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Abstract
Propofol has shown strong addictive properties in rats and humans. Adenosine A2A receptors (A2AR) in the nucleus 
accumbens (NAc) modulate dopamine signal and addictive behaviors such as cocaine- and amphetamine-induced self-
administration. However, whether A2AR can modulate propofol addiction remains unknown. AAV-shA2AR was intra-
NAc injected 3 weeks before the propofol self-administration training to test the impacts of NAc A2AR on establishing the 
self-administration model with fixed ratio 1 (FR1) schedule. Thereafter, the rats were withdrawal from propofol for 14 days 
and tested cue-induced reinstatement of propofol seeking behavior on day 15. The propofol withdrawal rats received one of 
the doses of CGS21680 (A2AR agonist, 2.5–10.0 ng/site), MSX-3 (A2AR antagonist, 5.0–20.0 μg/site) or eticlopride (D2 
receptor (D2R) antagonist, 0.75–3.0 μg/site) or vehicle via intra-NAc injection before relapse behavior test. The numbers of 
active and inactive nose-poke response were recorded. Focal knockdown A2AR by shA2AR did not affect the acquisition of 
propofol self-administration behavior, but enhance cue-induced reinstatement of propofol self-administration compared with 
the AAV-shCTRLgroup. Pharmacological activation of the A2AR by CGS21680 (≥ 5.0 ng/site) attenuated cue-induced rein-
statement of propofol self-administration behavior. Similarly, pharmacological blockade of D2R by eticlopride (0.75–3.0 μg/
site) attenuated propofol seeking behavior. These effects were reversed by the administration of MSX-3 (5.0–20.0 μg/site). 
The A2AR- and D2R-mediated effects on propofol relapse were not confounded by the learning process, and motor activ-
ity as the sucrose self-administration and locomotor activity were not affected by all the treatments. This study provides 
genetic and pharmacological evidence that NAc A2AR activation suppresses cue-induced propofol relapse in rats, possibly 
by interacting with D2R.
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Abbreviations
A2AR  A2A receptor
D2R  Dopamine D2 receptor

DA  Dopamine
NAc  Nucleus accumbens
BLA  Basolateral amygdala
FR1  Fixed ratio 1
CPP  Condition place preference

Introduction

Drug use disorder results in global health issues and mas-
sive economic losses, and relapse is the severest limitation 
and barrier to successful drug use disorder treatment after 
periods of abstinence [1, 2]. Propofol, an intravenous anes-
thetic primarily used for anesthesia induction and sedation, 
has been reported as a substance for addiction. Increasing 
propofol addiction is reported in many countries, especially 
among academic anesthesiologists and nurses over the past 
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decades [3–6]. Propofol addiction has also been success-
fully modeled with self-administration and condition place 
preference (CPP) in rats [7–9]. Humans and preclinical stud-
ies provide evidence that drug craving and relapse can be 
triggered by acute re-exposure to the drug, drug-associated 
environmental cues or stress [10–12]. Our animal study has 
demonstrated that propofol relapse behavior in rats can be 
induced by previous drug-paired cues[13].

Some brain regions are implicated in the development of 
drug reward, craving and relapse, and the foremost among 
these regions include a mesolimbic dopaminergic system 
that projected from the ventral tegmental area to the ventral 
striatum of nucleus accumbens (NAc), which is considered 
as the common final pathway of drug reward [14]. Multi-
ple drugs implement their reward effects by increasing the 
dopamine (DA) level in NAc by promoting DA release or 
inhibiting DA reuptake [15, 16]. In the striatum, DA acts on 
dopamine D1 and D2 receptors (D2R), and activate direct 
(striatonigral) and indirect (striapallidonigral) projection of 
the medium spiny GABAergic neurons (MSNs) by stimula-
tion of D1 receptor and D2R in NAc, respectively, and D1 
receptor and D2R play different roles in mediating drug use 
disorder. DA facilitates the direct pathway activity through 
the D1 receptor but inhibiting the indirect pathway through 
the D2R [17]. Our previous studies suggested that the mes-
olimbic dopaminergic system is involved in modulating 
propofol self-administration mainly through the D1 recep-
tor in the NAc [7, 8, 18], and the DA transmission in the 
basolateral amygdala (BLA) is indicated in propofol relapse 
[13]. However, whether dopaminergic transmission in the 
NAc is involved in propofol relapse remains to be elucidated.

DA effects on drug reward were affected by other neu-
rotransmitters. Adenosine is a well-known modulator of 
DA neurotransmission and neuronal activity. Drug abuse 
elevated adenosine in the brain, and A2A receptor (A2AR) 
has been indicated a novel target for drug use disorder 
and relapse treatment [19]. Adenosine A2AR in the NAc 
was reported to play a key role in drug self-administration 
relapse behavior of cocaine, morphine, nicotine and ethanol 
[20–23]. Wydra et al. demonstrated that intra-NAc microin-
jections of A2AR agonist of CGS21680 dose-dependently 
attenuated cocaine reinstatement behavior, while evoked the 
cocaine reinstatement seeking behavior by the antagonist of 
A2AR in the NAc, these findings indicating A2AR in the 
NAc might be critical for drug relapse [24].

Adenosine is medicated by subtypes of adenosine recep-
tors, including A2AR, which is highly expressed in stria-
tum and mostly postsynaptically colocalized with D2R on 
striatopallidal GABA ergicneurons of the indirect pathway 
with an antagonistic interaction [25]. Adenosine A2AR 
exerts tonic inhibitory control over D2R signaling within 
the striatum, and the two receptors present opposite effects 
on physiological and molecular responses, such as motor 

behaviors and neurotransmitter release [26]. The A2A-D2 
receptor heteromer participated in the regulation of drug use 
disorder. Chronic cocaine administration enhanced the D2R 
by reducing the expression of A2A-D2 receptor heteromer 
[27], and an important regulation via D1 receptor and D2R 
in propofol relapse has been suggested [13]. Nevertheless, 
whether adenosine A2AR and D2R in the NAc underlying 
propofol relapse is poorly understood.

In the present study, we examined the effects of the 
adenosine A2AR in the NAc on propofol self-administra-
tion model establishment and the cue-induced reinstate-
ment of propofol self-administration behaviors. The effects 
of D2R in the NAc on propofol relapse were also examined 
to explore the possible underlying mechanisms. The sucrose 
self-administration and locomotor activities were tested 
to identify the specificity of A2AR and D2R on propofol 
relapse.

Materials and Methods

Animals

Adult male Sprague–Dawley rats weighing 250–300  g 
(8–9 weeks old) were purchased from the Experimental Ani-
mal Center of Wenzhou Medical University, and all experi-
mental procedures were approved by the Animal Care and 
Use Committee of Wenzhou Medical University. The rats 
were individually housed in a temperature-controlled room 
(22–24 °C) with a 12-h light/ dark cycle and were free to 
food and water. Only the rats were successfully implanted 
with chronic indwelling catheters via jugular vein, and guide 
cannulae in the NAc and completed propofol self-adminis-
tration training were randomly assigned to either vehicle 
(control) or one of the treatment groups after a 14-day absti-
nence period. The schematic of the timeline of the proce-
dures is presented in Fig. 1.

Drugs

In the present, propofol adopted was obtained from Astra-
Zeneca (10 mg/ml, Diprivan, Italy), which was daily pre-
pared for training. A single dose of 1.7 mg/kg/injection 
was used for self-administration behavior training with the 
previous study results [28]. The A2AR agonist CGS21680 
(4-[2-[[6-amino-9-(N-ethyl-b-D-ribofuranuronamidosyl)-
9H-purin-2-yl]amino]ethyl]benzenepropanoicacid hydro-
chloride) was purchased from Tocris Bioscience (Ellisville, 
MO, USA), the A2AR antagonist MSX-3 (3,7-dihydro-
8-[(1E)-2-(3-methoxy-phenyl)ethenyl]-7-methyl-3-[3-
(phosphonooxy)propyl-1-(2-propynyl)-1H-purine-2,6-di-
onedisodiumsalt hydrate) and the D2R antagonist eticlopride 
were obtained from Sigma-Aldrich (StLouis, MO, USA). 
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CGS21680 was dissolved in DMSO, and MSX-3 and eti-
clopride were dissolved in sterile saline with 0.1 N NaOH 
for final PH = 7.4. Doses of CGS21680, MSX-3 and eticlo-
pride were established on previous behavioral studies with 
using microinjection procedures. These studies showed 
the efficacy of intra-NAc microinjection of A2AR ago-
nist CGS21680 (0–10 ng/site) inhibited cocaine-induced 
reinstatement behavior [17, 24], and MSX-3 (0–20μg/site) 
enhanced cocaine-induced reinstatement behavior dose-
dependently in rats [17]. Eticlopride is a dopamine D2R-
selective antagonist (> 100,000 fold D2/D1) [29], it has 
been reported that intra-NAc shell microinjection of eti-
clopride(1–10 μg/site) dose-dependently blocked cocaine-
primed reinstatement of cocaine-seeking, and bilateral injec-
tion of eticlopride (0.1–1.0 μg/site) in the BLA blockaded 
opiate-dependent and withdrawn rats [30, 31]. Moreover, the 
effects eticlopride (1.0–3.0 μg/site) in the NAc on propofol 
self-administration behavior has been tested in our previ-
ously published study [32].

Surgeries

The intravenous catheters implantations were performed 
as previously described [33]. The rats were implanted with 
chronically indwelling intravenous catheters under sodium 
pentobarbital anesthesia, and the catheters were flushed 
daily with 0.2 ml saline-heparin solution to maintain the 
patency. In addition, the rats were treated with penicillin 
B through the catheter once per day during 7-day recov-
ery period to prevent infection. The intra-NAc injections 
(A/P + 1.5 mm, M/L ± 2.0 mm, D/V—6.7 mm) were through 
bilaterally implanted guide cannulae (20-gauge, Small Parts 
Inc., USA) [8].

Stereotaxic AAV Injection

pAAV-ZsGreen-shRNA-ADORA2A and pAAV-ZsGreen-
shRNA-control were purchased from Neuron Biotech 
Co., Ltd (Shanghai, China). Intra-NAc microinjections of 

recombinant AAV–shA2AR or AAV–shCTRL (250  nl/
side, 6 ×  1012 particles/ml) were conducted under pentobar-
bital anesthesia (50 mg/kg i.p.) over 5 min. The needle was 
retained for at least 5 min after finishing the injection for 
complete drug diffusion. The accuracy of the microinjection 
in the NAc was determined under a fluorescence microscope 
(n = 10) (Nikon, Japan).

Intra‑NAc Microinjection Procedure

To assess the effects of the agents of on cue-induced rein-
statement of propofol self-administration behavior, sucrose 
self-administration and locomotor activities, the rats were 
treated with vehicle, CGS21680 (2.5, 5.0 and 10.0 ng/site), 
MSX-3 (5.0, 10.0 and 20.0 μg/site) or eticlopride (0.75, 1.5 
and 3.0 μg/site) 10 min before the test session. Microinjec-
tion in the NAc was delivered through a previously indwell-
ing infusion cannula with a microinjection pump (MD-1001, 
Bioanalytical System Inc., West Lafayette, IN, USA) in a 
volume of 0.3 μl over 10 min.

Self‑administration Apparatus

The specifications of the apparatus were with custom-made 
operant boxes with a size of 30 cm × 30 cm × 30 cm, and the 
hemline was 5 cm from the floor. The rats were trained self-
administration of propofol through jugular injection with 
a 5-ml syringe attached to a special pump with a speed of 
1.2 ml/min. The rats would receive a dosage of 1.7 mg/kg 
propofol injection through the intravenous catheter after one 
active nose-poke as a reward. Still, no injection was given 
after inactive nose-poke. There was a 30-s time-out period 
after each active nose-poke, but no injection or reward would 
be given if nose-poke occurred during this period. Sucrose 
particles were used in the food-maintained training. The 
fixed ratio 1 (FR1) training schedule was applied for both 
propofol self-administration and food-maintained training. 
The locomotor activity was detected with a special motor 
monitoring device (Panlab, Barcelone Spain) for general 

Fig. 1  The schematic of the timeline of the rats that received stereotaxic injections in the NAc for behavior test. SA self-administration
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locomotor activity evaluation versus the addictive prop-
erty. All the experimental procedures were automatically 
recorded by a computer with MED Associates interface that 
runs self-programmed software written in Borland Delphi 
6.0.

Propofol Self‑administration Training

The training procedure of establishing the propofol self-
administration behavior model in rats was the same as 
described above, with a daily 3-h training session during 
the consecutive 14 days under a FR1 schedule. The sessions 
ended when 3-h or 100 propofol infusions were reached. 
The number of active nose-poke and propofol infusions 
increased as the training proceeded and reached a stable 
state after the successive 14-day training. Variability of 
less than 10% in the last 3 sessions was seen as success-
fully modeled in propofol self-administration behavior [34]. 
Those rats that did not reach the criteria were excluded from 
further study. Twenty-two rats were trained for establishing 
propofol self-administration behavior model after AAV-
shA2AR or AAV-shCTRL intra-NAc injection, and 2 rats 
did not reach the criteria of the successful establishment 
of propofol self-administration model. Thus, the other 20 
rats were randomized for further study. In addition, 115 rats 
were trained for propofol self-administration without AAV 
injection. Finally, 110 rats were included for further cue-
induced propofol reinstatement behavior test after intra-NAc 
microinjection of vehicle, CGS21680, MSX-3 or eticlopride.

Propofol Withdrawal Procedure and Cue‑Induced 
Reinstatement Seeking

The propofol-dependent rats returned to individual cages 
after the self-administration behavior training and the rats 
were not available to propofol-related cues and stimulus 
during the 14-day abstinence period [13]. Subsequently, the 
rats were moved to the original self-administration train-
ing chambers and exposed to the previous behavior-training 
context and related cues such as the house light, a green 
LED light and pump noise. The difference from the propo-
fol self-administration training is that no drug infusion was 
transmitted after each active nose-poke over the 3-h test ses-
sion. The numbers of active and inactive nose-poke were 
also automatically recorded by computer.

Specific Experiments

Experiment 1

Rats withdrawal from propofol self-administration for 
14 days were randomly assigned to AAV-shA2AR group 
or AAV-shCTRL group (n = 10). Then the rats were tested 

cue-induced reinstatement of propofol self-administration 
behavior in the same context as previous self-administration 
training performed on day 15.

Experiment 2

To further determine the role of adenosine A2AR in the NAc 
in modulating cue-induced reinstatement of propofol self-
administration, the rats that successfully established propofol 
self-administration behavior and withdrawal from propofol 
for 14 days were randomly assigned to one of the follow-
ing groups: intra-NAc administration of vehicle; one dose 
of an agonist of A2AR CGS21680 (2.5, 5.0 and 10.0 ng/
site) (n = 10); the antagonist of A2AR MSX-3 (5.0, 10.0 
and 20.0 μg/site) (n = 10) 10 min before the cue-induced 
reinstatement of propofol self-administration behavior test.

Experiment 3

To evaluate the possible impact of dopamine D2R in the 
NAc on propofol relapse, the propofol-dependent rats with 
an abstinence period were randomly assigned to vehicle or 
eticlopride (0.75, 1.5 and 3.0 μg/site) (n = 10) 10 min before 
the cue-induced reinstatement of propofol self-administra-
tion behavior test.

Sucrose Self‑administration Training

Rats were trained self-administration for food reward with 
sucrose pellets (Dustless precision pellets, Bio-Serv, USA) 
under a FR1 schedule during a 0.5-h session for consecutive 
7 days (n = 8). The paradigm was similar to that of propofol 
self-administration training, but the reward was replaced 
with a 45-mg sucrose for each active nose-poke. The ses-
sions ended after either 0.5 h or 100 sugar pellets occurred. 
All rats reached the criteria of successfully modeled self-
administration behavior for food reward with sucrose pellets.

Locomotor Activity Test

The rats were tested to monitor the effects of intra-NAc 
injections of AAV vectors (AAV-shA2AR and AAV-shC-
TRL), CGS21680, MSX-3 and eticlopride on general activi-
ties with 1-h acclimation and followed by a 3-h test period 
(n = 6).

Immunohistochemistry

The rats (n = 10) were fixed transcardiacally with 4% para-
formaldehyde in 4 °C suspended in a phosphate-buffered 
saline solution (PBS, 0.1 M, PH = 7.4). Brains were removed 
and post-fixed in 30% sucrose until immersion at 4 °C and 
were sliced into 40-μm thickness. Immunohistochemistry 
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was performed as described earlier [35]. In brief, sections 
were rinsed in PBS, incubated in 3% hydrogen peroxide in 
PBS for 30 min at room temperature (RT), and then incu-
bated in 3% normal donkey serum, and 0.25% Triton X-100 
in PBS (PBT) for 1 h sequentially at RT. After incubation 
in the primary antibody of mouse anti-A2AR (1:2000; Mil-
lipore, USA) at 4 °C overnight, the sections were rinsed 
and incubated in secondary antibody (biotinylated goat anti-
mouse 1:500, Beyotime, China) for 2 h at RT. All slices were 
treated as introducing the ABC Elite kit (Vector, CA, US), 
and histological changes were visualized with a microscope 
(Nikon, Japan).

Statistical Analysis

Continuous data were presented as mean ± standard devia-
tion, and normality of data distribution was tested before 
further analyses. For the normal distributed data, the Stu-
dent’s t-test was applied to two groups; and one-way analysis 
of variance (ANOVA) was used to compare multiple groups 
when the data also meet homogeneity of variance. Dun-
nett’s post hoc test was adopted for multiple comparisons 
if any significant difference was found by ANOVA analy-
sis. The data from repeated measurements were analyzed 
with repeated measures analysis of variance. Mann–Whit-
ney U test and Kruskal–Wallis test were used for data were 

not normally distributed, and the Dunn’s post hoc analysis 
was used for multiple comparisons when a significant dif-
ference was found. Statistical calculations were performed 
with SPSS 25.0 (SPSS Inc, Chicago, USA), and a p-value 
smaller than 0.05 was considered significant.

Results

Deletion of A2A Receptor Expression in the NAc 
after AAV‑shA2AR Injection But Did Not 
Alter the Process of Establishing Propofol 
Self‑administration Behavior Under the FR1 
Schedule

Figure 2 shows the expression of A2AR in the NAc was 
significantly reduced 3 weeks after stereotaxic injection of 
AAV-shA2AR compared with AAV-shCTRL group. The 
rats in the groups of AAV-shA2AR and AAV-shCTRL both 
developed reliable and stable propofol self-administration 
behavior within 14 days after the training, presenting an 
increase in active nose-poke response and propofol infusions 
and a decrease in inactive response. However, there were 
no significant differences between the two groups at either 
active nose-poke response (Fig. 3, F = 0.854, p = 0.602), 
infusions (F = 0.806, p = 0.570) or inactive nose-poke 

Fig. 2  a Immunohistochemistry 
of the NAc slices that adminis-
tration of AAV-shA2AR (left) 
or AAV-shCTRL (right), and 
the immunoreactivity for A2AR 
is significantly down-regulated 
in the NAc of the AAV-shA2AR 
treated rats compared with that 
treated with AAV-shCTRL. b 
AAV vectors that contained 
shA2AR are accurately injected 
in the NAc with green fluores-
cent (left), and the expression 
of A2AR is almost deleted after 
AAV-shA2AR injection (right). 
c Histological reconstructions 
of the rat brain to illustrate the 
microinjection in the NAc.
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response (F = 0.589, p = 0.693), indicating that the estab-
lishing process of propofol self-administration under FR1 
schedule was not mainly modulated by A2AR in the NAc.

Deletion of Intra‑NAc A2A Receptor Expression 
Facilitated the Cue‑Induced Reinstatement 
of Propofol Self‑administration Behavior in Rats

The rats were trained to self-administer propofol 3 weeks 
after stereotaxic injection of AAV-shA2AR or AAV-shC-
TRL. The rats that experienced 14-day withdrawal were 
tested the cue-induced reinstatement of propofol self-
administration behavior on day 15. The numbers of active 
nose-poke response were statistically enhanced compared 
to AAV-shCTRL group (Fig. 4, t = 7.614, p < 0.001), yet 
no significant evidence was found of inactive nose-poke 
response (t = -0.303, p = 0.766).

Different Effects of Bilateral Intra‑NAc Pretreatment 
with CGS21680 and MSX‑3 on Cue‑Induced 
Reinstatement of Propofol Self‑administration 
Behavior

The rats trained to propofol self-administrated and withdraw 
for 14 days were pretreated with either vehicle or CGS21680 
(2.5, 5.0 and 10.0 ng/site) by bilateral intra-NAc microinjec-
tions 10 min before the cue-induced reinstatement of propo-
fol self-administration behavior testing session on day 15. 
It was found that the CGS21680 inhibited the numbers of 
active nose-poke response at the doses of ≥ 5.0 ng/site com-
pared with the vehicle group (Fig. 5a, F = 339.355, p < 0.001; 
5.0 ng/site p < 0.001, 10.0 ng/site p < 0.001), and the effect 
was not significant at the dose of 2.5 ng/site (p = 0.832). The 
numbers of inactive nose-poke response were not affected by 
any dose of CGS21680 (F = 0.151, p = 0.928).

The rats were pretreated with either vehicle or MSX-3 
at the doses of 5.0, 10.0 and 20.0 μg/site 10 min before 
the relapse behavior test on day 15. The results indicated 
that MSX-3 dose-dependently increased the numbers of 
active nose-poke response compared with the vehicle group 
(Fig.  5b, F = 111.376, p < 0.001; 5.0  μg/site p = 0.003, 
10.0 μg/site p < 0.001, 20.0 μg/site p < 0.001), but the dif-
ference of the numbers of inactive nose-poke response was 
not significant among the groups (F = 0.156, p = 0.925).

Bilateral Intra‑NAc Pretreated Eticlopride Inhibited 
the Cue‑Induced Reinstatement of Propofol 
Self‑administration Behavior

To explore the role of D2R in the NAc on cue-induced rein-
statement of propofol self-administration behavior, the rats 
were bilaterally intra-NAc microinjected vehicle or one of 
the doses of eticlopride (0.75, 1.5 and 3.0 μg/site). The num-
bers of active nose-poke response were decreased by eticlo-
pride compared with the vehicle group in a dose-depend-
ent manner (Fig. 5c, F = 249.861, p < 0.001; 0.75 μg/site 
p < 0.001, 1.5 μg/site p < 0.001, 3.0 μg/site p < 0.001), but 

Fig. 3  The numbers of active nose-poke response (a), propofol infusions (b) and inactive nose-poke response (c) were analyzed with repeated 
measures analysis of variance and show no difference in the group of AAV-shA2AR compared with the AAV-shCTRL group (p > 0.05, n = 10)

Fig. 4  The cue-induced reinstatement of propofol self-administration 
behavior is facilitated by stereotaxic injection of AAV-shA2AR in 
the NAc after the 14-day abstinence period in propofol self-admin-
istrative rats. The numbers of active response increased significantly 
in the AAV-shA2AR group compared with AAV-shCTRL group 
(n = 10, p < 0.001), while no significant difference was found in the 
numbers of inactive response (p = 0.766). The data were analyzed 
with Student’s t-test, ***p < 0.001
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no significance was found of inactive nose-poke response 
(F = 0.977, p = 0.414).

Microinjection of AAV‑shA2AR, CGS21680, MSX‑3 
or Eticlopride in the NAc Did Not Alter the Sucrose 
Self‑administration Behavior and Locomotor 
Activities.

To investigate the specificity of the pretreatments of AAV, 
CGS21680, MSX-3 and eticlopride, their effects on sucrose 
self-administration and general locomotor activities were 
examined. The sucrose self-administration behavior in 
rats was successfully established after a 7-day training, the 
numbers of active nose-poke response and sucrose pellets 
increased as training proceeded and stabilized at a high level, 
the numbers of inactive nose-poke response decreased and 
maintained at a minimal level, and the final test was per-
formed on day 8. The stereotaxic injections of AAV and 
the other pretreatments of CGS21680, MSX-3 and eticlo-
pride were completed as mentioned above before behav-
ior tests. All these pretreatments failed to affect the num-
bers of active nose-poke response (Fig. 6, AAV t = 0.666 
p = 0.516, CGS21680 F = 0.562 p = 0.644, MSX-3 F = 2.679 
p = 0.066, eticlopride F = 2.469 p = 0.083), sucrose pellets 
(AAV t = -0.408 p = 0.689, CGS21680 F = 0.606 p = 0.616, 
MSX-3 F = 0.985 p = 0.414, and eticlopride F = 1.506 
p = 0.235) or inactive nose-poke response (AAV p = 0.878, 
CGS21680 F = 1.883 p = 0.155, MSX-3 F = 1.045 p = 0.388, 
and eticlopride F = 2.318 p = 0.097). In addition, none of 
these pretreatments altered the locomotor activity of the rats 
as judged by path length (Fig. 7, AAV t = -1.357 p = 0.192, 

CGS21680 H = 5.95 p = 0.160, MSX-3 H = 5.55 p = 0.135, 
eticlopride F = 1.012 p = 0.408).

Discussion

In our study, we found that the establishment of propofol 
self-administration behavior model was not affected by 
stereotaxic injection of AAV-shA2AR, but the cue-induced 
reinstatement of propofol self-administration behavior was 
significantly facilitated. Besides, our evidence shows that 
CGS21680 inhibited but MSX-3 promoted the cue-induced 
reinstatement of propofol self-administration behavior, and 
intra-NAc administrated with the antagonist of D2R eti-
clopride attenuated in the withdrawal rats. We speculated 
that A2AR mediated propofol relapse might be via D2R in 
the NAc. In addition, we also found that all treatments did 
not affect sucrose self-administration behavior or locomo-
tor activities. Overall, these findings suggested that A2AR 
in the NAc plays critical role in mediating the cue-induced 
reinstatement of propofol self-administration behavior, 
which may act through D2R in the NAc with an antagonis-
tic interaction.

Behaviors studies indicate that A2AR is linked to dif-
ferent stages of psychostimulant addiction, including drug 
abuse maintenance, withdrawal as well as reinstatement 
[36]. It has been determined that A2AR form structural het-
eropolymers with D2R with negative interaction, the latter 
also highly concentrate in the dorsal and ventral striatum 
[37, 38]. A2AR knockout mice exhibited increased etha-
nol preference and consumption but decreased morphine 
self-administration and conditioned place preference, and 

Fig. 5  a Intra-NAc injection of an agonist of A2AR CGS21680 that 
pretreated 10  min before the cue-induced reinstatement of propofol 
self-administration behavior test attenuated active nose-poke response 
at the doses of 5.0 and 10.0 ng/site (n = 10, p < 0.001), but the num-
bers of inactive nose-poke did not reach a significance between the 
CGS21680 treated groups and the vehicle group (p = 0.928). b Intra-
NAc pretreatment of the antagonist of A2AR MSX-3 stimulated the 
cue-induced reinstatement of propofol self-administration behavior, 
with the numbers of active nose-poke response significantly increased 

at the doses of 5.0–20.0  μg/site compared with the vehicle group 
(n = 10, p < 0.001), but the difference was not significant in inactive 
nose-poke response (p = 0.925). c Pretreated by the antagonist of D2R 
eticlopride in the NAc inhibited the cue-induced reinstatement of 
propofol self-administration behavior, with reducing the numbers of 
active nose-poke response (n = 10, p < 0.001), but did not affect the 
inactive nose-poke response (p = 0.414). The data analyzed with one-
way ANOVA with Dunnett’s pos hoc test for multiple comparisons, 
***p < 0.001.
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systemic CGS21680 treatment reduced cocaine self-admin-
istration infusions [23, 39, 40], suggesting that the neurobio-
logical mechanisms in different drug addiction might be dis-
tinct. On the contrary, we found propofol self-administration 
behavior was not affected by down-regulated the expression 

of A2AR in NAc in this study. Our published study reported 
that propofol self-administration was mainly mediated by 
dopamine D1 receptor but not D2R in the NAc [32], differ-
ent from the drugs of cocaine and morphine self-adminis-
tration and CPP behaviors, which were mainly regulated by 

Fig. 6  The stable sucrose self-
administration behavior was 
established after a successive 
7-day training period, and all 
the pretreatments of AAV, 
CGS21680, MSX-3 and eticlo-
pride did not affect the sucrose 
self-administration behavior. 
One-way ANOVA analyzed 
the data of CGS21680, MSX-3 
and eticlopride. Student’s t-test 
analyzed the numbers of active 
response and foodtray between 
AAV-shA2AR and AAV-CTRL 
(vehicle) groups. However, the 
numbers of inactive response 
were analyzed by the Mann–
Whitney U test due to non-nor-
mal distribution (p > 0.05, n = 8)

Fig. 7  The effects of intra-
NAc pretreatment of AAV 
(p = 0.192), CGS21680 
(p = 0.160), MSX-3 (p = 0.135) 
and eticlopride (p = 0.408) on 
general locomotor activity were 
tested. The results show that 
all the treatments did not affect 
path length compared to the 
vehicle group (n = 6). Student’s 
t-test analyzed the data in 
AAV groups, and in eticlo-
pride groups were by one-way 
ANOVA. Due to non-normal 
distribution, path length in 
CGS21680 and MSX-3 groups 
were analyzed by the Kruskal–
Wallis test
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both D1 receptor and D2R [41, 42]. These findings may par-
tially explain the different regulating effects of A2AR in the 
NAc on seeking behavior between propofol and other drugs.

It seems the underlying molecular mechanisms that con-
tribute to different addiction stages of drug abuse are also 
distinct. Unlike the results of establishing propofol self-
administration behavior, the cue-induced reinstatement 
of propofol self-administration behavior was significantly 
changed after genetically and pharmacologically regulating 
A2AR in the NAc. The results indicated a critical role of 
A2AR in the cue-induced reinstatement of propofol. Moreo-
ver, the cue-induced reinstatement of propofol self-admin-
istration behavior was also inhibited by D2R antagonist eti-
clopride. Our results are in line with previous research that 
morphine withdrawal were increased in A2A knockout mice 
[22], and single systematic administration of eticlopride 
attenuated cue-elicited nicotine reinstatement [43]. These 
findings also suggest that A2AR mediates propofol relapse 
probably by interacting with D2R signaling in the NAc.

A2AR were mostly distributed at postsynaptic of gluta-
matergic terminals and GABAergic striatopallidal projec-
tion neurons in the striatum, producing significant effects 
in altering dopaminergic signaling via several mechanisms, 
including direct receptor-receptor interaction, interaction at 
the second messenger level, trans-synaptic or at post-synap-
tic level [19]. A2AR interactions between other cell-surface 
receptors have been described, including dopamine D1 
receptor, and subtype 5 metabotropic glutamates (mGlu5) 
receptors [19]. mGlu5 receptor mainly localized on postsyn-
aptic elements that control higher cognitive and incentive 
function in the brain, the interactions between mGluR5 and 
NMDA receptors is vital for synaptic plasticity [44]. It has 
been demonstrated that the stimulation of mGluR5 enhanced 
NMDA receptor responses was mainly by phosphorylating 
NR2B subunit at the Tyr1472 site, and this reaction was 
enabled by A2AR [45]. Our studies have demonstrated that 
propofol addiction was regulated by ERK1/2 and c-Fos 
expression in the NAc [8, 18], and the signaling pathway 
NMDAR-D1R/ERK/CREB in the NAc was reported play-
ing a critical role in control reward-seeking behavior [46]. 
Interestingly, it was also demonstrated that the co-stimula-
tion of mGluR5 and NMDA receptor synergistically active 
ERK1/2 signaling and lead to c-Fos expression, and the 
reactions were under the permissive control of A2AR [44]. 
Therefore, based on the findings of previous research, we 
speculated that the modulation of A2AR in the NAc on cue-
induced reinstatement of propofol self-administration might 
be via the signaling pathway of A2AR receptor/mGluR5/
NR2B(Tyr1472)-D1 receptor/ERK1/2/c-Fos.

Adenosine A2AR in the brain also take part in modulat-
ing the general locomotor activity, but A2AR in different 
brain regions may not act uniformly. The striatal-specific 
knockdown A2AR enhances cocaine-induced locomotor 

activity, while the forebrain-specific knockdown of A2AR 
inhibits in response to cocaine [47]. Moreover, systemic 
pretreatment with CGS21680 reduces locomotor activity 
at high doses, but intra-NAc pretreated with CGS21680 at 
the doses from 0.5 to 10 ng per side did not produce any 
significant impact on cumulative cocaine-induced locomo-
tor activity or sucrose reinstatement, which is consistent 
with the results in this study [17]. Taken together, these 
findings suggest that A2AR regulate locomotor activity 
response to psychoactive medications, but localizations 
of A2AR in the brain may affect differently.

Some other limitations of this study should be men-
tioned. As an addition to levodopa, the antagonist of 
A2AR Neurianz® (istradefylline) has been approved by 
US Food and Drug Administration (FDA) for Parkinson’s 
disease treatment after more than two decades of pre-
clinical and clinical studies [48]. However, whether the 
antagonist of A2AR would aggravate drug abuse relapse, 
especially propofol relapse, remains an open question. 
Although the results indicated that the agonist of A2AR 
CGS21680 inhibited propofol relapse, based on the results 
of CGS21680 not only decreased the cocaine reinforce-
ment behavior, the natural reward of food self-administra-
tion was also significantly inhibited [49]. Thus, we specu-
lated that CGS21680 would produce a severe impact on 
general condition if was administrated systematically by 
oral? Moreover, despite the results indicated an essential 
role of the D2R in the NAc in propofol relapse, the expres-
sion of the D2R and down-stream underlying molecular 
mechanisms were not determined in this study. It is worth 
highlighting that the A2AR was also expressed in the brain 
regions of cerebral cortex, amygdala, olfactory bulb, but 
we just examined the A2AR in the NAc. Conditional 
A2AR knockout mice in different brain regions can be 
used and may provide further evidence of the effects of 
A2AR in different regions on the addictive property of 
propofol. All these questions need to be elucidated in the 
future.

The study provides clear evidence that deletion or antago-
nizes A2AR with MSX-3 in the NAc promoted cue-induced 
reinstatement of propofol self-administration behavior after 
withdrawal for 14 days while inhibiting propofol relapse by 
activating A2AR or antagonizing D2R. This study supports 
the assumption that A2AR in the NAc directly regulates 
propofol relapse by mediating the dopamine D2R in the 
NAc.
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