Skip to main content

Advertisement

Log in

Lentivirus-Mediated Overexpression of miR-29a Promotes Axonal Regeneration and Functional Recovery in Experimental Spinal Cord Injury via PI3K/Akt/mTOR Pathway

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

MicroRNAs as a novel class of endogenous small non-coding RNAs, modulate negative gene expression at the post-transcriptional level. Our previous work has demonstrated that miR-29a reduces PTEN expression by directly targeting the 3′-UTRs (untranslated regions) of its mRNA, thus promoting neurite outgrowth. To further confirm the role of miR-29a in the recovery of SCI and its potential mechanisms, a recombinant lentiviral vector was used to promote miR-29a expression in the injured spinal cord. As compared with the LV-eGFP group and normal saline group, a significantly increased level of miR-29a expression and a markedly decreased level of PTEN expression were observed in the LV-miR-29a group. Overexpression of miR-29a increased the phosphorylation of two proteins (Akt and S6) of PI3K–AKT–mTOR signaling pathway and the expression of axonal regeneration associated key marker protein (neurofiament-200). Moreover, quantitative imaging analysis was performed to confirm that LV-miR-29a group expressed axonal regeneration at 4.0 ± 0.2-fold as much as the other two groups. Besides, miR-29a overexpression promoted hindlimb motor functional recovery. Collectively, these results suggested that miR-29a may be an important regulator for axon regeneration, and a potential therapeutic target for SCI recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Blesch A, Tuszynski MH (2002) Spontaneous and neurotrophin-induced axonal plasticity after spinal cord injury. Prog Brain Res 137:415–423

    Article  CAS  Google Scholar 

  2. De Miguel MP, Fuentes-Julian S, Blazquez-Martinez A, Pascual CY, Aller MA, Arias J, Arnalich-Montiel F (2012) Immunosuppressive properties of mesenchymal stem cells: advances and applications. Curr Mol Med 12:574–591

    Article  Google Scholar 

  3. Lee HJ, Kim KS, Park IH, Kim SU (2007) Human neural stem cells over-expressing VEGF provide neuroprotection, angiogenesis and functional recovery in mouse stroke model. PLoS ONE 2:e156

    Article  Google Scholar 

  4. Cizkova D, Rosocha J, Vanicky I, Jergova S, Cizek M (2006) Transplants of human mesenchymal stem cells improve functional recovery after spinal cord injury in the rat. Cell Mol Neurobiol 26:1167–1180

    Article  Google Scholar 

  5. Gao Y, Deng K, Hou J, Bryson JB, Barco A, Nikulina E, Spencer T, Mellado W, Kandel ER, Filbin MT (2004) Activated CREB is sufficient to overcome inhibitors in myelin and promote spinal axon regeneration in vivo. Neuron 44:609–621

    Article  CAS  Google Scholar 

  6. Park KK, Liu K, Hu Y, Smith PD, Wang C, Cai B, Xu B, Connolly L, Kramvis I, Sahin M, He Z (2008) Promoting axon regeneration in the adult CNS by modulation of the PTEN/mTOR pathway. Science 322:963–966

    Article  CAS  Google Scholar 

  7. Moore DL, Blackmore MG, Hu Y, Kaestner KH, Bixby JL, Lemmon VP, Goldberg JL (2009) KLF family members regulate intrinsic axon regeneration ability. Science 326:298–301

    Article  CAS  Google Scholar 

  8. Liu K, Lu Y, Lee JK, Samara R, Willenberg R, Sears-Kraxberger I, Tedeschi A, Park KK, Jin D, Cai B, Xu B, Connolly L, Steward O, Zheng B, He Z (2010) PTEN deletion enhances the regenerative ability of adult corticospinal neurons. Nat Neurosci 13:1075–1081

    Article  CAS  Google Scholar 

  9. Park KK, Liu K, Hu Y, Kanter JL, He Z (2010) PTEN/mTOR and axon regeneration. Exp Neurol 223:45–50

    Article  CAS  Google Scholar 

  10. Sun F, Park KK, Belin S, Wang D, Lu T, Chen G, Zhang K, Yeung C, Feng G, Yankner BA, He Z (2011) Sustained axon regeneration induced by co-deletion of PTEN and SOCS3. Nature 480:372–375

    Article  CAS  Google Scholar 

  11. Zhou H, Li X, Wu Q, Li F, Fu Z, Liu C, Liang Z, Chu T, Wang T, Lu L, Ning G, Kong X, Feng S (2015) shRNA against PTEN promotes neurite outgrowth of cortical neurons and functional recovery in spinal cord contusion rats. Regen Med 10:411–429

    Article  CAS  Google Scholar 

  12. Zhang J, Wang C, Yu S, Luo Z, Chen Y, Liu Q, Hua F, Xu G, Yu P (2014) Sevoflurane postconditioning protects rat hearts against ischemia-reperfusion injury via the activation of PI3K/AKT/mTOR signaling. Sci Rep 4:7317

    Article  CAS  Google Scholar 

  13. Rafalski VA, Brunet A (2011) Energy metabolism in adult neural stem cell fate. Prog Neurobiol 93:182–203

    Article  CAS  Google Scholar 

  14. Berry M, Ahmed Z, Morgan-Warren P, Fulton D, Logan A (2016) Prospects for mTOR-mediated functional repair after central nervous system trauma. Neurobiol Dis 85:99–110

    Article  CAS  Google Scholar 

  15. Ning B, Gao L, Liu RH, Liu Y, Zhang NS, Chen ZY (2014) microRNAs in spinal cord injury: potential roles and therapeutic implications. Int J Biol Sci 10:997–1006

    Article  Google Scholar 

  16. Cui C, Xu G, Qiu J, Fan X (2015) Up-regulation of miR-26a promotes neurite outgrowth and ameliorates apoptosis by inhibiting PTEN in bupivacaine injured mouse dorsal root ganglia. Cell Biol Int 39:933–942

    Article  CAS  Google Scholar 

  17. Smirnova L, Grafe A, Seiler A, Schumacher S, Nitsch R, Wulczyn FG (2005) Regulation of miRNA expression during neural cell specification. Eur J Neurosci 21:1469–1477

    Article  Google Scholar 

  18. Verrier JD, Lau P, Hudson L, Murashov AK, Renne R, Notterpek L (2009) Peripheral myelin protein 22 is regulated post-transcriptionally by miRNA-29a. Glia 57:1265–1279

    Article  Google Scholar 

  19. Zou H, Ding Y, Wang K, Xiong E, Peng W, Du F, Zhang Z, Liu J, Gong A (2015) MicroRNA-29A/PTEN pathway modulates neurite outgrowth in PC12 cells. Neuroscience 291:289–300

    Article  CAS  Google Scholar 

  20. Basso DM, Beattie MS, Bresnahan JC (1995) A sensitive and reliable locomotor rating scale for open field testing in rats. J Neurotrauma 12:1–21

    Article  CAS  Google Scholar 

  21. Ban DX, Ning GZ, Feng SQ, Wang Y, Zhou XH, Liu Y, Chen JT (2011) Combination of activated Schwann cells with bone mesenchymal stem cells: the best cell strategy for repair after spinal cord injury in rats. Regen Med 6:707–720

    Article  CAS  Google Scholar 

  22. Dong H, Fazzaro A, Xiang C, Korsmeyer SJ, Jacquin MF, McDonald JW (2003) Enhanced oligodendrocyte survival after spinal cord injury in Bax-deficient mice and mice with delayed Wallerian degeneration. J Neurosci 23:8682–8691

    Article  CAS  Google Scholar 

  23. Zhao Y, Zuo Y, Jiang J, Yan H, Wang X, Huo H, Xiao Y (2016) Neural stem cell transplantation combined with erythropoietin for the treatment of spinal cord injury in rats. Exp Ther Med 12:2688–2694

    Article  CAS  Google Scholar 

  24. Zhou HX, Li XY, Li FY, Liu C, Liang ZP, Liu S, Zhang B, Wang TY, Chu TC, Lu L, Ning GZ, Kong XH, Feng SQ (2014) Targeting RPTPsigma with lentiviral shRNA promotes neurites outgrowth of cortical neurons and improves functional recovery in a rat spinal cord contusion model. Brain Res 1586:46–63

    Article  CAS  Google Scholar 

  25. Li P, Teng ZQ, Liu CM (2016) Extrinsic and intrinsic regulation of axon regeneration by MicroRNAs after Spinal Cord Injury. Neural Plast 2016:1279051

    PubMed  PubMed Central  Google Scholar 

  26. Duan P, Sun S, Li B, Huang C, Xu Y, Han X, Xing Y, Yan W (2014) miR-29a modulates neuronal differentiation through targeting REST in mesenchymal stem cells. PLoS ONE 9:e97684

    Article  Google Scholar 

  27. Kong G, Zhang J, Zhang S, Shan C, Ye L, Zhang X (2011) Upregulated microRNA-29a by hepatitis B virus X protein enhances hepatoma cell migration by targeting PTEN in cell culture model. PLoS ONE 6:e19518

    Article  CAS  Google Scholar 

  28. Huang Z, Hu Z, Xie P, Liu Q (2017) Tyrosine-mutated AAV2-mediated shRNA silencing of PTEN promotes axon regeneration of adult optic nerve. PLoS ONE 12:e0174096

    Article  Google Scholar 

  29. Danilov CA, Steward O (2015) Conditional genetic deletion of PTEN after a spinal cord injury enhances regenerative growth of CST axons and motor function recovery in mice. Exp Neurol 266:147–160

    Article  CAS  Google Scholar 

  30. Pfeifer M, Grau M, Lenze D, Wenzel SS, Wolf A, Wollert-Wulf B, Dietze K, Nogai H, Storek B, Madle H, Dorken B, Janz M, Dirnhofer S, Lenz P, Hummel M, Tzankov A, Lenz G (2013) PTEN loss defines a PI3K/AKT pathway-dependent germinal center subtype of diffuse large B-cell lymphoma. Proc Natl Acad Sci USA 110:12420–12425

    Article  CAS  Google Scholar 

  31. Guertin DA, Sabatini DM (2007) Defining the role of mTOR in cancer. Cancer Cell 12:9–22

    Article  CAS  Google Scholar 

  32. Stambolic V, Suzuki A, de la Pompa JL, Brothers GM, Mirtsos C, Sasaki T, Ruland J, Penninger JM, Siderovski DP, Mak TW (1998) Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. Cell 95:29–39

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Science Foundation of China (81471263), the Natural Science Foundation of Jiangsu Province (BK20151177), and Changzhou High-Level Medical Talents Training Project (2016ZCLJ005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinbo Liu.

Ethics declarations

Conflict of interest

All authors claim that there are no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, H., Shen, L., Xu, C. et al. Lentivirus-Mediated Overexpression of miR-29a Promotes Axonal Regeneration and Functional Recovery in Experimental Spinal Cord Injury via PI3K/Akt/mTOR Pathway. Neurochem Res 43, 2038–2046 (2018). https://doi.org/10.1007/s11064-018-2625-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-018-2625-5

Keywords

Navigation