Skip to main content
Log in

The Effect of n-acetylcysteine and Deferoxamine on Exercise-induced Oxidative Damage in Striatum and Hippocampus of Mice

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The aim of this study was to analyze the effects of intense exercise on brain redox status, associated with antioxidant supplementation of N-acetylcysteine (NAC), deferoxamine (DFX) or a combination of both. Seventy-two C57BL-6 adult male mice were randomly assigned to 8 groups: control, NAC, DFX, NAC plus DFX, exercise, exercise with NAC, exercise with DFX, and exercise with NAC plus DFX. They were given antioxidant supplementation, exercise training on a treadmill for 12 weeks, and sacrificed 48 h after the last exercise session. Training significantly increased (P < 0.05) soleus citrate synthase (CS) activity when compared to control. Blood lactate levels classified the exercise as intense. Exercise significantly increased (P < 0.05) oxidation of biomolecules and superoxide dismutase activity in striatum and hippocampus. Training significantly increased (P < 0.05) catalase activity in striatum. NAC and DFX supplementation significantly protected (P < 0.05) against oxidative damage. These results indicate intense exercise as oxidant and NAC and DFX as antioxidant to the hippocampus and the striatum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Vaynman S, Ying Z, Wu A et al (2006) Coupling energy metabolism with a mechanism to support brain-derived neurotrophic factor-mediated synaptic plasticity. Neurosci 139:1221–1234

    Article  CAS  Google Scholar 

  2. Pinho RA, Andrades ME, Oliveira MR et al (2006) Imbalance in SOD/CAT activities in rats skeletal muscles submitted to treadmill training exercise. Cell Biol Intern 10:848–853

    Article  CAS  Google Scholar 

  3. Sureda A, Tauler P, Aguilo A et al (2005) Relation between oxidative stress markers and antioxidant endogenous defences during exhaustive exercise. Free Radic Res 12:1317–1324

    Article  CAS  Google Scholar 

  4. Tauler P, Sureda A, Cases N et al (2006) Increased lymphocyte antioxidant defences in response to exhaustive exercise do not prevent oxidative damage. J Nutr Biochem 10:665–671

    Article  CAS  Google Scholar 

  5. Droge W, Schipper HM (2007) Oxidative stress and aberrant signaling in aging and cognitive decline. Aging Cell 6:361–370

    Article  PubMed  CAS  Google Scholar 

  6. Antunes-Neto JM, Toyama MH, Carneiro EM et al (2006) Circulating leukocyte heat shock protein 70 (HSP70) and oxidative stress markers in rats after a bout of exhaustive exercise. Stress 2:107–115

    Article  CAS  Google Scholar 

  7. Aguiar AS, Tuon T, Pinho CA et al (2007) Intense exercise induces mitochondrial dysfunction in mice brain. Neurochem Res (in press)

  8. Rosa EF, Takahashi S, Aboulafia J et al (2007) Oxidative stress induced by intense and exhaustive exercise impairs murine cognitive function. J Neurophysiol (in press)

  9. Hidalgo C, Nunez MT (2007) Calcium, iron and neuronal function. IUBMB Life 4:280–285

    Article  CAS  Google Scholar 

  10. Oakley AE, Collingwood JF, Dobson J et al (2007) Individual dopaminergic neurons show raised iron levels in Parkinson disease. Neurol 21:1820–1825

    Article  Google Scholar 

  11. Zhu X, Su B, Wang X et al (2007) Causes of oxidative stress in Alzheimer disease. Cell Mol Life Sci 64:2202–2210

    Article  PubMed  CAS  Google Scholar 

  12. Arakawa M, Ushimaru N, Osada N et al (2006) N-acetylcysteine selectively protects cerebellar granule cells from 4-hydroxynonenal-induced cell death. Neurosci Res 3:255–263

    Article  CAS  Google Scholar 

  13. Freret T, Valable S, Chazalviel L et al (2006) Delayed administration of deferoxamine reduces brain damage and promotes functional recovery after transient focal cerebral ischemia in the rat. Eur J Neurosci 7:1757–1765

    Article  Google Scholar 

  14. Ritter C, Andrades ME, Reinke A et al (2004) Treatment with n-acetylcysteine plus deferoxamine protects rats against oxidative stress and improves survival in sepsis. Crit Care Med 32:342–349

    Article  PubMed  CAS  Google Scholar 

  15. Pinho RA, Silveira PCL, Silva LA et al (2005) N-Acetylcysteine and deferoxamine reduce pulmonary oxidative stress and inflammation in rats after coal dust exposure. Environmental Res 99:355–360

    Article  CAS  Google Scholar 

  16. Alp PR, Newsholme EA, Zammit VA (1976) Activities of citrate synthase and NAD+-linked and NADP+-linked isocitrate dehydrogenase in muscle from vertebrates and invertebrates. Biochem J 154:689–700

    PubMed  CAS  Google Scholar 

  17. Draper HH, Hadley M (1990) Malondialdehyde determination as index of lipid peroxidation. Meth Enzymol 186:421–431

    Article  PubMed  CAS  Google Scholar 

  18. Levine RL, Garland D, Oliver CN et al (1990) Determination of carbonyl content in oxidatively modified proteins. Meth Enzymol 186:464–478

    PubMed  CAS  Google Scholar 

  19. Aebi H (1984) Catalase in vitro. Meth Enzymol 105:121–126

    PubMed  CAS  Google Scholar 

  20. Bannister JV, Calabrese L (1987) Assays for SOD. Meth Biochem Anal 32:279–312

    Article  CAS  Google Scholar 

  21. Lowry OH, Rosebough NG, Farr AL et al (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  22. Voltarelli FA, Gobatto CA, Mello MAR (2002) Determination of anaerobic threshold in rats using the lactate minimum test. Braz J Med Biol Res 35:1389–1394

    Article  PubMed  CAS  Google Scholar 

  23. Özkaya YG, Agar A, Yargicoglu P et al (2002) The effect of exercise on brain antioxidant status of diabetic rats. Diabetes Metab 5:377–384

    Google Scholar 

  24. Ebadi M, Leuschen MP, el Refaey H et al (1996) The antioxidant properties of zinc and metallothionein. Neurochem Int 2:159–166

    Article  Google Scholar 

  25. Acikgoz O, Aksu I, Topcu A et al (2006) Acute exhaustive exercise does not alter lipid peroxidation and antioxidant enzyme activities in rat hippocampus, prefrontal cortex and striatum. Neurosc Lett 406:148–151

    Article  CAS  Google Scholar 

  26. Calabrese V, Lodi TR, Tonon C et al (2005) Oxidative stress, mitochondrial dysfunction and cellular stress response in Friedreich’s ataxia. J Neurol Sci 1–2:145–162

    Article  CAS  Google Scholar 

  27. Fauchex BA, Martin ME, Beaumont C et al (2003) Neuromelanin associated redox-active iron is increased in the substantia nigra of patients with Parkinson’s Disease. J Neurochem 5:1142–1148

    Article  CAS  Google Scholar 

  28. Floyd RA (1999) Antioxidants, oxidative stress, neurological disorders. Exp Biol Med 222:236–245

    Article  CAS  Google Scholar 

  29. Sen CK, Packer L (2000) Thiol homeostasis and supplements in physical exercise. Am J Nutr 72:653–669

    Google Scholar 

  30. Jolitha AB, Subramanyam MVV, Asha Devi S (2006) Modification by vitamin E and exercise of oxidative stress in regions of aging rat brain: Studies on superoxide dismutase isoenzymes and protein oxidation status. Exp Geront 41:753–763

    Article  CAS  Google Scholar 

  31. Cosķun S, Gonul B, Guzel NA et al (2005) The effects of vitamin C supplementation on oxidative stress and antioxidant content in the brains of chronically exercised rats. Mol Cell Biochem 1–2:135–138

    Google Scholar 

  32. Somani SM, Ravi R, Rybak LP (1995) Effect of exercise training on antioxidant system in brain regions of rat. Pharmacol Biochem Behav 4:635–639

    Article  Google Scholar 

  33. Suzuki M, Katamine S, Tatsumi S (1983) Exercise-induced enhancement of lipid peroxide metabolism in tissues and their transference into the brain in rat. J Nutr Sci Vitaminol 2:141–151

    Google Scholar 

  34. Radák Z, Toldy A, Szabo Z et al (2006) The effects of training and detraining on memory, neurotrophins and oxidative stress markers in rat brain. Neurochem Int 4:387–392

    Article  CAS  Google Scholar 

  35. Ogonovszky H, Berkes I, Kumagai S et al (2005) The effects of moderate-, strenuous- and over-training on oxidative stress markers, DNA repair, and memory, in rat brain. Neurochem Int 46:635–640

    Article  PubMed  CAS  Google Scholar 

  36. Arida RM, Scorza CA, Silva AV et al (2004) Differential effects of spontaneous versus forced exercise in rats on the staining of parvalbumin-positive neurons in the hippocampal formation. Neurosci Lett 364:135–138

    Article  PubMed  CAS  Google Scholar 

  37. Meyer T, Auracher M, Heeg K et al (2007) Effectiveness of low-intensity endurance training. Int J Sports Med 1:33–39

    Article  Google Scholar 

  38. Hirsch EC (1994) Biochemistry of Parkinson’s disease with special reference to the dopaminergic systems. Mol Neurobiol 9:135–142

    Article  PubMed  CAS  Google Scholar 

  39. Hirsch EC (1993) Does oxidative stress participate in nerve cell death in Parkinson’s disease? Eur Neurol 33:52–59

    Article  PubMed  Google Scholar 

  40. Zhang QG, Tian H, Li HC et al (2006) Antioxidant N-acetylcysteine inhibits the activation of JNK3 mediated by the GluR6-PSD95-MLK3 signaling module during cerebral ischemia in rat hippocampus. Neurosci Lett 408:159–164

    Article  PubMed  CAS  Google Scholar 

  41. Kaynar MY, Erdincler P, Tadayyon E et al (1998) Effect of nimodipine and N-acetylcysteine on lipid peroxidation after experimental spinal cord injury. Neuro-surg Rev 21:260–264

    Article  CAS  Google Scholar 

  42. Kanwar SS, Nehru B (2007) Modulatory effects of N-acetylcysteine on cerebral cortex and cerebellum regions of ageing rat brain. Nutr Hosp 22:95–100

    PubMed  CAS  Google Scholar 

  43. Hicdonmez T, Kanter M, Tiryaki M et al (2006) Neuroprotective effects of N-acetylcysteine on experimental closed head trauma in rats. Neurochem Res 31:473–481

    Article  PubMed  CAS  Google Scholar 

  44. Liddell JR, Hoepken HH, Crack PJ et al (2006) Glutathione peroxidase 1 and glutathione are required to protect mouse astrocytes from iron-mediated hydrogen peroxide toxicity. J Neurosci Res 84:578–586

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by grants from CNPq/MCT (Brazil), CAPES/MEC (Brazil), and UNESC (Brazil).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo A. Pinho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aguiar, A.S., Tuon, T., Soares, F.S. et al. The Effect of n-acetylcysteine and Deferoxamine on Exercise-induced Oxidative Damage in Striatum and Hippocampus of Mice. Neurochem Res 33, 729–736 (2008). https://doi.org/10.1007/s11064-007-9485-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-007-9485-8

Keywords

Navigation