

ERRATUM

Erratum to: A Method for Metric Learning with Multiple-Kernel Embedding

Xiao Lu 1 \cdot Yaonan Wang 1 \cdot Xuanyu Zhou 2 \cdot Zhigang Ling 1

Published online: 29 August 2015 © Springer Science+Business Media New York 2015

Erratum to: Neural Process Lett DOI 10.1007/s11063-015-9444-3

The original version of this article unfortunately contained a mistake. The presentation of Fig. 1a, b was incorrect. The corrected version is given below.

The online version of the original article can be found under doi:10.1007/s11063-015-9444-3.

⊠ Xiao Lu xlu_hnu@163.com

> Yaonan Wang yaonan@hnu.cn

Xuanyu Zhou zhouxuanyu@whu.edu.cn

Zhigang Ling zgling_hunan@126.com

¹ Department of Electrical and Information Engineering, Hunan University, Changsha 410082, China

² Department of Computer Science, Wuhan University, Wuhan 430072, China

Fig. 1 a The formulation in [23]: a data point $\mathbf{x} \in \mathcal{X}$ is mapped into *m* feature spaces via $\phi_1, \phi_2, \ldots, \phi_M$, which are then *scaled* by $\mu_1, \mu_2, \ldots, \mu_M$ to form a weighted feature space \mathcal{H}^* , which is subsequently projected to the embedding space via an universal projection *L*. **b** The formulation in [12]: \mathbf{x} is first mapped into each kernel's feature space and then its image in each space is directly projected into an Euclidean space via the corresponding projections L_1, L_2, \ldots, L_M , thus the embedding space can be seen as an unweighted concatenation of the *M* projected Euclidean spaces. **c** Our proposed formulation is the weighted version of **b**, the projections and the weights are jointly learned to produce the embedding space, **a** weighted combination, **b** concatenated projection, **c** our formulation