Skip to main content

Advertisement

Log in

Cellular Stress Responses, Mitostress and Carnitine Insufficiencies as Critical Determinants in Aging and Neurodegenerative Disorders: Role of Hormesis and Vitagenes

  • ORIGINAL PAPER
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The widely accepted oxidative stress theory of aging postulates that aging results from accumulation of oxidative damage. A prediction of this theory is that, among species, differential rates of aging may be apparent on the basis of intrinsic differences in oxidative damage accrual. Although widely accepted, there is a growing number of exceptions to this theory, most contingently related to genetic model organism investigations. Proteins are one of the prime targets for oxidative damage and cysteine residues are particularly sensitive to reversible and irreversible oxidation. The adaptation and survival of cells and organisms requires the ability to sense proteotoxic insults and to coordinate protective cellular stress response pathways and chaperone networks related to protein quality control and stability. The toxic effects that stem from the misassembly or aggregation of proteins or peptides, in any cell type, are collectively termed proteotoxicity. Despite the abundance and apparent capacity of chaperones and other components of homeostasis to restore folding equilibrium, the cell appears poorly adapted for chronic proteotoxic stress which increases in cancer, metabolic and neurodegenerative diseases. Pharmacological modulation of cellular stress response pathways has emerging implications for the treatment of human diseases, including neurodegenerative disorders, cardiovascular disease, and cancer. A critical key to successful medical intervention is getting the dose right. Achieving this goal can be extremely challenging due to human inter-individual variation as affected by age, gender, diet, exercise, genetic factors and health status. The nature of the dose response in and adjacent to the therapeutic zones, over the past decade has received considerable advances. The hormetic dose–response, challenging long-standing beliefs about the nature of the dose–response in a lowdose zone, has the potential to affect significantly the design of pre-clinical studies and clinical trials as well as strategies for optimal patient dosing in the treatment of numerous diseases. Given the broad cytoprotective properties of the heat shock response there is now strong interest in discovering and developing pharmacological agents capable of inducing stress responses, including carnitines. This paper describes in mechanistic detail how hormetic dose responses are mediated for endogenous cellular defense pathways, including the possible signaling mechanisms by which the carnitine system, by interplaying metabolism, mitochondrial energetics and activation of critical vitagenes, modulates signal transduction cascades that confer cytoprotection against chronic degenerative damage associated to aging and neurodegenerative disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Balch WE, Morimoto RI, Dillin A, Kelly JW (2008) Adapting proteostasis for disease intervention. Science 319:916–919

    Article  CAS  PubMed  Google Scholar 

  2. Calabrese V, Cornelius C, Dinkova-Kostova AT, Calabrese EJ, Mattson MP (2010) Cellular stress responses, the hormesis paradigm and vitagenes: novel targets for therapeutic intervention in neurodegenerative disorders. Antioxid Redox Signal 610:285–308

    CAS  Google Scholar 

  3. Calabrese V, Cornelius C, Dinkova-Kostova AT, Calabrese EJ (2009) Vitagenes, cellular stress response and acetylcarnitine: relevance to hormesis. Biofactors 35:146–160

    Article  CAS  PubMed  Google Scholar 

  4. Gerschman R, Gilbert DL, Nye SW, Dwyer P, Fenn WO (1954) Oxygen poisoning and x-irradiation: a mechanism in common. Science 119:623–626

    Article  CAS  PubMed  Google Scholar 

  5. Gerschman R, Gilbert DL, Nye SW, Fenn WO (1954) Influence of x-irradiation on oxygen poisoning in mice. Proc Soc Exp Biol Med 86:27–29

    CAS  PubMed  Google Scholar 

  6. Harman D (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontol 11:298–300

    CAS  PubMed  Google Scholar 

  7. Harman D (1972) The biologic clock: the mitochondria? J Am Geriatr Soc 20:145–147

    CAS  PubMed  Google Scholar 

  8. Speakman JR (2005) Body size, energy metabolism and lifespan. J Exp Biol 208:1717–1730

    Article  PubMed  Google Scholar 

  9. Gilbert DL, Colton CA (1999) Reactive oxygen species in biological systems: an interdisciplinary approach. Kluwer, New York

    Google Scholar 

  10. Bokov A, Chaudhuri A, Richardson A (2004) The role of oxidative damage and stress in aging. Mech Ageing Dev 125:811–826

    Article  CAS  PubMed  Google Scholar 

  11. Sohal R, Weindruch R (1996) Oxidative stress, caloric restriction, and aging. Science 273:59–63

    Article  CAS  PubMed  Google Scholar 

  12. Muller FL, Lustgarten MS, Jang Y, Richardson A, Van Remmen H (2007) Trends in oxidative aging theories. Free Radic Biol Med 43:477–503

    Article  CAS  PubMed  Google Scholar 

  13. Salmon AB, Richardson A, Pérez VI (2010) Update on the oxidative stress theory of aging: does oxidative stress play a role in aging or healthy aging? Free Radic Biol Med 48:642–655

    Article  CAS  PubMed  Google Scholar 

  14. Calabrese V, Giuffrida Stella AM, Butterfield DA, Scapagnini G (2004) Redox regulation in neurodegeneration and longevity: role of the heme oxygenase and HSP70 systems in brain stress tolerance. Antioxid Redox Signal 6:895–913

    CAS  PubMed  Google Scholar 

  15. Calabrese V, Butterfield DA, Scapagnini G, Stella AM, Maines MD (2006) Redox regulation of heat shock protein expression by signaling involving nitric oxide and carbon monoxide: relevance to brain aging, neurodegenerative disorders, and longevity. Antioxid Redox Signal 8:444–477

    Article  CAS  PubMed  Google Scholar 

  16. Calabrese V, Guagliano E, Sapienza M, Panebianco M, Calafato S, Puleo E, Pennisi G, Mancuso C, Butterfield AD, Giuffrida Stella AM (2007) Redox regulation of cellular stress response in aging and neurodegenerative disorders: role of vitagenes. Neurochem Res 32:757–773

    Article  CAS  PubMed  Google Scholar 

  17. Sohal RS, Toroser D, Brégère C, Mockett RJ, Orr WC (2008) Age-related decrease in expression of mitochondrial DNA encoded subunits of cytochrome c oxidase in Drosophila melanogaster. Mech Ageing Dev 129:558–561

    Article  CAS  PubMed  Google Scholar 

  18. Tudek B, Winczura A, Janik J, Siomek A, Foksinski M, Oliński R (2010) Involvement of oxidatively damaged DNA and repair in cancer development and aging. Am J Transl Res 2:254–284

    CAS  PubMed  Google Scholar 

  19. Rai P (2010) Oxidation in the nucleotide pool, the DNA Damage response and cellular senescence: defective bricks build a defective house. Mutat Res. [Epub ahead of print]

  20. Mangialasche F, Polidori MC, Monastero R, Ercolani S, Camarda C, Cecchetti R, Mecocci P (2009) Biomarkers of oxidative and nitrosative damage in Alzheimer’s disease and mild cognitive impairment. Ageing Res Rev 8:285–305

    Article  CAS  PubMed  Google Scholar 

  21. Lezza AM, Mecocci P, Cormio A, Beal MF, Cherubini A, Cantatore P, Senin U, Gadaleta MN (1999) Mitochondrial DNA 4977 bp deletion and OH8dG levels correlate in the brain of aged subjects but not Alzheimer’s disease patients. FASEB J 13:1083–1088

    CAS  PubMed  Google Scholar 

  22. Wilson DM 3rd, Bohr VA, McKinnon PJ (2008) DNA damage, DNA repair, ageing and age-related disease. Mech Ageing Dev 129:349–352

    Article  CAS  PubMed  Google Scholar 

  23. Passos JF, Saretzki G, von Zglinicki T (2007) DNA damage in telomeres and mitochondria during cellular senescence: is there a connection? Nucleic Acids Res 35:7505–7513

    Article  CAS  PubMed  Google Scholar 

  24. Niedernhofer LJ, Garinis GA, Raams A, Lalai AS, Robinson AR, Appeldoorn E, Odijk H, Oostendorp R, Ahmad A, van Leeuwen W, Theil AF, Vermeulen W, van der Horst GT, Meinecke P, Kleijer WJ, Vijg J, Jaspers NG, Hoeijmakers JH (2006) A new progeroid syndrome reveals that genotoxic stress suppresses the somatotroph axis. Nature 444:1038–1043

    Article  CAS  PubMed  Google Scholar 

  25. Sohal RS, Orr WC (1992) Relationship between antioxidants, prooxidants, and the aging process. Ann N Y Acad Sci 663:74–84

    Article  CAS  PubMed  Google Scholar 

  26. Stadtman ER (2006) Protein oxidation and aging. Free Radic Res 40:1250–1258

    Article  CAS  PubMed  Google Scholar 

  27. Wang Q, Zhao X, He S, Liu Y, An M, Ji J (2010) Differential proteomics analysis of specific carbonylated proteins in the temporal cortex of aged rats: the deterioration of antioxidant system. Neurochem Res 35:13–21

    Article  PubMed  CAS  Google Scholar 

  28. Chen JJ, Lin F, Qin ZH (2008) The roles of the proteasome pathway in signal transduction and neurodegenerative diseases. Neurosci Bull 24:183–194

    Article  CAS  PubMed  Google Scholar 

  29. Grimm S, Hoehn A, Davies KJ, Grune T (2010) Protein oxidative modifications in the ageing brain: Consequence for the onset of neurodegenerative disease. Free Radic Res. [Epub ahead of print]

  30. Lodi R, Tonon C, Calabrese V, Schapira AH (2006) Friedreich’s ataxia: from disease mechanisms to therapeutic interventions. Antioxid Redox Signal 8:438–443

    Article  CAS  PubMed  Google Scholar 

  31. Calabrese V, Cornelius C, Mancuso C, Pennisi G, Calafato S, Bellia F, Bates TE, Giuffrida Stella AM, Schapira T, Dinkova Kostova AT, Rizzarelli E (2008) Cellular stress response: a novel target for chemoprevention and nutritional neuroprotection in aging, neurodegenerative disorders and longevity. Neurochem Res 33:2444–2471

    Article  CAS  PubMed  Google Scholar 

  32. Calabrese V (2007) Highlight commentary on “redox proteomics analysis of oxidatively 3 modified proteins in G93A–SOD1 transgenic mice—a model of 4 familial amyotrophic lateral sclerosis”. Free Radic Biol Med 43:160–162

    Article  CAS  PubMed  Google Scholar 

  33. Halliwell B (2009) The wanderings of a free radical. Free Radic Biol Med 46:531–542

    Article  CAS  PubMed  Google Scholar 

  34. Seet RC, Lee CY, Lim EC, Tan JJ, Quek AM, Chong WL, Looi WF, Huang SH, Wang H, Chan YH, Halliwell B (2010) Oxidative damage in Parkinson disease: measurement using accurate biomarkers. Free Radic Biol Med 48:560–566

    Article  CAS  PubMed  Google Scholar 

  35. Poon HF, Calabrese V, Calvani M, Butterfield DA (2006) Proteomics analyses of specific protein oxidation and protein expression in aged rat brain and its modulation by l-acetylcarnitine: insights into the mechanisms of action of this proposed therapeutic agent for CNS disorders associated with oxidative stress. Antioxid Redox Signal 8:381–394

    Article  CAS  PubMed  Google Scholar 

  36. Bayot A, Gareil M, Rogowska-Wrzesinska A, Roepstorff P, Friguet B, Bulteau AL (2010) Identification of novel oxidized protein substrates and physiological partners of the mitochondrial ATP-dependent Lon-like protease Pim1. J Biol Chem 285:11445–11457

    Article  CAS  PubMed  Google Scholar 

  37. Ugarte N, Petropoulos I, Friguet B (2010) Oxidized mitochondrial protein degradation and repair in aging and oxidative stress. Antioxid Redox Signal 13:539–549

    Article  CAS  PubMed  Google Scholar 

  38. Sultana R, Perluigi M, Newman SF, Pierce WM, Cini C, Coccia R, Butterfield DA (2010) Redox proteomic analysis of carbonylated brain proteins in mild cognitive impairment and early Alzheimer’s disease. Antioxid Redox Signal 12:327–336

    Article  CAS  PubMed  Google Scholar 

  39. Calabrese V, Mancuso C, Ravagna A, Perluigi M, Cini C, De Marco C, Butterfield DA, Giuffrida Stella AM (2007) In vivo induction of heat shock proteins in the substantia nigra following l-DOPA administration is associated with increased activity of mitochondrial complex I and nitrosative stress in rats: regulation by glutathione redox state. J Neurochem 101:709–717

    Article  CAS  PubMed  Google Scholar 

  40. Bellia F, Calabrese V, Guarino F, Cavallaro M, Cornelius C, De Pinto V, Rizzarelli E (2009) Carnosinase levels in aging brain: redox state induction and cellular stress response. Antioxid Redox Signal 11:2759–2775

    Article  CAS  PubMed  Google Scholar 

  41. Calabrese V, Mancuso C, Calvani M, Rizzarelli E, Butterfield DA, Giuffrida Stella AM (2007) Nitric oxide in the CNS: neuroprotection versus neurotoxicity. Nature Neurosi 8:766–775

    Article  CAS  Google Scholar 

  42. Calabrese V, Signorile A, Cornelius C, Mancuso C, Scapagnini G, Ventimiglia B, Ragusa N, Dinkova-Kostova A (2008) Practical approaches to investigate redox regulation of heat shock protein expression and intracellular glutathione redox state. Methods Enzymol 441:83–110

    Article  CAS  PubMed  Google Scholar 

  43. Calabrese V, Colombrita C, Sultana R, Scapagnini G, Calvani M, Butterfield DA, Stella AM (2006) Redox modulation of heat shock protein expression by acetylcarnitine in aging brain: relationship to antioxidant status and mitochondrial function. Antioxid Redox Signal 8:404–416

    Article  CAS  PubMed  Google Scholar 

  44. Perluigi M, Di Domenico F, Butterfield DA, Giorgi A, Schininà ME, Coccia R, Cini C, Bellia F, Cambria MT, Cormelius C, Calabrese V (2010) Redox proteomics in aging rat brain: involvement of mitochondrial GSH status and mitochondrial protein oxidation in the aging process. J Neurosci Res (in press)

  45. Bradley MA, Markesbery WR, Lovell MA (2010) Increased levels of 4-hydroxynonenal and acrolein in the brain in preclinical Alzheimer disease. Free Radic Biol Med 48:1570–1576

    Article  CAS  PubMed  Google Scholar 

  46. Sultana R, Butterfield DA (2010) Proteomics identification of carbonylated and HNE-bound brain proteins in Alzheimer’s disease. Methods Mol Biol 566:123–135

    Article  CAS  Google Scholar 

  47. Lovell MA, Xie C, Markesbery WR (1998) Decreased glutathione transferase activity in brain and ventricular fluid in Alzheimer’s disease. Neurology 51:1562–1566

    CAS  PubMed  Google Scholar 

  48. Van Raamsdonk JM, Meng Y, Camp D, Yang W, Jia X, Bénard C, Hekimi S (2010) Decreased energy metabolism extends life span in Caenorhabditis elegans without reducing oxidative damage. Genetics 185:559–571

    Article  PubMed  CAS  Google Scholar 

  49. Van Raamsdonk JM, Hekimi S (2010) Reactive oxygen species and aging in caenorhabditis elegans: causal or casual relationship? Antioxid Redox Signal

  50. Calabrese V, Scapagnini G, Giuffrida Stella AM, Bates TE, Clark JB (2001) Mitocondrial involvement in brain function and dysfunction: relevance to aging, neurodegenerative disordes and longevity. Neurochem Res 26:739–764

    Article  CAS  PubMed  Google Scholar 

  51. Druzhyna NM, Wilson GL, LeDoux SP (2008) Mitochondrial DNA repair in aging and disease. Mech Age Dev 129:383–390

    Article  CAS  Google Scholar 

  52. Hamm-Alvarez S, Cadenas E (2009) Mitochondrial medicine and mitochondrion-based therapeutics. Adv Drug Deliv Rev 60:1437–1438

    Article  CAS  Google Scholar 

  53. Hamm-Alvarez S, Cadenas E (2009) Mitochondrial medicine and therapeutics, Part II. Adv Drug Deliv Rev 61:1233

    Article  CAS  PubMed  Google Scholar 

  54. Yap LP, Garcia JV, Han D, Cadenas E (2009) The energy-redox axis in aging and age-related neurodegeneration. Adv Drug Deliv Rev 61:1283–1298

    Article  CAS  PubMed  Google Scholar 

  55. Schapira AH (2002) Primary and secondary defects of the mitochondrial respiratory chain. J Inherit Metab Dis 25:207–214

    Article  CAS  PubMed  Google Scholar 

  56. Tonon C, Lodi R (2008) Idebenone in Friedreich’s ataxia. Expert Opin Pharmacother 9:2327–2337

    Article  CAS  PubMed  Google Scholar 

  57. Calabrese V, Scapagnini G, Colombrita C, Ravagna A, Pennisi G, Giuffrida Stella AM, Galli F, Butterfield DA (2003) Redox regulation of heat shock protein expression in aging and neurodegenerative disorders associated with oxidative stress: a nutritional approach. Amino Acids 25:437–444

    Article  CAS  PubMed  Google Scholar 

  58. Petrosillo G, Matera M, Casanova G, Ruggiero FM, Paradies G (2008) Mitochondrial dysfunction in rat brain with aging Involvement of complex I, reactive oxygen species and cardiolipin. Neurochem Int 53:126–131

    Article  CAS  PubMed  Google Scholar 

  59. Ames BN, Liu J (2004) Delaying the mitochondrial decay of aging with acetylcarnitine. Ann N Y Acad Sci 1033:108–116

    Article  CAS  PubMed  Google Scholar 

  60. Hempenstall S, Picchio L, Mitchell SE, Speakman JR, Selman C (2010) The impact of acute caloric restriction on the metabolic phenotype in male C57BL/6 and DBA/2 mice. Mech Ageing Dev 131:111–118

    Article  CAS  PubMed  Google Scholar 

  61. Mattson MP (2008) Dietary factors, hormesis and health. Ageing Res Rev 7:43–48

    Article  PubMed  Google Scholar 

  62. Ristow M, Zarse K (2010) How increased oxidative stress promotes longevity and metabolic health: the concept of mitochondrial hormesis (mitohormesis). Exp Gerontol 45:410–418

    Article  CAS  PubMed  Google Scholar 

  63. Benard G, Faustin B, Passerieux E, Galinier A, Rocher C, Bellance N, Delage JP, Casteilla L, Letellier T, Rossignol R (2006) Physiological diversity of mitochondrial oxidative phosphorylation. Am J Physiol Cell Physiol 291:1172–1182

    Article  CAS  Google Scholar 

  64. Luft R, Ikkos D, Palmieri G, Ernster L, Afzelius A (1962) A case of severe hypermetabolism of nonthyroid origin with a defect in the maintenance of mitochondrial respiratory control: a correlated clinical, biochemical and morphological study. J Clin Invest 41:1776–1804

    Article  CAS  PubMed  Google Scholar 

  65. Schapira AH (2008) Mitochondrial dysfunction in neurodegenerative diseases. Neurochem Res 33:2502–2509

    Article  CAS  PubMed  Google Scholar 

  66. Wallace DC (1999) Mitochondrial diseases in man and mouse. Science 283:1482–1488

    Article  CAS  PubMed  Google Scholar 

  67. Wallace DC (2008) Mitochondria as Chi. Genetics 179:727–735

    Article  CAS  PubMed  Google Scholar 

  68. Wang Y, Michikawa Y, Mallidis C, Bai Y, Woodhouse L, Yarasheski KE, Miller CA, Askanas V, Engel WK, Bhasin S, Attardi G (2001) Muscle-specific mutations accumulate with aging in critical human mtDNA control sites for replication. Proc Natl Acad Sci U S A 98:4022–4027

    Article  CAS  PubMed  Google Scholar 

  69. Mazat J, Rossignol R, Malgat M, Rocher C, Faustin B, Letellier T (2001) What do mitochondrial diseases teach us about normal mitochondrial functions that we already knew: threshold expression of mitochondrial defects. Biochim Biophys Acta 1504:20–30

    Article  CAS  PubMed  Google Scholar 

  70. Letellier T, Malgat M, Rossignol R, Mazat JP (1998) Metabolic control analysis and mitochondrial pathologies. Mol Cell Biochem 184:409–417

    Article  CAS  PubMed  Google Scholar 

  71. Davey GP, Peuchen S, Clark JB (1998) Energy thresholds in brain mitochondria. J Biol Chem 273:12753–12757

    Article  CAS  PubMed  Google Scholar 

  72. Pathak RU, Davey GP (2008) Complex I and energy thresholds in the brain. Biochim Biophys Acta 1777:777–782

    Article  CAS  PubMed  Google Scholar 

  73. Benard G, Bellance N, James D, Parrone P, Fernandez H, Letellier T, Rossignol R (2007) Mitochondrial bioenergetics and structural network organization. J Cell Sci 120:838–848

    Article  CAS  PubMed  Google Scholar 

  74. Rocher C, Taanman JW, Pierron D, Faustin B, Benard G, Rossignol R, Malgat M, Pedespan L, Letellier T (2008) Influence of mitochondrial DNA level on cellular energy metabolism: implications for mitochondrial diseases. J Bioenerg Biomembr 40:59–67

    Article  CAS  PubMed  Google Scholar 

  75. Benard G, Faustin B, Galinier A, Rocher C, Bellance N, Smolkova K, Casteilla L, Rossignol R, Letellier T (2008) Functional dynamic compartmentalization of respiratory chain intermediate substrates: implications for the control of energy production and mitochondrial diseases. Int J Biochem Cell Biol 40:1543–1554

    Article  CAS  PubMed  Google Scholar 

  76. Kordower JH, Chu Y, Hauser RA, Freeman TB, Olanow CW (2008) Lewy body-like pathology in long-term embryonic nigral transplants in Parkinson’s disease. Nat Med 14:504–506

    Article  CAS  PubMed  Google Scholar 

  77. Kilbride SM, Telford JE, Tipton KF, Davey GP (2008) Partial inhibition of complex I activity increases Ca(2+)-independent glutamate release rates from depolarized synaptosomes. J Neurochem 106:826–834

    Article  CAS  PubMed  Google Scholar 

  78. Kilbride SM, Telford JE, Davey GP (2008) Age-related changes in H2O2 production and bioenergetics in rat brain synaptosomes. Biochim Biophys Acta 1777:783–788

    Article  CAS  PubMed  Google Scholar 

  79. Keeney PM, Xie J, Capaldi RA, Bennett JP Jr (2006) Parkinson’s disease brain mitochondrial complex I has oxidatively damaged subunits and is functionally impaired and misassembled. J Neurosci 26:5256–5264

    Article  CAS  PubMed  Google Scholar 

  80. Vogel RO, Smeitink JA, Nijtmans LG (2007) Human mitochondrial complex I assembly: a dynamic and versatile process. Biochim Biophys Acta 1767:1215–1227

    Article  CAS  PubMed  Google Scholar 

  81. Vogel RO, van den Brand MA, Rodenburg RJ, van den Heuvel LP, Tsuneoka M, Smeitink JA, Nijtmans LG (2007) Investigation of the complex I assembly chaperones B17.2L and NDUFAF1 in a cohort of CI deficient patients. Mol Genet Metab 91:176–182

    Article  CAS  PubMed  Google Scholar 

  82. Dudkina NV, Kouřil R, Peters K, Braun HP, Boekema EJ (2010) Structure and function of mitochondrial supercomplexes. Biochim Biophys Acta 1797:664–670

    Article  CAS  PubMed  Google Scholar 

  83. Wittig I, Schägger H (2009) Supramolecular organization of ATP synthase and respiratory chain in mitochondrial membranes. Biochim Biophys Acta 1787:672–680

    Article  CAS  PubMed  Google Scholar 

  84. Forquer I, Covian R, Bowman MK, Trumpower BL, Kramer DM (2006) Similar transition states mediate the Q-cycle and superoxide production by the cytochrome bc1 complex. J Biol Chem 281:38459–38465

    Article  CAS  PubMed  Google Scholar 

  85. Bilban M, Haschemi A, Wegiel B, Chin BY, Wagner O, Otterbein LE (2008) Heme oxygenase and carbon monoxide initiate homeostatic signaling. J Mol Med 86:267–279

    Article  CAS  PubMed  Google Scholar 

  86. Calabrese V, Cornelius C, Rizzarelli E, Owen JB, Dinkova-Kostova AT, Butterfield DA (2009) Nitric oxide in cell survival: a Janus molecule. Antioxid Redox Signal 11:2717–2739

    Article  CAS  PubMed  Google Scholar 

  87. Wang W, Fang H, Groom L, Cheng A, Zhang W, Liu J, Wang X, Li K, Han P, Zheng M, Yin J, Wang W, Mattson MP, Kao JP, Lakatta EG, Sheu SS, Ouyang K, Chen J, Dirksen RT, Cheng H (2008) Superoxide flashes in single mitochondria. Cell 134:279–290

    Article  CAS  PubMed  Google Scholar 

  88. McCord JM (2002) Superoxide dismutase in aging and disease: an overview. Methods Enzymol 349:331–341

    Article  CAS  PubMed  Google Scholar 

  89. Cho DH, Nakamura T, Lipton SA (2010) Mitochondrial dynamics in cell death and neurodegeneration. Cell Mol Life Sci. 2010 Jun 25. [Epub ahead of print]

  90. Nakamura T, Cieplak P, Cho DH, Godzik A, Lipton SA (2010) S-Nitrosylation of Drp1 links excessive mitochondrial fission to neuronal injury in neurodegeneration. Mitochondrion 10:573–578

    Article  CAS  PubMed  Google Scholar 

  91. Gu Z, Nakamura T, Lipton SA (2010) Redox reactions induced by nitrosative stress mediate protein misfolding and mitochondrial dysfunction in neurodegenerative diseases. Mol Neurobiol 41:55–72

    Article  CAS  PubMed  Google Scholar 

  92. Nakamura T, Lipton SA (2010) Redox regulation of mitochondrial fission, protein misfolding, synaptic damage, and neuronal cell death: potential implications for Alzheimer’s and Parkinson’s diseases. Apoptosis [Epub ahead of print]

  93. Büeler H (2010) Mitochondrial dynamics, cell death and the pathogenesis of Parkinson’s disease. Apoptosis [Epub ahead of print]

  94. Knott AB, Perkins G, Schwarzenbacher R, Bossy-Wetzel E (2008) Mitochondrial fragmentation in neurodegeneration. Nat Rev Neurosci 9:505–518

    Article  CAS  PubMed  Google Scholar 

  95. Bonda DJ, Wang X, Perry G, Smith MA, Zhu X (2010) Mitochondrial dynamics in Alzheimer’s disease: opportunities for future treatment strategies. Drugs Aging 27:181–192

    Article  CAS  PubMed  Google Scholar 

  96. Gottlieb RA, Carreira RS (2010) Autophagy in health and disease. 5. Mitophagy as a way of life. Am J Physiol Cell Physiol 299:C203–210

    Article  CAS  PubMed  Google Scholar 

  97. Rosca MG, Lemieux H, Hoppel CL (2009) Mitochondria in the elderly: is acetylcarnitine a rejuvenator? Adv Drug Deliv Rev 61:1332–1342

    Article  CAS  PubMed  Google Scholar 

  98. Piantadosi CA (2008) Carbon monoxide, reactive oxygen signaling, and oxidative stress. Free Radic Biol Med 45:562–569

    Article  CAS  PubMed  Google Scholar 

  99. Piantadosi CA, Carraway MS, Babiker A, Suliman HB (2008) Heme oxygenase-1 regulates cardiac mitochondrial biogenesis via Nrf2-mediated transcriptional control of nuclear respiratory factor-1. Circ Res 103:1232–1240

    Article  CAS  PubMed  Google Scholar 

  100. Schulz H (1888) Uber Hefegifte. Pfluger’s Arch Ges Physiol 42:517–541

    Article  Google Scholar 

  101. Calabrese EJ (1999) Evidence that hormesis represents an “overcompensation” response to a disruption in homeostasis. Ecotoxicol Environ Safety 42:135–137

    Article  Google Scholar 

  102. Mitchel REJ (2007) Low doses of radiation reduce risk in vivo. Dose Response 5:1–10

    Article  CAS  Google Scholar 

  103. Lacassagne A, Buu-Hoi NP, Rudali G (1945) Induction of the carcinogenic action produced by a weakly carcinogenic hydrocarbon on a highly active carcinogenic hydrocarbon. Br J Exp Pathol 26:5–12

    CAS  Google Scholar 

  104. Sykes PJ, Morley AA, Hooker AM (2006) The pKZ1 recombination mutation assay: a sensitive assay for low dose studies. Dose Response 4:91–105

    Article  CAS  PubMed  Google Scholar 

  105. Boreham DR, Dolling J-A, Somers C, Quinn J, Mitchel REJ (2006) The adaptive response and protection against heritable mutations and fetal malformation. Dose Response 4:317–326

    Article  CAS  PubMed  Google Scholar 

  106. Mothersill C, Seymour CB (2006) Radiation-induced bystander effects and the DNA paradigm: an “out of field” perspective. Mutat Res 597:5–10

    Article  CAS  PubMed  Google Scholar 

  107. Sakai K, Nomura T, Ina Y (2006) Enhancement of bio-protective functions by low dose/dose-rate radiation. Dose Response 4:327–332

    Article  CAS  PubMed  Google Scholar 

  108. Scott BR, DiPalma J (2006) Sparsely ionizing diagnostic and natural background radiations are likely preventing cancer and other genomic-instability-associated diseases. Dose Response 5:230–255

    Article  PubMed  CAS  Google Scholar 

  109. Redpath JL (2006) Suppression of neoplastic transformation in vitro by low doses of low LET radiation. Dose Response 4:302–308

    Article  CAS  PubMed  Google Scholar 

  110. Calabrese EJ, Baldwin LA (2000) Chemical hormesis: Its historical foundations as a biological hypothesis. Hum Exp Toxicol 19:2–31

    Article  CAS  PubMed  Google Scholar 

  111. Calabrese EJ, Baldwin LA (2000) The marginalization of hormesis. Hum Exp Toxicol 19:32–40

    Article  CAS  PubMed  Google Scholar 

  112. Calabrese EJ, Baldwin LA (2000) Radiation hormesis: its historical foundations as a biological hypothesis. Hum Exp Toxicol 19:41–75

    Article  CAS  PubMed  Google Scholar 

  113. Calabrese EJ, Baldwin LA (2000) Radiation hormesis: the demise of a legitimate hypothesis. Hum Exp Toxicol 19:76–84

    Article  CAS  PubMed  Google Scholar 

  114. Calabrese EJ, Baldwin LA (2003) Ethanol and hormesis. Crit Rev Toxicol 33:407–424

    Article  CAS  PubMed  Google Scholar 

  115. Calabrese EJ (2008) Hormesis. In: Melnick E, Everitt B (eds) Encyclopedia of quantitative risk assessment and analysis. Wiley, Chichester, pp 838–844

    Google Scholar 

  116. Calabrese EJ (2009) The road to linearity: shy linearity at low doses became the basis for carcinogen risk assessment. Arch Toxicol 83:203–225

    Article  CAS  PubMed  Google Scholar 

  117. Stebbing ARD (1976) Effects of low metal levels on a clonal hydroid. J Mar Biol Assoc UK 56:977–994

    Article  CAS  Google Scholar 

  118. Szabadi E (1977) Model of 2 functionally antagonistic receptor populations activated by same agonist. J Theor Biol 69:101–112

    Article  CAS  PubMed  Google Scholar 

  119. Luckey TD (1992) Radiation hormesis. CRC, Boca Raton

    Google Scholar 

  120. Calabrese EJ, Baldwin LA (2000) Tales of two similar hypotheses: the rise and fall of chemical and radiation hormesis. Hum Exp Toxicol 19:85–97

    Article  CAS  PubMed  Google Scholar 

  121. Calabrese EJ, Blain R (2005) The occurrence of hormetic dose responses in the toxicological literature, the hormesis database: an overview. Toxicol Appl Pharmacol 202:289–301

    Article  CAS  PubMed  Google Scholar 

  122. Mitchel REJ (2006) Low doses of radiation are protective in vitro and in vivo: evolutionary origins. Dose Response 4:75–90

    Article  CAS  PubMed  Google Scholar 

  123. Thong H-Y, Maibach HI (2008) Hormesis [biological effects of low level exposure (BELLE)] and dermatology. Dose Response 6:1–15

    Article  CAS  PubMed  Google Scholar 

  124. Eaton DL, Klaassen CD (2003) Principles of toxicology. In: Casarett & Doull’s essentials of toxicology, Chap 2. The McGraw-Hill Companies, Inc. pp. 6–20

  125. Calabrese EJ, Ricci PF (2010) Hormesis in environmental health: how hormesis will change the risk assessment process. Encycl Environ Health (in press)

  126. Calabrese EJ (1999) Evidence that hormesis represents an “overcompensation” response to a disruption in homeostasis. Ecotoxicol Environ Saf 42:135–137

    Article  Google Scholar 

  127. Calabrese EJ, Blain RB (2009) Hormesis and plant biology. Environ Poll. 157:42–48

    Article  CAS  Google Scholar 

  128. Calabrese EJ, Baldwin LA (2003) Inorganics and hormesis. Crit Rev Toxicol 33:215–304

    Article  CAS  PubMed  Google Scholar 

  129. Calabrese EJ, Baldwin LA (2003) Chemotherapeutics and hormesis. Crit Rev Toxicol 33:305–354

    Article  CAS  PubMed  Google Scholar 

  130. Calabrese EJ, Baldwin LA (2003) Peptides and hormesis. Crit Rev Toxicol 33:355–406

    Article  CAS  PubMed  Google Scholar 

  131. Calabrese EJ, Bachmann KA, Bailer AJ, Bolger PM, Borak J, Cai L, Cedergreen N, Cherian MG, Chiueh CC, Clarkson TW, Cook RR, Diamond DM, Doolittle DJ, Dorato MA, Duke SO, Feinendegen L, Gardner DE, Hart RW, Hastings KL, Hayes AW, Hoffmann GR, Ives JA, Jaworowski Z, Johnson TE, Jonas WB, Kaminski NE, Keller JG, Klaunig JE, Knudsen TB, Kozumbo WJ, Lettieri T, Liu SZ, Maisseu A, Maynard KI, Masoro EJ, McClellan RO, Mehendale HM, Mothersill C, Newlin DB, Nigg HN, Oehme FW, Phalen RF, Philbert MA, Rattan SI, Riviere JE, Rodricks J, Sapolsky RM, Scott BR, Seymour C, Sinclair DA, Smith-Sonneborn J, Snow ET, Spear L, Stevenson DE, Thomas Y, Tubiana M, Williams GM, Mattson MP (2007) Biological stress response terminology: Integrating the concepts of adaptive response and preconditioning stress within a hormetic dose-response framework. Toxicol Appl Pharmacol 222:122–128

    Article  CAS  PubMed  Google Scholar 

  132. Flood JF, Smith GE, Cherkin A (1982) Memory retention—enhancement by cholinergic drug-combinations in mice. Gerontologist 22:230–231

    Google Scholar 

  133. Flood JF, Smith GE, Cherkin A (1983) Memory retention—potentiation of cholinergic drug-combinations in mice. Neurobiol Aging 4:37–43

    Article  CAS  PubMed  Google Scholar 

  134. Flood JF, Smith GE, Cherkin A (1984) Memory retention—enhancement by synergistic oral cholinergic drug-combination in mice. Gerontologist 24:149–158

    Google Scholar 

  135. Flood JF, Smith GE, Cherkin A (1985) Memory enhancement—supra-additive effect of subcutaneous chlolinergic drug-combinations in mice. Psychopharmacology 86:61–67

    Article  CAS  PubMed  Google Scholar 

  136. Calabrese EJ (2008) Neuroscience and hormesis: overview and general findings. Crit Rev Toxicol 38:249–252

    Article  CAS  PubMed  Google Scholar 

  137. Calabrese EJ, Baldwin LA (2002) Hormesis and high risk groups. Regul Toxicol Pharmacol 35:14–428

    Article  CAS  Google Scholar 

  138. Calabrese EJ (2005) Cancer biology and hormesis: human tumor cell lines commonly display hormetic (biphasic) dose responses. Crit Rev Toxicol 35:463–582

    Article  CAS  PubMed  Google Scholar 

  139. Randall WA, Price CW, Welch H (1947) Demonstration of hormesis (increase in fatality rate) by penicillin. Am J Pub Health 37:421–425

    Article  PubMed  Google Scholar 

  140. Welch H, Price CW, Randall WA (1946) Increase in fatality rate of E. Typhosa for white mice by streptomycin. J Am Pharm 35:155–158

    CAS  Google Scholar 

  141. Abramowitz J, Dai C, Hirschi KK, Dmitieva RI, Doris PA, Liu L, Allen JC (2003) Ouabain- and marinobufagenin-induced proliferation of human umbilical vein smooth muscle cells and a rat vascular smooth muscle cell lines, A7r5. Circulation 108:3048–3053

    Article  CAS  PubMed  Google Scholar 

  142. Chueh S-C, Guh J-H, Chen J, Lai M-K, Teng C-M (2001) Dual effects of ouabain on the regulation of proliferation and apoptosis in human prostatic smooth muscle cells. J Urol 166:347–353

    Article  CAS  PubMed  Google Scholar 

  143. Gerich FJ, Funke F, Hildebrandt B, Faßhauer M, Müller M (2009) H2O2-mediated modulation of cytosolic signaling and organelle function in rat hippocampus. Pflugers Arch 458:937–952

    Article  CAS  PubMed  Google Scholar 

  144. Huddleston AT, Tang W, Takeshima H, Hamilton SL, Klann E (2008) Superoxide-induced potentiation in the hippocampus requires activation of ryanodine receptor type 3 and ERK. J Neurophysiol 99:1565–1571

    Article  CAS  PubMed  Google Scholar 

  145. Gopalakrishna R, Gundimeda U, Schiffman JE, McNeill TH (2008) A direct redox regulation of protein kinase C isoenzymes mediates oxidant-induced neuritogenesis in PC12 cells. J Biol Chem 283:14430–14444

    Article  CAS  PubMed  Google Scholar 

  146. Terada LS (2006) Specificity in reactive oxidant signaling: think globally, act locally. J Cell Biol 174:615–623

    Article  CAS  PubMed  Google Scholar 

  147. Mattson MP, Goodman Y, Luo H, Fu W, Furukawa K (1997) Activation of NF-kappaB protects hippocampal neurons against oxidative stress-induced apoptosis: evidence for induction of manganese superoxide dismutase and suppression of peroxynitrite production and protein tyrosine nitration. J Neurosci Res 49:681–697

    Article  CAS  PubMed  Google Scholar 

  148. Bruce-Keller AJ, Geddes JW, Knapp PE, McFall RW, Keller JN, Holtsberg FW, Parthasarathy S, Steiner SM, Mattson MP (1999) Anti-death properties of TNF against metabolic poisoning: mitochondrial stabilization by MnSOD. J Neuroimmunol 93:53–71

    Article  CAS  PubMed  Google Scholar 

  149. Ekdahl CT, Kokaia Z, Lindvall O (2009) Brain inflammation and adult neurogenesis: the dual role of microglia. Neuroscience 158:1021–1029

    Article  CAS  PubMed  Google Scholar 

  150. Jiang F, Zhang ZG, Katakowski M, Robin AM, Faber M, Zhang F, Chopp M (2004) Angiogenesis induced by photodynamic therapy in normal rat brains. Photochem Photobiol 79:494–498

    Article  CAS  PubMed  Google Scholar 

  151. Bandopadhyay R, de Belleroche J (2010) Pathogenesis of Parkinson’s disease: emerging role of molecular chaperones. Trends Mol Med 16:27–36

    Article  CAS  PubMed  Google Scholar 

  152. Morimoto RI (2008) Proteotoxic stress and inducible chaperone networks in neurodegenerative disease and aging. Genes Dev 22:1427–1438

    Article  CAS  PubMed  Google Scholar 

  153. Csermely P, Söti C, Blatch GL (2007) Chaperones as parts of cellular networks. Adv Exp Med Biol 594:55–63

    Article  PubMed  Google Scholar 

  154. Amijee H, Madine J, Middleton DA, Doig AJ (2009) Inhibitors of protein aggregation and toxicity. Biochem Soc Trans 37:692–696

    Article  CAS  PubMed  Google Scholar 

  155. Mattson MP, Magnus T (2006) Ageing and neuronal vulnerability. Nat Rev Neurosci 7:278–294

    Article  CAS  PubMed  Google Scholar 

  156. Saibil HR (2008) Chaperone machines in action. Curr Opin Struct Biol 18:35–42

    Article  CAS  PubMed  Google Scholar 

  157. Glabe CG (2008) Structural classification of toxic amyloid oligomers. J Biol Chem 283:29639–29643

    Article  CAS  PubMed  Google Scholar 

  158. Broadley SA, Hartl FU (2009) The role of molecular chaperones in human misfolding diseases. FEBS Lett 583:2647–2653

    Article  CAS  PubMed  Google Scholar 

  159. Gidalevitz T, Kikis EA, Morimoto RI (2010) A cellular perspective on conformational disease: the role of genetic background and proteostasis networks. Curr Opin Struct Biol 20:23–32

    Article  CAS  PubMed  Google Scholar 

  160. Nassif M, Matus S, Castillo K, Hetz C (2010) Amyotrophic lateral sclerosis pathogenesis: a journey through the secretory pathway. Antioxid Redox Signal. [Epub ahead of print]

  161. Eizirik DL, Cardozo AK, Cnop M (2008) The role for endoplasmic reticulum stress in diabetes mellitus. Endocr Rev 29:42–61

    Article  CAS  PubMed  Google Scholar 

  162. Hoozemans JJ, van Haastert ES, Nijholt DA, Rozemuller AJ, Eikelenboom P, Scheper W (2009) The unfolded protein response is activated in pretangle neurons in Alzheimer’s disease hippocampus. Am J Pathol 174:1241–1251

    Article  CAS  PubMed  Google Scholar 

  163. Scheper W, Hoozemans JJ (2009) Endoplasmic reticulum protein quality control in neurodegenerative disease: the good, the bad and the therapy. Curr Med Chem 16:615–626

    Article  CAS  PubMed  Google Scholar 

  164. Naidoo N (2009) ER and aging-protein folding and the ER stress response. Ageing Res Rev 8:150–159

    Article  CAS  PubMed  Google Scholar 

  165. Schröder M (2008) Endoplasmic reticulum stress responses. Cell Mol Life Sci 65:862–894

    Article  PubMed  CAS  Google Scholar 

  166. Verkhratsky A (2004) Endoplasmic reticulum calcium signaling in nerve cells. Biol Res 37:693–699

    Article  PubMed  Google Scholar 

  167. Jiao J, Huang X, Feit-Leithman RA, Neve RL, Snider W, Dartt DA, Chen DF (2005) Bcl-2 enhances Ca(2+) signaling to support the intrinsic regenerative capacity of CNS axons. EMBO J 24:1068–1078

    Article  CAS  PubMed  Google Scholar 

  168. Kitao Y, Ozawa K, Miyazaki M, Tamatani M, Kobayashi T, Yanagi H, Okabe M, Ikawa M, Yamashima T, Stern DM, Hori O, Ogawa S (2001) Expression of the endoplasmic reticulum molecular chaperone (ORP150) rescues hippocampal neurons from glutamate toxicity. J Clin Invest 108:1439–1450

    CAS  PubMed  Google Scholar 

  169. Um HS, Kang EB, Leem YH, Cho IH, Yang CH, Chae KR, Hwang DY, Cho JY (2008) Exercise training acts as a therapeutic strategy for reduction of the pathogenic phenotypes for Alzheimer’s disease in an NSE=APPsw-transgenic model. Int J Mol Med 22:529–539

    CAS  PubMed  Google Scholar 

  170. Matus S, Lisbona F, Torres M, León C, Thielen P, Hetz C (2008) The stress rheostat: an interplay between the unfolded protein response (UPR) and autophagy in neurodegeneration. Curr Mol Med 8:157–172

    Article  CAS  PubMed  Google Scholar 

  171. Sado M, Yamasaki Y, Iwanaga T, Onaka Y, Ibuki T, Nishihara S, Mizuguchi H, Momota H, Kishibuchi R, Hashimoto T, Wada D, Kitagawa H, Watanabe TK (2009) Protective effect against Parkinson’s disease-related insults through the activation of XBP1. Brain Res 1257:16–24

    Article  CAS  PubMed  Google Scholar 

  172. Madeo F, Eisenberg T, Kroemer G (2009) Autophagy for the avoidance of neurodegeneration. Genes Dev 23:2253–2259

    Article  CAS  PubMed  Google Scholar 

  173. Pennuto M, Tinelli E, Malaguti M, Del Carro U, D’Antonio M, Ron D, Quattrini A, Feltri ML, Wrabetz L (2008) Ablation of the UPR-mediator CHOP restores motor function and reduces demyelination in Charcot-Marie-Tooth 1B mice. Neuron 57:393–405

    Article  CAS  PubMed  Google Scholar 

  174. Sakaki K, Wu J, Kaufman RJ (2008) Protein kinase Cu is required for autophagy in response to stress in the endoplasmic reticulum. J Biol Chem 283:15370–15380

    Article  CAS  PubMed  Google Scholar 

  175. Schulz TJ, Zarse K, Voigt A, Urban N, Birringer M, Ristow M (2007) Glucose restriction extends Caenorhabditis elegans life span by inducing mitochondrial respiration and increasing oxidative stress. Cell Metab 6:280–293

    Article  CAS  PubMed  Google Scholar 

  176. Azad MB, Chen Y, Gibson SB (2009) Regulation of autophagy by reactive oxygen species (ROS): implications for cancer progression and treatment. Antioxid Redox Signal 11:777–790

    Article  CAS  PubMed  Google Scholar 

  177. Fujioka Y, Noda NN, Nakatogawa H, Ohsumi Y, Inagaki F (2010) Dimeric coiled-coil structure of Saccharomyces cerevisiae Atg16 and its functional significance in autophagy. J Biol Chem 285:1508–1515

    Article  CAS  PubMed  Google Scholar 

  178. Jakubowicz-Gil J, Langner E, Wertel I, Piersiak T, Rzeski W (2010) Temozolomide, quercetin and cell death in the MOGGCCM astrocytoma cell line. Chem Biol Interact [Epub ahead of print]

  179. Yogev O, Goldberg R, Anzi S, Yogev O, Shaulian E (2010) Jun proteins are starvation-regulated inhibitors of autophagy. Cancer Res 70:2318–2327

    Article  CAS  PubMed  Google Scholar 

  180. Luk KC, Mills IP, Trojanowski JQ, Lee VM (2008) Interactions between Hsp70 and the hydrophobic core of alpha-synuclein inhibit fibril assembly. Biochemistry 47:12614–12625

    Article  CAS  PubMed  Google Scholar 

  181. Rump TJ, Muneer PM, Szlachetka AM, Lamb A, Haorei C, Alikunju S, Xiong H, Keblesh J, Liu J, Zimmerman MC, Jones J, Donohue TM Jr, Persidsky Y, Haorah J (2010) Acetyl-l-carnitine protects neuronal function from alcohol-induced oxidative damage in the brain. Free Radic Biol Med 49:1494–1504

    Article  CAS  PubMed  Google Scholar 

  182. Calabrese V, Stella AMG, Calvani M, Butterfield DA (2006) Acetylcarnitine and cellular stress response: roles in nutritional redox homeostasis andregulation of longevity genes. J Nutr Biochem 17:73–88

    Article  CAS  PubMed  Google Scholar 

  183. Jones LL, McDonald D, Borum PR (2009) Acylcarnitines: role in brain. Progr Lipid Res

  184. Calabrese V, Rizza V (1999) Formation of propionate after short-term ethanol treatment and its interaction with the carnitine pool in rat. Alcohol 19:169–176

    Article  CAS  PubMed  Google Scholar 

  185. Calabrese V, Calvani M, Butterfield DA (2004) Increased formation of short-chain organic acids after chronic ethanol administration and its interaction with the carnitine pool in rat. Arch Biochem Biophys 431:271–278

    Article  CAS  PubMed  Google Scholar 

  186. Noland RC, Koves TR, Seiler SE, Lum H, Lust RM, Ilkayeva O, Stevens RD, Hegardt FG, Muoio DM (2009) Carnitine insufficiency caused by aging and overnutrition compromises mitochondrial performance and metabolic control. J Biol Chem 284:22840–22852

    Article  CAS  PubMed  Google Scholar 

  187. Bieber LL (1998) Carnitine. Annu Rev Biochem 57:261–283

    Article  Google Scholar 

  188. Evans AM, Fornasini G (2003) Pharmacokinetics of l-carnitine. Clin Pharmacokinet 42:941–967

    Article  CAS  PubMed  Google Scholar 

  189. Rebouche CJ (2004) Kinetics, pharmacokinetics, and regulation of l-carnitine and acetyl-l-carnitine metabolism. Ann N Y Acad Sci 1033:30–41

    Article  CAS  PubMed  Google Scholar 

  190. Steiber A, Kerner J, Hoppel CL (2004) Carnitine: a nutritional, biosynthetic, and functional perspective. Mol Aspects Med 25:455–473

    Article  CAS  PubMed  Google Scholar 

  191. Koves TR, Ussher JR, Noland RC, Slentz D, Mosedale M, Ilkayeva O, Bain J, Stevens R, Dyck JR, Newgard CB, Lopaschuk GD, Muoio DM (2008) Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance. Cell Metab 7:45–56

    Article  CAS  PubMed  Google Scholar 

  192. Lombard KA, Olson AL, Nelson SE, Rebouche CJ (1989) Carnitine status of lactoovovegetarians and strict vegetarian adults and children. Am J Clin Nutr 50:301–306

    CAS  PubMed  Google Scholar 

  193. Brass EP, Hoppel CL, Hiatt WR (1994) Effect of intravenous l-carnitine on carnitine homeostasis and fuel metabolism during exercise in humans. Clin Pharmacol Ther 55:681–692

    Article  CAS  PubMed  Google Scholar 

  194. Murakami R, Tanaka A, Nakamura H (1997) The effect of starvation on brain carnitine concentration in neonatal rats. J Pediatr Gastroenterol Nutr 25:385–387

    Article  CAS  PubMed  Google Scholar 

  195. Bremer J (1983) Carnitine-metabolism and functions. Physiol Rev 63:1420–1480

    CAS  PubMed  Google Scholar 

  196. Zhao S, Xu W, Jiang W, Yu W, Lin Y, Zhang T, Yao J, Zhou L, Zeng Y, Li H, Li Y, Shi J, An W, Hancock SM, He F, Qin L, Chin J, Yang P, Chen X, Lei Q, Xiong Y, Guan KL (2010) Regulation of cellular metabolism by protein lysine acetylation. Science 327:1000–1004

    Article  CAS  PubMed  Google Scholar 

  197. Alonso-Montes C, Castro MG, Reguero JR, Perrot A, Ozcelik C, Geier C, Posch MG, Morris C, Alvarez V, Ruiz-Ortega M, Coto E (2008) Mitochondrial transcription factor TFA, TFB1 and TFB2: a search for DNA variant/haplotypes and the risk of cardiac hyperthrophy. Dis Markers 25:131–139

    CAS  PubMed  Google Scholar 

  198. Takahashi H, McCaffery JM, Irizarry RA, Boeke JD (2006) Nucleocytosolic acetylcoenzyme a synthetase is required for histone acetylation and global transcription. Mol Cell 23:207–217

    Article  CAS  PubMed  Google Scholar 

  199. Distler AM, Kerner J, Hoppel CL (2007) Post-translational modifications of rat liver mitochondrial outer membrane proteins identified by mass spectrometry. Biochim Biophys Acta 1774:628–636

    CAS  PubMed  Google Scholar 

  200. Infante JP, Huszagh VA (2000) Secondary carnitine deficiency and impaired docosahexaenoic [22:6n–3] acid synthesis: a common denominator in thepathophysiology of diseases of oxidative phosphorylation and beta-oxidation. FEBS Lett 468:1–5

    Article  CAS  PubMed  Google Scholar 

  201. Calabrese V, Ravagna A, Colombrita C, Scapagnini G, Guagliano E, Calvani M, Butterfield DA, Giuffrida Stella AM (2005) Acetylcarnitine induces heme oxygenase in rat astrocytes and protects against oxidative stress: involvement of the transcription factor Nrf2. J Neurosci Res 79:509–521

    Article  CAS  PubMed  Google Scholar 

  202. McDaniel MA, Maier SF, Einstein GO (2003) “Brain-specific” nutrients: a memory cure? Nutrition 19:957–975

    Article  CAS  PubMed  Google Scholar 

  203. Traina G, Federighi G, Brunelli M, Scuri R (2009) Cytoprotective effect of cetyl-l-carnitine evidenced by analysis of gene expression in the rat brain. Mol Neurobiol 39:101–106

    Article  CAS  PubMed  Google Scholar 

  204. Calabrese V, Scapagnini G, Ravagna A, Colombrita C, Spadaro F, Butterfield DA, Giuffrida Stella AM (2004) Increased expression of heat shock proteins in rat brain during aging: relationship with mitochondrial function and glutathione redox state. Mech Ageing Dev 125:325–335

    Article  CAS  PubMed  Google Scholar 

  205. Traina G, Valleggi S, Bernardi R (2004) Identification of differentially expressed genes induced in the rat brain by acetyl-l-carnitine as evidenced by suppression subtractive hybridisation. Mol Brain Res 132:57–63

    Article  CAS  PubMed  Google Scholar 

  206. Traina G, Bernardi R, Rizzo M, Calvani M, Durante M, Brunelli M (2006) Acetyl-l-carnitine up-regulates expression of voltage-dependent anion channel in the rat brain. Neurochem Int 48:673–678

    Article  CAS  PubMed  Google Scholar 

  207. Binienda Z, Virmani A, Przybyla-Zawislak B, Schmued L (2004) Neuroprotective effect of l-carnitine in the 3-nitropropionic acid [3-NPA]-evoked neurotoxicity in rats. Neurosci Lett 367:264–267

    Article  CAS  PubMed  Google Scholar 

  208. Lesnefsky EJ, He D, Moghaddas S, Hoppel CL (2006) Reversal of mitochondrial defects before ischemia protects the aged heart. FASEB J 20:1543–1545

    Article  CAS  PubMed  Google Scholar 

  209. Chiechio S, Copani A, Nicoletti F, Gereau RW 4th (2006) l-acetylcarnitine: a proposed therapeutic agent for painful peripheral neuropathies. Curr Neuropharmacol 4:233–237

    Article  CAS  PubMed  Google Scholar 

  210. Chiechio S, Copani A, Zammataro M, Battaglia G, Gereau RW 4th, Nicoletti F (2010) Transcriptional regulation of type-2 metabotropic glutamate receptors: an epigenetic path to novel treatments for chronic pain. Trends Pharmacol Sci 31:153–160

    Article  CAS  PubMed  Google Scholar 

  211. Di Cesare ML, Ghelardini C, Calvani M, Nicolai R, Mosconi L, Vivoli E, Pacini A, Bartolini A (2007) Protective effect of acetyl-l-carnitine on the apoptotic pathway of peripheral neuropathy. Eur J Neurosci 26:820–827

    Article  Google Scholar 

  212. Watt MJ, Hevener AL (2008) Fluxing the mitochondria to insulin resistance. Cell Metab 7:5–6

    Article  CAS  PubMed  Google Scholar 

  213. Adams SH, Hoppel CL, Lok KH, Zhao L, Wong SW, Minkler PE, Hwang DH, Newman JW, Garvey WT (2009) Plasma acylcarnitine profiles suggest incomplete long-chain fatty acid beta-oxidation and altered tricarboxylic acid cycle activity in type 2 diabetic African-American women. J Nutr 139:1073–1081

    Article  CAS  PubMed  Google Scholar 

  214. Stephens FB, Constantin-Teodosiu D, Greenhaff PL (2007) New insights concerning the role of carnitine in the regulation of fuel metabolism in skeletal muscle. J Physiol 581:431–444

    Article  PubMed  CAS  Google Scholar 

  215. Heo YR, Kang CW, Cha S (2001) l-carnitine changes the levels of insulin-like growth factors (IGFs) and IGF binding proteins in streptozotocin-induced diabetic rat. J Nutr Sci Vitaminol (Tokyo) 47:329–334

    CAS  Google Scholar 

  216. Randle PJ, Garland PB, Hales CN, Newsholme EA (1963) The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet 1:785–789

    Article  CAS  PubMed  Google Scholar 

  217. Abdul HM, Calabrese V, Calvani M, Butterfield DA (2006) Acetyl-l-carnitine-induced up-regulation of heat shock proteins protects cortical neurons against amyloid-beta peptide 1–42-mediated oxidative stress and neurotoxicity: implications for Alzheimer’s disease. J Neurosci Res 84:398–408

    Article  CAS  PubMed  Google Scholar 

  218. Wallace DC (2010) The epigenome and the mitochondrion: bioenergetics and the environment. Genes Dev 24:1571–1573

    Article  CAS  PubMed  Google Scholar 

  219. Kuhn TS (1996) The structure of scientific revolutions. University of Chicago Press, Chicago

    Google Scholar 

  220. Wallace DC (2007) Why do we still have a maternally inherited mitochondrial DNA? Insights from evolutionary medicine. Annu Rev Biochem 76:781–821

    Article  CAS  PubMed  Google Scholar 

  221. Wallace DC (2010) Mitochondrial DNA mutations in disease and aging. Environ Mol Mutagen 51:440–450

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Work from the authors’ laboratories was supported by grants from MIUR, FIRB RBRN07BMCT, I.N.B.B., and by ‘‘Fondi Ateneo’’ 2008 and 2009. We are very much honoured to contribute to this Special Issue in honour of Abel Lajtha. Everybody in the field of Neurochemistry knows Abel Lajtha and his great contribution to the advancement of research in Neurochemistry. He has been the Editor in Chief of the Journal “Neurochemical Research” for so many years holding very stimulating and interesting Meetings of the Editorial Board to which we are very proud to have participated. It is difficult to imagine future Editorial Board Meetings without him. We would like to thank him very much for his great contribution to the advancement and success of Neurochemical Research and ask him to continue helping us with its precious efforts and advices.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vittorio Calabrese.

Additional information

Special issue article in honor of Dr. Abel Lajtha

Rights and permissions

Reprints and permissions

About this article

Cite this article

Calabrese, V., Cornelius, C., Stella, A.M.G. et al. Cellular Stress Responses, Mitostress and Carnitine Insufficiencies as Critical Determinants in Aging and Neurodegenerative Disorders: Role of Hormesis and Vitagenes. Neurochem Res 35, 1880–1915 (2010). https://doi.org/10.1007/s11064-010-0307-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-010-0307-z

Keywords

Navigation