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followed by radiotherapy or combined radiotherapy and 
treatment with alkylating agents, mainly temozolomide 
(TMZ) [2]. Side effects of each treatment cause a signifi-
cant decrease in quality of life and despite advances in stan-
dard therapy, less than 10 % of GBM patients are alive at 
5 years [1]. Growing body of evidence suggests that glioma 
stem cells (GSCs), which possess the ability to self-renew 
and multilineage differentiation, play a significant role in 
angiogenesis, invasion, recurrence and resistance to chemo- 
and radiotherapy [3, 4]. Moreover, co-existence of different 
GSCs types in one GBM contributes to cellular heterogene-
ity, one of the causes of the failure of molecularly targeted 
therapies [3]. Thus, greater understanding of both GBM and 
GSCs biology may lead to the development of novel tar-
geted therapies. Deregulation of many signaling pathways 
involved in growth, proliferation, survival, migration and 
apoptosis has been implicated in pathogenesis of GBM. One 
of these pathways is phosphatidylinositol-3 kinases (PI3K)/
protein kinase B (AKT)/rapamycin-sensitive mTOR-com-
plex (mTOR) pathway, intensively studied and widely 
described so far (for an exhausting review see [5, 6]). Less 
attention has been paid to the role of glycogen synthase 
kinase 3 β (GSK3β), a target of AKT.

AKT Signaling in GBM

AKT is a serine/threonine kinase activated by a dual regu-
latory mechanism that requires translocation to the plasma 
membrane and phosphorylation. AKT contains the pleck-
strin homology (PH) domain that has a high affinity for 
the 3′-phosphorylated phosphoinositides 3,4,5-trisphos-
phate (PIP3). Phospholipid binding causes the transloca-
tion of AKT to the plasma membrane. PIP3 is generated by 
the addition of phosphate groups to phosphatidylinositol 
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Glioblastoma

Glioblastoma (GBM), WHO grade IV, is the most common 
and aggressive of primary brain tumors. The prognosis for 
patients with GBM is poor, as the median survival time of 
patients with newly diagnosted GBM is 9.7 months [1]. 
The standard treatment of GBM relies on surgical resection 
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Preferential activation of this cascade relative to matched 
nonstem cells promotes the self-renewal and tumor forma-
tion of GSCs [21]. Thus, inhibition of PI3K/AKT/mTOR 
pathway has been proposed to be one of the strategies to 
target GSCs [22, 23].

The main negative regulator of AKT, PTEN, is often 
inactive in GBM due to gene mutation or methylation. 
Lack of active PTEN leads to an increased level of PIP3 
and, in turn, an elevated activity of AKT [24, 25]. Latest 
findings indicate that a decrease in phosphorylation of AKT 
through PTEN may be obtain by suppression of miR-92b 
or miR-494-3p. Downregulation of these miRNAs increases 
expression of PTEN and decreases the level of phosphory-
lated AKT [26, 27]. Expression of both miR-92b and miR-
494-3p is significantly increased in GBM tissues compared 
to normal brain tissues [27, 28]. Of note, loss of chromo-
some 10 resulting in the lack of PTEN has also been found 
in several GSCs lines [29].

GSK3β Pathways in GBM

Once activated, AKT translocates to the various subcellu-
lar compartments where it phosphorylates several targets, 
including GSK3β, another multifunctional serine/threo-
nine kinase. Ser9 is the phosphorylation site for AKT, and 
the phosphorylation of this residue leads to the inactivation 
of GSK3β. In contrast, phosphorylation of Tyr216 by auto-
phosphorylation or by other tyrosine kinases increases the 
catalytic activity of GSK3β (Fig. 1) [30, 31]. The levels of 
GSK3β and GSK3β phosphorylated at Tyr216 were found 
to be increased in GBM as compared to the nonneoplas-
tic brain tissues [32]. A growing body of evidence indi-
cates that this protein is an important molecule influencing 

4,5-bisphosphate (PIP2). This reaction is catalyzed by PI3K, 
thus PI3K activity is essential for the translocation of AKT 
to the plasma membrane [7]. PI3K can be activated by sev-
eral mechanisms, all of which start with binding of a ligand 
to receptor tyrosine kinases (RTKs). Formation of PIP3 
also results in translocation to the membrane and activation 
of phosphatidylinositol dependent kinases (PDK). PDK1 
phosphorylates AKT on Thr308 what is both necessary 
and sufficient for AKT activation. However, maximal AKT 
activation requires additional phosphorylation at Ser473 by 
PDK2 or TORC2 complex of the mTOR [8–10]. The tumor 
suppressor phosphatase and tensin homolog (PTEN) inhib-
its AKT activation by dephosphorylation of PIP3 to PIP2 
(Fig. 1) [11].

High level of phosphorylated AKT (p-AKT) has been 
reported to correlate with a poor prognosis for patients with 
GBM [12, 13]. A dominant mutation of genes coding for 
the AKT family members has not been identified in human 
tumor so far, therefore activation of AKT seems to be a con-
sequence of the alterations of its upstream molecules [14]. 
Epidermal growth factor receptor (EGFR) belongs to RTKs 
and plays a crucial role in processes such as cell division, 
migration, adhesion, differentiation and apoptosis. EGFR 
amplification and/or overexpression occurs in 40–50 % of 
GBM [15, 16] and leads to the activation of PI3K/AKT sig-
naling pathway in these tumors [5]. Activating mutations in 
PIK3CA and PIK3R1 coding for subunits of PI3K have been 
identified in ∼10 % of GBM [17]. The other positive modu-
lators of AKT activity, PDK1 and mTOR, are also upregu-
lated in GBM, but evidence for mutations activating PDK1 
and mTOR remains elusive. However, targeting of either 
of these molecules has emerged as a potential therapeutic 
strategy in GBM (Fig. 2a–c) [5, 17–20]. Upregulation of 
PI3K/AKT pathway has also been documented in GSCs. 

Fig. 1 Interactions of the AKT signaling pathway with the GSK3β 
signaling pathways. The AKT signaling pathway is indicated in pur-
ple. The signaling pathways dependent on GSK3β are indicated in 
blue. High level of AKT phosphorylation triggers phosphorylation of 
GSK3β on Ser9 leading to its deactivation. Deactivation of GSK3β 

leads to translocation of accumulated β-catenin to the nucleus. By 
contrast, phosphorylation of GSK3β on Tyr216 causes its activation. 
Changes in GSK3β phosphorylation affect different downstream sig-
naling pathways related to glycogen synthesis, proliferation, angiogen-
esis, apoptosis and transcription. (Color figure online)
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GSK3β binds to axin and adenomatous polyposis coli 
(APC) proteins. This complex phosphorylates β-catenin, 
thus targeting it for degradation by the ubiquitination-pro-
teasome system (Fig. 1) [42, 43]. In the absence of nuclear 
β-catenin, the TCF/LEF proteins recruit Groucho-related 
transcriptional repressors and block expression of target 
genes [44]. Both axin and APC are phosphorylated by 
GSK3β what increases the stability of the complex and the 
binding of β-catenin to it. Inhibition of activity of GSK3β 
promotes translocation of dephosphorylated and stabilized 
β-catenin to the nucleus [45].

GSK3β/β-catenin pathway is overactivated, and levels of 
c-Myc, N-Myc, c-jun, and cyclin D1 proteins are upregu-
lated in GBM [41]. Besides the role in the modulation of 
β-catenin activity, GSK3β can also regulate stability and 
activity of nuclear factor-kappa B (NF-κB), an intracellular 
protein complex that controls DNA transcription and acts as 
a prosurvival factor [46]. Moreover, GSK3β phosphorylates 
c-MYC, a transcription factor implicated in the regulation 
of cell growth and proliferation [47]. Recent study suggests 
that GSK3β activity plays an important role in the regula-
tion of GSCs survival and apoptosis [48].

malignant phenotype of GBM. Initially, GSK3β was iden-
tified as a kinase that phosphorylated and inactivated 
glycogen synthase (GYS) [33], the final enzyme in bio-
synthesis of glycogen which is the main form of glucose 
storage [34]. Under basal conditions, GSK3β phosphory-
lates GYS suppressing its activity and blocking glycogen 
synthesis. Insulin stimulation activates the IR/IRSs/PI3K/
AKT signaling cascade leading to the phosphorylation of 
GSK3β at Ser9. Inhibition of GSK3β results in activation 
of GYS and thereby glycogen synthesis [34]. The level of 
glycogen is particularly high in glioblastoma cell lines and 
accumulation of glycogen is phenomenon associated with 
growth of malignant cells [35, 36]. However, the role of 
GSK3β goes far beyond glycogen metabolism and glu-
cose homeostasis. This protein plays a pivotal role in the 
modulation of activity of β-catenin, a coactivator of tran-
scription factors belonging to the TCF/LEF (T-cell factor/
lymphoid enhancing factor) family. β-catenin can be trans-
located to the nucleus where it binds to TCF/LEF proteins 
and activates genes encoding proteins involved in prolif-
eration, differentiation, survival and apoptosis, such as: 
MYC, MYCN, JUN, BIRC5 and CCND1 [37–41]. Active 

Fig. 2 Structures of the selected inhibitors of the AKT/GSK3β signaling pathway
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the direct inhibition of GSK3β on the phenotype of GSCs 
has recently been examined. TDZD-8, a non-ATP competi-
tive inhibitor of GSK3β, inhibited GCS growth and capac-
ity of self-renewal by the activation of the ERK/p90RSK 
pathway which led to the phosphorylation and inactivation 
of GSK3β [56].

The most promising compound reducing GSK3β activ-
ity is enzastaurin (LY317615), an inhibitor of protein 
kinase C-beta (PKC-β) (Fig. 2f). Enzasturin shows a direct 
inhibitory effect against GSK3β activity associated with 
the inhibition of GSK3β phosphorylation. This compound 
was clinically tested in a phase I and II trial in patients with 
recurrent GBM and it was well tolerated and presented anti-
glioma activity [59, 60]. Despite these encourage observa-
tions, phase III trials showed that enzastaurin is unlikely to 
be a useful agent in monotherapy because of its insufficient 
efficiency [61]. Therefore, the combination therapy of enza-
staurin with radiotherapy, temozolomide and bevacizumab 
was investigated but showed no clear benefit for patients 
[62–65].

Conclusions and Future Directions

In conclusion, the AKT/GSK3β signaling pathway plays 
a significant role in the pathogenesis of GBM. Moreover, 
mounting evidence suggests that it is implicated in GSCs 
survival. Thus, this cascade seems to be a promising tar-
get for creating new, more effective GBM therapy. Inhibi-
tors designed to target various molecules belonging to 
AKT/GSK3β pathway seem to have enormous therapeutic 
potential. However, the modest efficacy presented by these 
compounds in the trials conducted so far suggests that they 
might be useful in the combination therapy rather than in 
the single-agent treatment. Clinical trials of combination of 
AKT/GSK3β pathway inhibitors with TMZ, radiotherapy 
and bevacizumab are ongoing.
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