper and lower

residual and the value of utility of the distributions based on absolute intensity are

summarised.

To take into account different building heights, a normalisation of the intensity

parameter was applied. This was done by changing the intensity parameter from absolute to

relative values. Relative intensity values were derived by relating the deposition values to

individual building heights. In Fig. 6a, the considered distributions are shown. The best-

fitting function to describe the range in the analysed data (highest value of utility) was the

modified Frechet distribution no. 2 (see Eq. 8), which is highlighted in Fig. 6a. Their value

of utility equals 0.838 while the coefficient of determination is equal to 0.958.

VE ¼ e
�0:466

tan
IR �p

2ð Þþ0:395

0:395
�1

� ��2:091

ð8Þ
In Table 8, the mathematical notation (where, VE = economic vulnerability and

IR = relative intensity), the coefficient of determination, the maximum upper and lower

residual and the value of utility of the distributions based on relative intensity are

summarised.
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0.7
0.8
0.9
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Vulnerability
Weibull
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Frechet no. 2
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Weibull
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0.7
0.8
0.9
1.0
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(a) (b)

Fig. 5 Different vulnerability functions for dwelling houses based on deposition height as a proxy for the
process intensity. Vulnerability values originating from the study sites are indicated by dots. The best-fitting
function to describe the range in the analysed data (highest value of utility; Weibull) is highlighted in bold
(a). Confidence bands for different confidence levels (CL = 90, 95 and 99%) for the best-fitting function (b)
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0.5
0.6
0.7
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0.9
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Frechet no. 2
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(a) (b)

Fig. 6 Different vulnerability functions for dwelling houses based on relative intensity. Vulnerability
values originating from the study sites are indicated by dots. The best-fitting function to describe the range
in the analysed data (highest value of utility; Frechet no. 2) is highlighted in bold (a). Confidence bands for
different confidence levels (CL = 90, 95 and 99%) for the best-fitting function (b)
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In Figs. 5b and 6b, the confidence bands of the best-fitting functions (Weibull distri-

bution in case of absolute intensity and Frechet distribution no. 2 for relative intensity) are

shown for different confidence levels. The process intensity is plotted on the abscissa, and

the degree of loss is plotted on the ordinate. In general, the confidence bands show a similar

shape as the best-fitting functions they are related to. The width of the confidence bands

reaches a maximum for medium process intensities due to both the statistical spread of the

original data and the generally limited number of data points in this intensity range. The

confidence bands converge towards 1 for high process intensities.

When comparing the results obtained by taking absolute and relative values for process

intensities, a slightly higher correlation with respect to the latter method becomes obvious

(R2 = 0.914 vs. 0.958). Therefore, the use of relative intensity instead of absolute intensity

may be suggested, since an improvement in the mathematical model describing regression

between intensity and degree of loss was observed.

Table 7 Compilation of the applied distributions based on deposition height as a proxy for the absolute
process intensity

Distribution Mathematical notation Coefficient of
determination

Maximum
upper residual

Maximum
lower residual

Value of
utility

Modified
Weibull

VE ¼ 1� e�0:443 Iþ1:442
1:442

�1ð Þ2:233 0.914 0.392 -0.267 0.792

Modified
exponential

VE ¼ 1� e�1:799 Iþ5:240
5:240

�1ð Þ 0.886 0.424 -0.273 0.769

Modified
Frechet no. 1

VE ¼ e�
Iþ1:366

1:366
�1ð Þ�2:122 0.916 0.426 -0.310 0.774

Modified
Frechet no. 2

VE ¼ e�1:522 Iþ1:120
1:120

�1ð Þ�2:119 0.916 0.426 -0.311 0.774

Modified
logistic

VE ¼ 1

1þ Iþ1:690
1:690

�1ð Þ�3:071 0.916 0.404 -0.312 0.779

The best-fitting function (Weibull) is highlighted in bold

Table 8 Compilation of considered distributions based on relative intensity values

Distribution Mathematical notation Coefficient of
determination

Maximum
upper
residual

Maximum
lower
residual

Value of
utility

Modified
Weibull

VE ¼ 1� e
�1:289

tan
IR �p

2ð Þþ0:482

0:482
�1

� �2:123 0.934 0.347 -0.271 0.813

Modified
exponential

VE ¼ 1� e
�3:495

tan
IR �p

2ð Þþ2:197

2:197
�1

� �

0.952 0.347 -0.271 0.822

Modified
Frechet no. 1

VE ¼ e
�

tan
IR �p

2ð Þþ0:274

0:274
�1

� ��2:091 0.956 0.355 -0.211 0.837

Modified
Frechet no. 2

VE ¼ e
�0:466

tan
IR �p

2ð Þþ0:395

0:395
�1

� ��2:091 0.958 0.355 -0.211 0.838

Modified
logistic

VE ¼ 1

1þ tanðIR �p=2Þþ0:342

0:342
�1

� ��2:934 0.956 0.347 -0.230 0.834

The best-fitting function (Frechet no. 2) is highlighted in bold
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4 Discussion and conclusion

Within the framework of the presented study, an empirical vulnerability function was

developed for buildings located on alpine torrent fans and which are prone to torrent

processes, i.e., fluvial sediment transport. The vulnerability function presented refers to the

physical susceptibility of buildings and was based on an economic approach linking object-

based loss data to reconstruction values. Thus, the proposed vulnerability function may be

used in operational risk analyses for torrent hazards, particularly since the approach is

suitable for a spatially explicit valuation within a GIS environment.

The analysis was conducted on a local scale based on data analyses for three Austrian test

sites. The results had shown that the application of relative intensity values resulted in an

increased coefficient of determination compared to the function based on absolute inten-

sities. In general, the best-fitting functions were reliable with respect to an increase in

vulnerability if the process intensity increased. In detail, the data did not suggest a linear

increase since the highest rates in increase in vulnerability were observed for medium

process intensities. Compared to the second order polynomial functions applied by Fuchs

et al. (2007a) and Akbas et al. (2009) for debris flows, or linear functions as outlined in

Barbolini et al. (2004) with respect to snow avalanches, the probability functions presented

in this study seem to be more reliable due to the methodological constraint that physical

vulnerability ranges between 0 and 1 (e.g., Varnes 1984). Regarding the selection procedure

of the best-fitting function, three factors (coefficient of determination, the maximum upper

residual and the maximum lower residual) were included in this study. However, a con-

sideration of further factors to calculate the value of utility may improve the results. The

median and mean of the residuals derived from a residual analysis could be such factors.

The results of this study showed that fluvial sediment transport processes due to torrent

events cause similar economic damage than data related to debris flow processes (Fuchs

et al. 2007a; Akbas et al. 2009). Hence, the general assumption that fluvial sediment

transport processes are less destructive than debris flow processes (Hungr et al. 2001)

cannot be confirmed for torrent processes in Austria.

It has been shown that the normalisation of the process intensity considerably improved

the calculations. Therefore, the normalisation of intensity seems to be a promising step

towards quantitative risk analysis. However, the normalisation was carried out under the

assumption that buildings are buried only until a maximum which equals the building

height (intensity range between 0 and 1). Consequently for a relative intensity value of 1, a

complete destruction of the building is implied (Table 9). In contrast, if the calculation is

based on absolute intensities, the intensity represents an infinite value. From a mathe-

matical point of view, only intensities equal to ? result in a vulnerability value of 1,

whereas the considered torrent events had shown that a destruction of buildings can be

already observed at process intensities of 2.5–3.0 m (see Table 9; Fig. 5a).

Physical susceptibility of elements at risk and thus vulnerability is strongly dependent

on the construction material used. The developed vulnerability functions are applicable to

buildings, which are constructed by using brick masonry and concrete, a typical design in

post-1950s building craft in Alpine countries. Consequently, the adjusted functions may be

applicable to this mixed construction type if residential buildings are assessed during risk

analyses. However, a wider application of the presented approach to additional building

categories such as hotels or business establishments is still outstanding.

Although significant advancements have been made in risk research, especially with

respect to the conceptualisation and representation of vulnerability within the human–

environment system (Turner II et al. 2003; Adger 2006; Cutter 2006; Eakin and Luers
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2006; Folke 2006), considerable differences in the definition of vulnerability within the

research community remain. These differences are rooted in a different understanding of

the definition and conceptualisation of vulnerability in the domain of social sciences and of

natural sciences.

With respect to mountain hazards, it has been argued that there is neither a common

definition nor theory developed on how to assess vulnerability—despite the premise that

vulnerability is driven by exposure, resistance and resilience (cf. Fuchs 2009). In social

sciences, vulnerability is conceptualised as a set of socio-economic factors that determine

an individual’s or a societal ability to cope with stress or perturbation.3 In natural sciences,

vulnerability is understood in terms of the expected degree of damage and the associated

height of loss for a given element at risk within a specific timeframe.

In order to overcome this conceptual separation, and based on studies carried out in the

eastern Alps, an integrative model that allows for a comprehensive representation of vul-

nerability has been proposed by Fuchs (2009). The underlying idea of taking such an

integrative viewpoint was the cognition that human action in mountain environments affects

the state of vulnerability, and the state of vulnerability in turn shapes the possibilities of

human action. Hence, the vulnerability of a specific location and within a considered point

of time is triggered by the hazardous event and the related physical susceptibility of

structures, such as buildings located on a torrent fan (physical vulnerability).

Depending on the specific institutional settings, economic vulnerability of individuals or

of the society results, above all with respect to imperfect loss compensation mechanisms in

the areas under investigation (Holub and Fuchs 2009). While this potential for harm can be

addressed as social vulnerability, the concept of institutional vulnerability has been

developed with respect to the overall political settings of governmental risk management.

As a result, the concept of vulnerability, as being used in natural sciences, can be extended

by integration of possible reasons why such physical susceptibility of structures exists and

Table 9 Summary of vulnera-
bility values for the modified
Weibull distribution (absolute
intensities) and the modified
Frechet distribution no. 2
(relative intensities)

Modified Weibull Modified Frechet no. 2

Absolute intensity
(m)

Vulnerability
(-)

Relative intensity
(-)

Vulnerability
(-)

0.25 0.0088 0.05 0.000001

0.5 0.0408 0.10 0.0429

1 0.1777 0.15 0.2672

1.5 0.3836 0.20 0.4961

2 0.6014 0.25 0.6558

2.5 0.7799 0.30 0.7606

3 0.8971 0.40 0.8778

4 0.9867 0.50 0.9354

5 0.9992 0.70 0.9838

10 0.9999 0.90 0.9986

? 1 1 1

3 A perturbation is a major threat beyond the normal range of variability in which a system operates and
commonly originates beyond the system or location in question. Stress is a continuous or slowly increasing
pressure, commonly within the range of normal variability. Stress often originates and stressors (the sources
of stress) often reside within the system (Turner II et al. 2003).
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by integration of compensation mechanisms and coping strategies being developed within

social sciences.

Consequently, in some decision contexts one approach to reduce vulnerability is likely to

be more effective than another, whereas in other situations a combination may also be

appropriate. To give an example, for some buildings located on torrent fans local structural

mitigation (e.g., splitting wedges) to be born by the homeowner will be the most promising

(and cost-effective) measure to reduce damage, while for other buildings and given another

topographic setting the provision of risk sharing mechanisms by obligatory insurance solu-

tions will be most efficient. Often a combination of both will be more successful in reducing

the individual and collective risk than only one mitigation alternative (Fuchs et al. 2007b).

Effective planning for and response to hazards requires that the vulnerability associated with

specific social and decision processes be understood in parallel with understandings of

probabilities of occurrence leading to physical vulnerability. Thus, judgements can be made

about the appropriate balance between different management options.

Apart from these conceptual issues, a deeper insight into structural vulnerability was

gained during the attempt to develop an empirical vulnerability function for use in risk

assessment for alpine torrents and to supplement studies related to debris flows (Fuchs

et al. 2007a) by studies on processes characterised by fluvial sediment transport. This

attempt was based on the realisation of a specific research gap with respect to mountain

hazards in Europe. So far, structural vulnerability had only been quantified insufficiently

regarding the requirements of operational risk analyses. As a result, a general strategy in

determining vulnerability of elements at risk to specific events was still missing since

vulnerability models were mainly based on plausibility issues, expert knowledge, con-

ceptual approaches, and assessments of historical data. The method presented followed a

spatial approach and was based on process intensities, the spatial characteristics of ele-

ments at risk and average reconstruction values on a local scale. Since vulnerability was

defined using an economic approach, the relation between reconstruction values and losses

principally allows a wider application in regions with different economic background and

on different spatial scales.

Future needs concerning vulnerability research might include the temporal changes in

vulnerability to natural hazards. During the past decades, European mountain regions

experienced major transformations in population size, economic conditions, social char-

acteristics and development patterns. As a result of the discussed evolution in socio-

economic activity, and an associated relative increase in individual assets, vulnerability

might have changed considerably (Fuchs et al. 2005; Keiler et al. 2006a). To improve

natural hazard risk management, these changes should be quantified according to arising

institutional, economic and social implications.

Apart from such academic concerns, methods to reduce vulnerability to natural hazards

may include innovative approaches of risk sharing, as discussed in Holub and Fuchs (2009).

These approaches are pillared by a mandatory insurance system against natural hazards,

based on premiums which are commensurate with the risk. Therefore, legislation, loss

compensation and risk transfer are accompanied by the overall aim to increase risk

awareness and to implement a sustainable and long-term land use planning. In order to

achieve this goal, information on hazard and risk at a specific location should be commu-

nicated in a target-oriented way to the stakeholders involved in order to create risk

awareness and to provide incentives for vulnerability-reducing behaviour. It has been shown

by Fuchs et al. (2009) how standardised guidelines for the visual representation of risk will

meet these goals and therefore improve the dissemination of information accordingly. As a

result, overall vulnerability to mountain hazards may decrease in the future.

700 Nat Hazards (2011) 58:681–703

123



Acknowledgments This work was funded by the Austrian Science Fund (FWF, grant number L535-N10).
The authors would like to thank C. Fletcher and W. Sitter as well as two anonymous reviewers for valuable
comments on an earlier draft of this study.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

References

Adger WN (2006) Vulnerability. Glob Environ Change 16:268–281
Akbas SO, Blahut J, Sterlacchini S (2009) Critical assessment of existing physical vulnerability estimation

approaches for debris flows. In: Malet J, Remaı̂tre A, Bogaard T (eds) Landslide processes: from
geomorphological mapping to dynamic modelling. CERG Editions, Strasbourg, pp 229–233

Alexander D (2005) Vulnerability to landslides. In: Glade T, Anderson M, Crozier M (eds) Landslide hazard
and risk. Wiley, Chichester, pp 175–198

Aulitzky H (1980) Preliminary two-fold classification of torrents. In: Aulitzky H, Grubinger H, Nemecek E
(eds) Internationales Symposion Interpraevent—Bad Ischl, 8–12 Sep. Internationale Forschungsge-
sellschaft Interpraevent, Klagenfurt, pp IV/285–309

Barbolini M, Cappabianca F, Sailer R (2004) Empirical estimate of vulnerability relations for use in snow
avalanche risk assessment. In: Brebbia C (ed) Risk analysis IV. WIT, Southampton, pp 533–542

Bardou E (2002) Methodologie de diagnostic des laves torrentielles sur un bassin versant alpin. PhD Thesis,
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PLANAT [Nationale Plattform Naturgefahren] (2004) Strategie Naturgefahren Schweiz. Synthesebericht in
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