Skip to main content

Advertisement

Log in

Vorinostat as a radiosensitizer for brain metastasis: a phase I clinical trial

  • Clinical Study
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Perform a phase I study to evaluate the safety, and tolerability of vorinostat, an HDAC inhibitor, when combined with whole brain radiation treatment (WBRT) in patients with brain metastasis. A multi-institutional phase I clinical trial enrolled patients with a histological diagnosis of malignancy and radiographic evidence of brain metastasis. WBRT was 37.5 Gy in 2.5 Gy fractions delivered over 3 weeks. Vorinostat was administrated by mouth, once daily, Monday through Friday, concurrently with radiation treatment. The vorinostat dose was escalated from 200 to 400 mg daily using a 3+3 trial design. Seventeen patients were enrolled, 4 patients were excluded from the analysis due to either incorrect radiation dose (n = 1), or early treatment termination due to disease progression (n = 3). There were no treatment related grade 3 or higher toxicities in the 200 and 300 mg dose levels. In the 400 mg cohort there was a grade 3 pulmonary embolus and one death within 30 days of treatment. Both events were most likely related to disease progression rather than treatment; nonetheless, we conservatively classified the death as a dose limiting toxicity. We found Vorinostat administered with concurrent WBRT to be well tolerated to a dose of 300 mg once daily. This is the recommended dose for phase II study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Andrews DW (2008) Current neurosurgical management of brain metastases. Semin Oncol 35:100–107

    Article  PubMed  Google Scholar 

  2. Auperin A et al (1999) Prophylactic cranial irradiation for patients with small-cell lung cancer in complete remission. N Engl J Med 341:476–484

    Article  CAS  PubMed  Google Scholar 

  3. Baschnagel A et al (2009) Vorinostat enhances the radiosensitivity of a breast cancer brain metastatic cell line grown in vitro and as intracranial xenografts. Mol Cancer Ther 8:1589–1595

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Bratland A et al (2011) Gastrointestinal toxicity of vorinostat: reanalysis of phase 1 study results with emphasis on dose-volume effects of pelvic radiotherapy. Radiat Oncol 6:33

    Article  PubMed Central  PubMed  Google Scholar 

  5. Camphausen K et al (2005) Enhancement of in vitro and in vivo tumor cell radiosensitivity by valproic acid. Int J Cancer 114:380–386

    Article  CAS  PubMed  Google Scholar 

  6. Cerna D, Camphausen K, Tofilon PJ (2006) Histone deacetylation as a target for radiosensitization. Curr Top Dev Biol 73:173–204

    Article  CAS  PubMed  Google Scholar 

  7. Chang JE, Robins HI, Mehta MP (2007) Therapeutic advances in the treatment of brain metastases. Clin Adv Hematol Oncol 5:54–64

    PubMed  Google Scholar 

  8. Chinnaiyan P et al (2012) Phase i trial of vorinostat combined with bevacizumab and cpt-11 in recurrent glioblastoma. Neuro Oncol 14:93–100

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Chinnaiyan P et al (2005) Modulation of radiation response by histone deacetylase inhibition. Int J Radiat Oncol Biol Phys 62:223–229

    Article  CAS  PubMed  Google Scholar 

  10. Deorukhkar A et al (2010) Inhibition of radiation-induced DNA repair and prosurvival pathways contributes to vorinostat-mediated radiosensitization of pancreatic cancer cells. Pancreas 39:1277–1283

    Article  PubMed Central  PubMed  Google Scholar 

  11. Duvic M et al (2007) Phase 2 trial of oral vorinostat (suberoylanilide hydroxamic acid, saha) for refractory cutaneous t-cell lymphoma (ctcl). Blood 109:31–39

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Fakih MG et al (2012) A randomized phase ii study of two doses of vorinostat in combination with 5-fu/lv in patients with refractory colorectal cancer. Cancer Chemother Pharmacol 69:743–751

    Article  CAS  PubMed  Google Scholar 

  13. Friday BB et al (2012) Phase ii trial of vorinostat in combination with bortezomib in recurrent glioblastoma: a north central cancer treatment group study. Neuro Oncol 14:215–221

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Galanis E et al (2009) Phase ii trial of vorinostat in recurrent glioblastoma multiforme: a north central cancer treatment group study. J Clin Oncol 27:2052–2058

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Galanis E et al (2009) Phase ii trial of vorinostat in recurrent glioblastoma multiforme: a north central cancer treatment group study. J Clin Oncol 27:2052–2058

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Gallinari P et al (2007) Hdacs, histone deacetylation and gene transcription: from molecular biology to cancer therapeutics. Cell Res 17:195–211

    CAS  PubMed  Google Scholar 

  17. Gaspar L et al (1997) Recursive partitioning analysis (rpa) of prognostic factors in three radiation therapy oncology group (rtog) brain metastases trials. Int J Radiat Oncol Biol Phys 37:745–751

    Article  CAS  PubMed  Google Scholar 

  18. Hockly E et al (2003) Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, ameliorates motor deficits in a mouse model of huntington’s disease. Proc Natl Acad Sci USA 100:2041–2046

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Ilker YE et al (2005) Suberoylanilide hydroxamic acid (saha) has potent anti-glioma properties in vitro, ex vivo and in vivo. J Neurochem 93:992–999

    Article  Google Scholar 

  20. Karagiannis TC, El-Osta A (2006) Modulation of cellular radiation responses by histone deacetylase inhibitors. Oncogene 25:3885–3893

    Article  CAS  PubMed  Google Scholar 

  21. Kim MS et al (2003) Inhibition of histone deacetylase increases cytotoxicity to anticancer drugs targeting DNA. Cancer Res 63:7291–7300

    CAS  PubMed  Google Scholar 

  22. Kim MS et al (2001) Histone deacetylases induce angiogenesis by negative regulation of tumor suppressor genes. Nat Med 7:437–443

    Article  PubMed  Google Scholar 

  23. Marks P et al (2001) Histone deacetylases and cancer: causes and therapies. Nat Rev 1:194–202

    Article  CAS  Google Scholar 

  24. Marks PA et al (2004) Histone deacetylase inhibitors. Adv Cancer Res 91:137–168

    Article  CAS  PubMed  Google Scholar 

  25. Mueller S et al (2011) Cooperation of the hdac inhibitor vorinostat and radiation in metastatic neuroblastoma: efficacy and underlying mechanisms. Cancer Lett 306:223–229

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Munshi A et al (2005) Histone deacetylase inhibitors radiosensitize human melanoma cells by suppressing DNA repair activity. Clin Cancer Res 11:4912–4922

    Article  CAS  PubMed  Google Scholar 

  27. Munshi A et al (2006) Vorinostat, a histone deacetylase inhibitor, enhances the response of human tumor cells to ionizing radiation through prolongation of gamma-h2ax foci. Mol Cancer Ther 5:1967–1974

    Article  CAS  PubMed  Google Scholar 

  28. Palmieri D et al (2009) Vorinostat inhibits brain metastatic colonization in a model of triple-negative breast cancer and induces DNA double-strand breaks. Clin Cancer Res 15:6148–6157

    Article  CAS  PubMed  Google Scholar 

  29. Patchell RA et al (1998) Postoperative radiotherapy in the treatment of single metastases to the brain: a randomized trial. JAMA 280:1485–1489

    Article  CAS  PubMed  Google Scholar 

  30. Patchell RA et al (1990) A randomized trial of surgery in the treatment of single metastases to the brain. N Engl J Med 322:494–500

    Article  CAS  PubMed  Google Scholar 

  31. Peereboom DM (2012) Clinical trial design in brain metastasis: approaches for a unique patient population. Curr Oncol Rep 14:91–96

    Article  PubMed  Google Scholar 

  32. Ramalingam SS et al (2010) Phase i study of vorinostat in patients with advanced solid tumors and hepatic dysfunction: a national cancer institute organ dysfunction working group study. J Clin Oncol 28:4507–4512

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Ramaswamy B et al (2012) Phase i–ii study of vorinostat plus paclitaxel and bevacizumab in metastatic breast cancer: evidence for vorinostat-induced tubulin acetylation and hsp90 inhibition in vivo. Breast Cancer Res Treat 132:1063–1072

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Ree AH et al (2010) Vorinostat, a histone deacetylase inhibitor, combined with pelvic palliative radiotherapy for gastrointestinal carcinoma: the pelvic radiation and vorinostat (pravo) phase 1 study. Lancet Oncol 11:459–464

    Article  CAS  PubMed  Google Scholar 

  35. Richon VM (2006) Cancer biology: mechanism of antitumour action of vorinostat (suberoylanilide hydroxamic acid), a novel histone deacetylase inhibitor. Br J Cancer 95:S2–S6

    Article  CAS  PubMed Central  Google Scholar 

  36. Richon VM et al (1998) A class of hybrid polar inducers of transformed cell differentiation inhibits histone deacetylases. Proc Natl Acad Sci USA 95:3003–3007

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Schneider BJ et al (2012) Phase i study of vorinostat (suberoylanilide hydroxamic acid, nsc 701852) in combination with docetaxel in patients with advanced and relapsed solid malignancies. Invest New Drugs 30:249–257

    Article  CAS  PubMed  Google Scholar 

  38. Sperduto PW et al (2008) A new prognostic index and comparison to three other indices for patients with brain metastases: an analysis of 1,960 patients in the rtog database. Int J Radiat Oncol Biol Phys 70:510–514

    Article  PubMed  Google Scholar 

  39. Stathis A et al (2011) Phase i study of decitabine in combination with vorinostat in patients with advanced solid tumors and non-hodgkin’s lymphomas. Clin Cancer Res 17:1582–1590

    Article  CAS  PubMed  Google Scholar 

  40. Suh JH (2010) Stereotactic radiosurgery for the management of brain metastases. N Engl J Med 362:1119–1127

    Article  CAS  PubMed  Google Scholar 

  41. Ugur HC et al (2007) Continuous intracranial administration of suberoylanilide hydroxamic acid (saha) inhibits tumor growth in an orthotopic glioma model. J Neurooncol 83:267–275

    Article  CAS  PubMed  Google Scholar 

  42. Yin D et al (2007) Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor: effects on gene expression and growth of glioma cells in vitro and in vivo. Clin Cancer Res 13:1045–1052

    Article  CAS  PubMed  Google Scholar 

  43. Zhang Y, Jung M, Dritschilo A (2004) Enhancement of radiation sensitivity of human squamous carcinoma cells by histone deacetylase inhibitors. Radiat Res 161:667–674

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Merck & Co., Inc. supplied the Vorinostat in the preclinical and clinical studies and provided funding for both studies. Merck & Co., Inc. helped finance the clinical trial, the company also supplied the active drug, vorinostat.

Conflict of interest

Wenyin Shi: consultation for Varian, and Elekta. Hak Choy: advisory board for EMD and Bayer. Research grant from Celegene.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenyin Shi.

Additional information

Wenyin Shi and Yaacov Richard Lawrence contributed equally to this project.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, W., Lawrence, Y.R., Choy, H. et al. Vorinostat as a radiosensitizer for brain metastasis: a phase I clinical trial. J Neurooncol 118, 313–319 (2014). https://doi.org/10.1007/s11060-014-1433-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-014-1433-2

Keywords

Navigation