Skip to main content

Advertisement

Log in

Activation of Adenosine A2A Receptor Up-Regulates BDNF Expression in Rat Primary Cortical Neurons

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

As a member of neurotrophin family, brain derived neurotrophic factor (BDNF) plays critical roles in neuronal development, differentiation, synaptogenesis, and neural protection from the harmful stimuli. There have been reported that adenosine A2A receptor subtype is widely distributed in the brain regions, such as hippocampus, striatum, and cortex. Adenosine A2A receptor is colocalized with BDNF in brain regions and the functional interaction between A2A receptor stimulation and BDNF action has been suggested. In this study, we investigated the possibility that the activation of A2A receptor modulates BDNF production in rat primary cortical neuron. CGS21680, an adenosine A2A receptor agonist, induced BDNF expression and release. An antagonist against A2A receptor, ZM241385, prevented CGS21680-induced increase in BDNF production. A2A receptor stimulation induced the activation of Akt-GSK-3β signaling pathway and the blockade of the signaling pathway with specific inhibitors abolished the increase in BDNF production, possibly via modulation of ERK1/2-CREB pathway. The physiological roles of A2A receptor-induced BDNF production was demonstrated by the protection of neurons from the excitotoxicity and increased neurite extension as well as synapse formation from immature and mature neurons. Taken together, activation of A2A receptor regulates BDNF production in rat cortical neuron, which provides neuro-protective action.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Tucker AL, Linden J (1993) Cloned receptors and cardiovascular responses to adenosine. Cardiovasc Res 27(1):62–67

    Article  PubMed  CAS  Google Scholar 

  2. Moser A, Liebetrau A, Cramer H (1991) Adenosine receptor-coupled adenylate cyclase in the caudate nucleus of the rat brain. Neuropharmacology 30(7):769–773

    Article  PubMed  CAS  Google Scholar 

  3. Proll MA, Clark RB, Butcher RW (1986) A1 and A2 adenosine receptors regulate adenylate cyclase in cultured human lung fibroblasts. Mol Cell Endocrinol 44(3):211–217

    Article  PubMed  CAS  Google Scholar 

  4. Schiffmann SN et al (2007) Adenosine A2A receptors and basal ganglia physiology. Prog Neurobiol 83(5):277–292

    Article  PubMed  CAS  Google Scholar 

  5. Williams M (1983) Adenosine receptors in the mammalian central nervous system. Prog Neuropsychopharmacol Biol Psychiatry 7(4–6):443–450

    Article  PubMed  CAS  Google Scholar 

  6. Cunha RA et al (2008) Potential therapeutic interest of adenosine A2A receptors in psychiatric disorders. Curr Pharm Des 14(15):1512–1524

    Article  PubMed  CAS  Google Scholar 

  7. Lewin GR (1996) Neurotrophins and the specification of neuronal phenotype. Philos Trans R Soc Lond B Biol Sci 351(1338):405–411

    Article  PubMed  CAS  Google Scholar 

  8. Lindholm D et al (1993) Brain-derived neurotrophic factor is a survival factor for cultured rat cerebellar granule neurons and protects them against glutamate-induced neurotoxicity. Eur J Neurosci 5(11):1455–1464

    Article  PubMed  CAS  Google Scholar 

  9. Ip NY et al (1993) Cultured hippocampal neurons show responses to BDNF, NT-3, and NT-4, but not NGF. J Neurosci 13(8):3394–3405

    PubMed  CAS  Google Scholar 

  10. Nawa H, Pelleymounter MA, Carnahan J (1994) Intraventricular administration of BDNF increases neuropeptide expression in newborn rat brain. J Neurosci 14(6):3751–3765

    PubMed  CAS  Google Scholar 

  11. Croll SD et al (1994) Regulation of neuropeptides in adult rat forebrain by the neurotrophins BDNF and NGF. Eur J Neurosci 6(8):1343–1353

    Article  PubMed  CAS  Google Scholar 

  12. Marty S et al (1996) Brain-derived neurotrophic factor promotes the differentiation of various hippocampal nonpyramidal neurons, including Cajal-Retzius cells, in organotypic slice cultures. J Neurosci 16(2):675–687

    PubMed  CAS  Google Scholar 

  13. Shen W et al (2006) Activity-induced rapid synaptic maturation mediated by presynaptic cdc42 signaling. Neuron 50(3):401–414

    Article  PubMed  CAS  Google Scholar 

  14. Tebano MT et al (2008) Adenosine A(2A) receptors are required for normal BDNF levels and BDNF-induced potentiation of synaptic transmission in the mouse hippocampus. J Neurochem 104(1):279–286

    PubMed  CAS  Google Scholar 

  15. Diogenes MJ et al (2004) Activation of adenosine A2A receptor facilitates brain-derived neurotrophic factor modulation of synaptic transmission in hippocampal slices. J Neurosci 24(12):2905–2913

    Article  PubMed  CAS  Google Scholar 

  16. Wiese S et al (2007) Adenosine receptor A2A-R contributes to motoneuron survival by transactivating the tyrosine kinase receptor TrkB. Proc Natl Acad Sci U S A 104(43):17210–17215

    Article  PubMed  CAS  Google Scholar 

  17. Jeon SJ et al (2011) Oroxylin A increases BDNF production by activation of MAPK-CREB pathway in rat primary cortical neuronal culture. Neurosci Res 69(3):214–222

    Article  PubMed  CAS  Google Scholar 

  18. Kobayashi H et al (2008) Expression changes of multiple brain-derived neurotrophic factor transcripts in selective spinal nerve ligation model and complete Freund’s adjuvant model. Brain Res 1206:13–19

    Article  PubMed  CAS  Google Scholar 

  19. Konopka K et al (2009) Correlation between the levels of survivin and survivin promoter-driven gene expression in cancer and non-cancer cells. Cell Mol Biol Lett 14(1):70–89

    Article  PubMed  CAS  Google Scholar 

  20. Cheng HC, Shih HM, Chern Y (2002) Essential role of cAMP-response element-binding protein activation by A2A adenosine receptors in rescuing the nerve growth factor-induced neurite outgrowth impaired by blockage of the MAPK cascade. J Biol Chem 277(37):33930–33942

    Article  PubMed  CAS  Google Scholar 

  21. Huang NK et al (2001) Activation of protein kinase A and atypical protein kinase C by A(2A) adenosine receptors antagonizes apoptosis due to serum deprivation in PC12 cells. J Biol Chem 276(17):13838–13846

    PubMed  CAS  Google Scholar 

  22. Flajolet M et al (2008) FGF acts as a co-transmitter through adenosine A(2A) receptor to regulate synaptic plasticity. Nat Neurosci 11(12):1402–1409

    Article  PubMed  CAS  Google Scholar 

  23. Slack SE et al (2004) Brain-derived neurotrophic factor induces NMDA receptor subunit one phosphorylation via ERK and PKC in the rat spinal cord. Eur J Neurosci 20(7):1769–1778

    Article  PubMed  Google Scholar 

  24. Kurauchi Y et al (2010) Midbrain dopaminergic neurons utilize nitric oxide/cyclic GMP signaling to recruit ERK that links retinoic acid receptor stimulation to up-regulation of BDNF. J Neurochem 116(3):323–333

    Article  Google Scholar 

  25. Wang R et al (2010) Curcumin produces neuroprotective effects via activating brain-derived neurotrophic factor/TrkB-dependent MAPK and PI-3 K cascades in rodent cortical neurons. Prog Neuropsychopharmacol Biol Psychiatry 34(1):147–153

    Article  PubMed  CAS  Google Scholar 

  26. Wu H et al (2008) Simvastatin-mediated upregulation of VEGF and BDNF, activation of the PI3K/Akt pathway, and increase of neurogenesis are associated with therapeutic improvement after traumatic brain injury. J Neurotrauma 25(2):130–139

    Article  PubMed  Google Scholar 

  27. Bogush A et al (2007) AKT and CDK5/p35 mediate brain-derived neurotrophic factor induction of DARPP-32 in medium size spiny neurons in vitro. J Biol Chem 282(10):7352–7359

    Article  PubMed  CAS  Google Scholar 

  28. Lee FS, Chao MV (2001) Activation of Trk neurotrophin receptors in the absence of neurotrophins. Proc Natl Acad Sci USA 98(6):3555–3560

    Article  PubMed  CAS  Google Scholar 

  29. Kinsel JF, Sitkovsky MV (2003) Possible targeting of G protein coupled receptors to manipulate inflammation in vivo using synthetic and natural ligands. Ann Rheum Dis 62(2):ii22–ii24

    Article  PubMed  CAS  Google Scholar 

  30. Ohta A, Sitkovsky M (2001) Role of G-protein-coupled adenosine receptors in downregulation of inflammation and protection from tissue damage. Nature 414(6866):916–920

    Article  PubMed  CAS  Google Scholar 

  31. Moreau JL, Huber G (1999) Central adenosine A(2A) receptors: an overview. Brain Res Brain Res Rev 31(1):65–82

    Article  PubMed  CAS  Google Scholar 

  32. Olah ME (1997) Identification of A2a adenosine receptor domains involved in selective coupling to Gs. Analysis of chimeric A1/A2a adenosine receptors. J Biol Chem 272(1):337–344

    PubMed  CAS  Google Scholar 

  33. Ahmed AH, Heppel LA (1997) Evidence for a role of G protein beta gamma subunits in the enhancement of cAMP accumulation and DNA synthesis by adenosine in human cells. J Cell Physiol 170(3):263–271

    Article  PubMed  CAS  Google Scholar 

  34. Svenningsson P et al (1998) Activation of adenosine A2A and dopamine D1 receptors stimulates cyclic AMP-dependent phosphorylation of DARPP-32 in distinct populations of striatal projection neurons. Neuroscience 84(1):223–228

    Article  PubMed  CAS  Google Scholar 

  35. Save S, Persson K (2010) Effects of adenosine A(2A) and A(2B) receptor activation on signaling pathways and cytokine production in human uroepithelial cells. Pharmacology 86(3):129–137

    Article  PubMed  Google Scholar 

  36. Sexl V et al (1997) Stimulation of the mitogen-activated protein kinase via the A2A-adenosine receptor in primary human endothelial cells. J Biol Chem 272(9):5792–5799

    Article  PubMed  CAS  Google Scholar 

  37. Mori Y et al (2004) Adenosine A2A receptor facilitates calcium-dependent protein secretion through the activation of protein kinase A and phosphatidylinositol-3 kinase in PC12 cells. Cell Struct Funct 29(4):101–110

    Article  PubMed  CAS  Google Scholar 

  38. Tao X et al (1998) Ca2+ influx regulates BDNF transcription by a CREB family transcription factor-dependent mechanism. Neuron 20(4):709–726

    Article  PubMed  CAS  Google Scholar 

  39. Impey S et al (2004) Defining the CREB regulon: a genome-wide analysis of transcription factor regulatory regions. Cell 119(7):1041–1054

    PubMed  CAS  Google Scholar 

  40. Shaywitz AJ, Greenberg ME (1999) CREB: a stimulus-induced transcription factor activated by a diverse array of extracellular signals. Annu Rev Biochem 68:821–861

    Article  PubMed  CAS  Google Scholar 

  41. Heese K et al (1997) Nerve growth factor (NGF) expression in rat microglia is induced by adenosine A2a-receptors. Neurosci Lett 231(2):83–86

    Article  PubMed  CAS  Google Scholar 

  42. Potenza RL et al (2007) Adenosine A(2A) receptors modulate BDNF both in normal conditions and in experimental models of Huntington’s disease. Purinergic Signal 3(4):333–338

    Article  PubMed  CAS  Google Scholar 

  43. Ciccarelli R et al (1999) Activation of A(1) adenosine or mGlu3 metabotropic glutamate receptors enhances the release of nerve growth factor and S-100beta protein from cultured astrocytes. Glia 27(3):275–281

    Article  PubMed  CAS  Google Scholar 

  44. Yamagata K et al (2007) Adenosine induces expression of glial cell line-derived neurotrophic factor (GDNF) in primary rat astrocytes. Neurosci Res 59(4):467–474

    Article  PubMed  CAS  Google Scholar 

  45. Weaver DR (1993) A2a adenosine receptor gene expression in developing rat brain. Brain Res Mol Brain Res 20(4):313–327

    Article  PubMed  CAS  Google Scholar 

  46. Latini S et al (1996) A2 adenosine receptors: their presence and neuromodulatory role in the central nervous system. Gen Pharmacol 27(6):925–933

    Article  PubMed  CAS  Google Scholar 

  47. Rebola N et al (2005) Different roles of adenosine A1, A2A and A3 receptors in controlling kainate-induced toxicity in cortical cultured neurons. Neurochem Int 47(5):317–325

    Article  PubMed  CAS  Google Scholar 

  48. Fontinha BM et al (2008) Enhancement of long-term potentiation by brain-derived neurotrophic factor requires adenosine A2A receptor activation by endogenous adenosine. Neuropharmacology 54(6):924–933

    Article  PubMed  CAS  Google Scholar 

  49. Diogenes MJ et al (2007) Influence of age on BDNF modulation of hippocampal synaptic transmission: interplay with adenosine A2A receptors. Hippocampus 17(7):577–585

    Article  PubMed  CAS  Google Scholar 

  50. Ferreira JM, Paes-de-Carvalho R (2001) Long-term activation of adenosine A(2a) receptors blocks glutamate excitotoxicity in cultures of avian retinal neurons. Brain Res 900(2):169–176

    Article  PubMed  CAS  Google Scholar 

  51. Golder FJ et al (2008) Spinal adenosine A2a receptor activation elicits long-lasting phrenic motor facilitation. J Neurosci 28(9):2033–2042

    Article  PubMed  CAS  Google Scholar 

  52. Hillefors M, Hedlund PB, von Euler G (1999) Effects of adenosine A(2A) receptor stimulation in vivo on dopamine D3 receptor agonist binding in the rat brain. Biochem Pharmacol 58(12):1961–1964

    Article  PubMed  CAS  Google Scholar 

  53. Chou SY et al (2005) CGS21680 attenuates symptoms of Huntington’s disease in a transgenic mouse model. J Neurochem 93(2):310–320

    Article  PubMed  CAS  Google Scholar 

  54. Chiang MC et al (2009) The A2A adenosine receptor rescues the urea cycle deficiency of Huntington’s disease by enhancing the activity of the ubiquitin-proteasome system. Hum Mol Genet 18(16):2929–2942

    Article  PubMed  CAS  Google Scholar 

  55. Martire A et al (2007) Opposite effects of the A2A receptor agonist CGS21680 in the striatum of Huntington’s disease versus wild-type mice. Neurosci Lett 417(1):78–83

    Article  PubMed  CAS  Google Scholar 

  56. Wang Z et al (2010) Static magnetic field exposure reproduces cellular effects of the Parkinson’s disease drug candidate ZM241385. PLoS One 5(11):e13883

    Article  PubMed  Google Scholar 

  57. Stafford MR, Bartlett PF, Adams DJ (2007) Purinergic receptor activation inhibits mitogen-stimulated proliferation in primary neurospheres from the adult mouse subventricular zone. Mol Cell Neurosci 35(4):535–548

    Article  PubMed  CAS  Google Scholar 

  58. Scemes E, Duval N, Meda P (2003) Reduced expression of P2Y1 receptors in connexin43-null mice alters calcium signaling and migration of neural progenitor cells. J Neurosci 23(36):11444–11452

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by WCU (World Class University) program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (R33-2008-000-10090-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chan Young Shin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeon, S.J., Rhee, S.Y., Ryu, J.H. et al. Activation of Adenosine A2A Receptor Up-Regulates BDNF Expression in Rat Primary Cortical Neurons. Neurochem Res 36, 2259–2269 (2011). https://doi.org/10.1007/s11064-011-0550-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-011-0550-y

Keywords

Navigation