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Abstract Dark field microscopy is a widely

unknown method to measure the particle size distri-

bution of diffusing nanoparticles by particle tracking.

Here we demonstrate that by using the surface

plasmonic resonance of Au nanoparticles, size differ-

ences of ca. 20 nm can be identified within the particle

size distribution. For that purpose, we developed a

software tool which helps to analyze color videos of

diffusing nanoparticles retrieved from CCD or CMOS

cameras. Polystyrene beads with a diameter of 100 and

200 nm were used to compare the results to those

obtained with a well-established laser-based particle

tracking system. The methodology will be discussed in

the light of recent developments in the emerging field

of optical nanoparticle tracking.
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Introduction

The use of gold and silver nanoparticles (NPs) has

received much attention in recent years because of

their unique light scattering and absorption character-

istics (Ringe et al. 2013; El-Brolossy et al. 2008; Kelly

et al. 2003; Link and El-Sayed 1999). Due to their

plasmonic resonance and the lack of photobleaching

or blinking (Cai et al. 2008), these metal particles are

used as bio-nano-sensors (Anker et al. 2008). As early

as 1902 Siedentopf and Zsigmondy (1902) showed

that diffusing Au NPs are visible with dark field

microscopy (DFM). They also observed diffraction

patterns of NP in multiple colors. This phenomenon,

based on the surface plasmonic resonance (SPR) of

metal NPs, is influenced by the dielectric constant, the

temperature of the surrounding medium, and mainly

by particle size and shape (Link and El-Sayed 1999;

Kelly et al. 2003; Buecker 2007; El-Brolossy et al.

2008; Bingham and Willets 2009). Thus, under ideal

conditions, the color information offers the opportu-

nity to characterize the size of NPs with refined

methods. Since a couple of years a size measurement

technique called nanoparticle tracking analysis (NTA)

is increasingly used to determine the size distribution
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of NPs in liquids. This NTA technique makes use of

intense laser light to illuminate freely diffusing

particles, tracks their Brownian motion by analysis

of monochrome images, and finally, estimates their

size distribution using the Stokes–Einstein relation. As

the technique is applicable to biological fluids and to

comparatively low particle concentrations, it has

become major importance e.g., for measuring NPs in

the field of nanotoxicology (Buzea et al. 2007; Yang

et al. 2010; Stone et al. 2010). Another widely used

method for particle characterisation is dynamic light

scattering. This technique determines the size distri-

bution of a nanoparticle collective (down to 1 nm) and

is well suited for concentrated nanoparticle suspen-

sions, whereas it is disturbed by larger, gravitationally

settling particles. The latter is not a problem if single

particles are tracked by NTA (Filipe et al. 2010; Hole

et al. 2013) or the tracking method used in this paper.

This method takes advantage from DFM, which has

previously been applied to other scientific issues.

Sönnichsen and Alivisatos (2005) used single particle

tracking to estimate the plasmon-based orientation of

Au nanorods; Bingham and Willets (2009) tracked

single Ag NPs, analyzed their scattering spectra, and

estimated their diffusion coefficient simultaneously;

and Sagle et al. (2012) tracked single Au NPs for the

study of bilayers with ganglioside lipids to distinguish

between random and confined diffusion. However,

little attention has been paid to the capabilities of DFM

to estimate size distribution of suspended NP. This

paper, therefore, focuses on the advantages and

limitations of calculating size distributions of NP

from DFM videos by means of nanoparticle tracking.

In particular, we will demonstrate that the color

information of NP retrieved from CCD or CMOS

cameras bears valuable information which may help

identify subpopulations of metal NP. Therefore, an

ImageJ-based software called NanoTrackJ (Wagner

et al. 2014) was developed which is capable to analyze

a wide range of particle videos including their color

information.

Material & methods

Particles

Gold NPs (BBI, Cardiff, UK), nominally sized 60 and

80 nm, were used due to their stability and pronounced

SPR. These particle qualities were diluted in essentially

particle-free double distilled H2O and mixed to obtain

suitable bimodal particle suspensions. For verification

purposes, 100 nm (Kisker-Biotech, PPs-0.1) and 200

nm (Kisker-Biotech, PPs-0.2) polystyrene particles

were used. Trackable concentrations amounted to

approximately 5� 108=ml and 3� 109=ml for NTA

and dark field measurements, respectively.

Imaging equipment and data acquisition

Image data were collected with a NanoSightTM LM10

system equipped with a LM14 green (535 nm) laser

module and a cooled Andor camera (Andor-DL-658-

OEM). For DFM, an Olympus BX51 microscope was

used which was illuminated with a CytoVivaTM dark field

oil condenser. Particle suspension was pipetted into a

micro-chamber consisting of a cleaned slide and a cover

slip which was supported by two cover slip fragments,

thus defining the height of the chamber to ca. 160 lm. A

100-fold oil immersion objective with iris aperture

(Olympus) was brought in place and the optimal dark

field illumination was adjusted with a completely

closed iris. Measurements were carried out at a defined

temperature (22� 24 �C). Color image series were

taken with a digital single-lens reflex camera (Canon

EOS 5D Mark II) set to the highest sensitivity (ISO

3200) in the movie mode (25 fps, resolution 1920 �
1020 px) or with a PCO Pixelfly Edge camera (PCO

AG, Kehlheim, Germany, black and white custom

model). The NTA measurements were analyzed by the

NTA 2.3 software and by the newly developed

NanoTrackJ software. Dark field measurements were

analyzed by NanoTrackJ only. All captured video files

and settings to reproduce the measurements are listed

in the supplementary information.

Nanoparticle tracking analysis

NTA adapts some principles of single particle tracking

to estimate size distributions of NPs in liquid suspen-

sions. To estimate a size distribution, four steps are

necessary: (i) Each particle in each frame has to be

identified and its center needs to be calculated, (ii)

each identified particle has to be tracked for an

acceptable time period, (iii) the diffusion coefficients

have to be estimated by means of the particle

trajectories, and (iv) the size distribution is calculated
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considering temperature and viscosity. The following

section describes how these issues are solved by

NanoTrackJ, and gives advice as to which method

provides most robust results.

(i) Identifying each particle

The objective of this step is to segment each diffrac-

tion pattern and estimate the center of it. NanoTrackJ

offers three alternative ways to solve that problem:

(i) utilize the ‘‘Find Maximum’’ method, (ii) combine

the ‘‘Find Maximum’’ method and a Gaussian fit

procedure, and (iii) let the user segment the video data

on his own and use the binary video data.

Method (i) was used throughout all measurements

conducted with NanoTrackJ and works as follows: The

8-neighborhood of each pixel is scanned for higher

pixels. If no higher pixel is found, the center pixel is

marked as the maximum; all maximum values are sorted

by intensity value in descending order, and commencing

with the first local maximum (in sorted order) a flood

filling algorithm is carried out. This flood filling

algorithm groups all pixels around the respective

maximum value and uses a pre-set intensity tolerance.

If another local maximum is located inside this grouped

region, it will be discarded. The centers of gravity of the

grouped regions are returned as maximum values.

Method (ii) provides center estimations with ‘‘sub-

pixel accuracy.’’ Starting from the position returned by

method (i), it estimates the spread of the main maximum

of the diffraction pattern. Subsequently, it fits a 2D

Gaussian distribution to the main maximum of the

diffraction pattern. The center of this Gaussian fit,

theoretically, provides subpixel accuracy (Cheezum

et al. 2001). However, the main maximum often suffers

from saturation effects or lacks a Gaussian shape, such

that a subpixel accuracy cannot be reached in these cases.

Method (iii) works with binary image sequences

only. It is useful for data that could not be analyzed by

method (i) or (ii). The user has to segment the footage

using ImageJ before the image sequence can be

analyzed by NanoTrackJ. Then, the center of gravity

of each connected component is calculated.

(ii) Tracking each particle

After identifying each particle in every frame, the

particle positions have to be connected to a trajectory

(or ‘‘track’’). For this purpose, the software has to track

the particle in the image sequence. In NanoTrackJ, this

is done as follows: Let an image sequence consist of N

frames F ¼ fFMt;F2Mt; . . .;FNMtg captured at a con-

stant time interval of Mt. Let KiMt be the set of

identified particles in frame FiMt and 1� i�N. Given

a particle with a position pj with 0\j\jKiMtj in frame

FiMt then Mj is the set of particles in the previous frame

Fði�1ÞMt which are inside a circle with the radius r

centered at the position pj:

Mj ¼ fq : q 2 Kði�1ÞMt; kpj � qk\rg ; ð1Þ

where jj � jj is the euclidean norm. However, the

tracking algorithm interconnects the particle positions

only if the following conditions are fulfilled:

jMjj ¼ 1 ð2Þ

Mj \Mk ¼ f;g for j 6¼ k ð3Þ

This means that the decision of connecting two particles

has to be unique. Eq. (2) ensures that a particle is not

connected to more than one particle in the previous frame

and Eq. (3) ensures that two particles are not connected to

the same particle in the previous frame. If two particles in

subsequent frames are connected successfully, it is

assumed that these two centers represent the same

particle which had changed its positions duringMt. This

change in the particle position is referred to as a

‘‘step.’’ A trajectory of a particle is formed of L steps,

where L is proportional to the diffusion time of the

particle and is referred to as ‘‘tracklength.’’ In an ideal

case, the tracklength covers the complete registration

period. However, this occurs rather infrequently

because (i) the particle diffuses out of the field of

view or (ii) an assignment does not satisfy Eq. (2) or

(3). Whereas the first issue depends in part on the

optical and instrumental settings (illumination inten-

sity, numerical aperture of the objective, camera

sensitivity), the second issue may be minimized not

only by preparing samples with a reasonably adapted

particle concentration (see ‘‘Particles’’ section ) but

also by software. For this purpose, NanoTrackJ is

parametrized by a minimum expected particle diam-

eter. Knowing the sample’s temperature and viscosity,

the corresponding maximum-expected diffusion coef-

ficient Dmax can be calculated by the Stokes–Einstein

relation. Using this maximum-expecting diffusion

coefficient, the search radius r is calculated by

r ¼ 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pDmaxMt
p

; ð4Þ
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where
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pDmaxMt
p

is the mean step length of a particle

with the diffusion coefficient Dmax(der Meeren et al.

2012). This radius ensures that more than 99 % of the

expected particle steps are shorter than this radius

(Wieser and Schütz 2008), provided that there is no

smaller particle as specified by the minimum expected

particle diameter. It is worthwhile to note that the

search radius is of critical importance. A too large

radius will result in shorter track lengths, because Eqs.

(2) and (3) will be satisfied less often. In case the

radius r is too small, steps exceeding r will not become

detected, which leads to a smaller mean step length

and a bias towards a larger mean particle size.

(iii) Diffusion coefficient estimation

Given a particle trajectory, its diffusion coefficient

could be calculated in several ways. Two methods are

available in NanoTrackJ: The ‘‘regression method’’

and the ‘‘covariance method.’’

The regression method is the most often used method

in the literature to estimate the diffusion coefficient. It

evaluates the mean squared displacement d2
� �

of

particle diffusion in n dimensions for different time

lags sk ¼ kMt:

d2
� �

k
¼ 2nDsk ð5Þ

Evaluation of Eq. (5) for different sk leads to a bunch

of data points ð d2
� �

k
; kÞ. The diffusion coefficient is

then estimated by the slope of a regression line fitting a

specific number of data points. The slope of this

regression line is proportional by 2nMt to the diffusion

coefficient. This method is very simple but unfortu-

nately error prone. Up to now it’s not clear, how many

data points lead to the best estimate. Wieser and

Schütz (2008) states that only the first two time lags

ðk ¼ 1; 2Þ should be used and Vestergaard (2012)

concluded that the more data points are included in the

fit the greater is the error in the estimate. However,

Ernst and Köhler (2013) recommend to use the data

points with the time lag k ¼ 2 to k ¼ 5, and Michalet

and Berglund (2012) used an iterative approach to

estimate the optimal number of data points. Due to

these contradictory recommendations for the correct

number of data points, NanoTrackJ allows the user to

determine what minimum and maximum time lag

should be used.

However, here we decided to use the covariance

estimator throughout the paper. Because it is unbiased

and needs no parameters, it outperforms the regression

method for most diffusion-to-noise ratios and it almost

attains the minimum standard deviation for an unbi-

ased estimator, the Cramer–Rao bound (see Appen-

dix). Given the measured position x½n� at discrete

timepoints tn ¼ nMt of a particle diffusing in one

dimension, then the covariance estimator is defined in

the following way:

D̂ ¼ MxnMxn

2Mt
þ MxnMxnþ1

Mt
; ð6Þ

where the second term in the right-hand side is an

estimator for the localization noise and

Mxn ¼ x½n� � x½n� 1� ð7Þ

Please refer to Appendix for a more comprehensive

precision analysis of both estimators.

(iv) Estimation of the size distribution

Once the diffusion coefficients are estimated, the

derivation of a size distribution is straight forward.

NanoTrackJ provides two methods for this purpose.

The first method simply transforms the diffusion

coefficients to a hydrodynamic diameter using the

Stokes-Einstein relation and weights each diameter by

the track length from which it is derived. Then, a

histogram is formed using the weighted diameter data.

The weighting is important not only because longer

tracks provide more precise estimate but also because

smaller particles diffuse in and out the field of view

more rapidly and, therefore, more often than larger

particles. Consequently, it makes sense to treat each

particle step as a single event instead of the complete

track (ASTM 2012).

The second method also accounts for this fact by

using a maximum likelihood method as suggested by

Walker (2012). He defines the following iterative

algorithm to estimate the particle size histogram with

M radius bins and a bin size of Mr

Pðjþ1Þ
m ¼ PðjÞm

1

N

X

N

n�1

PdðMn; kn;m � MrÞ
PM

l¼1
PdðMn;kn;l�MrÞ
PM

i¼1
P
ðjÞ
i

8

>

<

>

:

9

>

=

>

;

; ð8Þ
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where

PdðMn; kn; rÞ ¼
knðknMnÞkn�1 � expð�knMn=hrÞ

hkn

r � CðknÞ
ð9Þ

and hr ¼ ð2KbTMtÞ=ð3pgrÞ;Mn is the mean squared

displacement of track n , and kn is the number of steps

of track n. The algorithm starts from uniform distri-

bution (P0
m) and updates the bin probabilities for all

bins 1�m�M in one iteration. The mean squared

displacement is derived from the estimator chosen in

step (iii) by using the relation Mn ¼ 2DnMt. Here the

covariance estimator was used, since it is an efficient

estimator for both the diffusion coefficient and Mn

which linearly depends on the former. The algorithm

stops, if the differences between the histogram of the

displacement data and the maximum likelihood histo-

gram for the displacement are no longer changing.

This method leads to very ‘‘clean’’ histograms within

which the modal values are easily identified. Through-

out the paper, this method was used for all measure-

ments with NanoTrackJ.

Results and discussion

In the first section, we will demonstrate the ability of

NanoTrackJ to determine the correct particle size,

using the proprietary NanoSightTM system as a NTA

reference system. Then, the utilization of SPR of Au

NP for an advanced size measurement will be

demonstrated. Finally, advantages and disadvantages

of either method will be discussed.

Quality control of NanoTrackJ

Videos of polystyrene beads diffusing in H2O were

captured using the NTA device and analyzed by both,

the NanoSightTM NTA 2.3 software and NanoTrackJ.

Size distributions determined by NanoTrackJ (Fig. 1b,

d) agreed well with distributions reported by NTA

software (Fig. 1a, c). Data in Table 1 show that not

only the modal values match fairly well but also the

inter-quantile ranges are in good agreement. Using the

same video material, the modal diameter reported for

the 200 nm polystyrene video by NanoTrackJ came

slightly close to the nominal particle diameter com-

pared to NTA, an effect which may be caused e.g., by

the different diffusion coefficient estimators.

Although DFM is predestined for analyzing plasmonic
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Fig. 1 Comparison of NanoTrackJ and NTA using a 100 nm

and a 200 nm NP suspension. Video sequences were captured

with a NanoSightTM LM10 microscope and analyzed by NTA

2.3 (a, c) and NanoTrackJ (b, d). Because NTA 2.3 reports

continuous size distributions, we added a kernel density estimate

to plot a and c
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NPs (see ‘‘Utilizing the surface plasmon resonance for

dark field NTA’’ section), NPs made from polystyrene

can be evaluated as well. Figure 2 shows the size

distributions of 100 and 200 nm NP viewed with DFM

and analyzed with NanoTrackJ. Modal values are

centered at the nominal size of the beads indicating the

correctness of the method.

Utilizing the surface plasmon resonance for dark

field NTA

In the next step, we investigated how colors of Au NP

elicited by dark field illumination can add to or even

improve the determination of their size distribution.

We found that using the SPR of Au NPs it was possible

to identify the particle subpopulations in the bimodal

Au NP suspension. Figure 3 shows a multi-colored set

of diffusing particles with green and orange being the

dominating colors. As outlined above, difference in

plasmon resonance could reflect a different size,

shape, or dielectric environment of the AuNP (Bing-

ham and Willets 2009; Buecker 2007; El-Brolossy

et al. 2008). As there was no change in color of each

single particle over time, a torsion of an irregularly

shaped particle was unlikely to account for this

disparity. Furthermore, according to manufacturer’s

specification, all visible Au NPs were designated as

spherical. As NP was in the same chemical surround-

ing, divergent colors were most likely provoked by the

different sizes. Figure 4 shows the size distribution

estimated by NanoTrackJ. The modal value was

60 nm but the size distribution also exhibited a

‘‘shoulder’’ pointing to a 80 nm subpopulation of

particles. A histogram was generated using the color

Table 1 Quantitative validation of NanoTrackJ (NTJ) using

the polystyrene experiments shown in Fig. 1

Polystyrene diameter 100 nm 100 nm 200 nm 200 nm

Software NTA NTJ NTA NTJ

Analysis time (s) 60 60 60 60

Modal value (nm) 101 98 181 196

IQR75�25 (nm) 22 24 31 31

#Tracks 1,263 1,290 524 469

Tracklength 53 64 80 109

Figure 1a 1b 1c 1d
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Fig. 2 Size distribution of polystyrene NP (100 and 200 nm)

viewed with DFM and analyzed with NanoTrackJ. Both

histograms were calculated by Walker’s method based on 937

tracks (a) / 438 tracks (b) with a mean track length of 35 (a) / 71

(b)

Fig. 3 Footage of the color video of a bimodal mixture of 60

and 80 nm Au NPs. A diverging SPR can be seen with

dominating colors green and orange. (Color figure online)
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information around the center of each particle which

was transformed to the HSB color space. The hue was

than mapped to its monochromatic wavelength. As the

different colors of NP in Fig. 3 and also the histogram

of particle colors (Fig. 4) suggested two different

particle populations, we used the color thresholder

inbuilt in NanoTrackJ and analyzed green-to-yellow

particles (wavelength: 450–582 nm) and orange-to-red

particles (wavelength: 583–620 nm) separately. This

identified two different NP populations whose modal

values exactly amounted to 60 and 80 nm, respec-

tively (Fig. 5). It is furthermore noteworthy that these

two populations were hardly separable without their

color information. Also the cluster analysis method,

previously devised by us to identify subpopulations of

NP (Wagner et al. 2013) during NTA, was unable to

separate the subpopulations of the current study.

Detection limit of dark field nanoparticle tracking

The detection limit for NP viewed with DFM is hard to

define, as it depends on the type of light source and its

intensity, the microscope objective, and the amount of

light passing the (variable) aperture. Also, the sensi-

tivity of the camera is an important part of the

experimental setup. With respect to the particles, the

refractive index and the particular properties leading

to plasmonic resonance are important to obtain a color

image to be evaluated with NanoTrackJ. As stated by

Boyer et al. (2002), the minimal detectable plasmonic

particle size should be around 40 nm because the

Rayleigh scattering decreases as the sixth power of

diameter. In our experiments, 50 nm Au NP was

visible by eye and could also be tracked with a color

CCD or CMOS camera. In contrast, 50 nm polysty-

rene NP, which is easily tracked with the NanoSight

System, could not be imaged with DFM as used here.

In case that all optical elements were carefully

adjusted images from diffusing 100 nm polystyrene

beads became observable and could be tracked with

sensitive cameras, suggesting a detection limit for

non-plasmonic particles in the 100 nm range. There-

fore, DFM will hardly lower the size limit of particles

to be analyzed by tracking analysis, which is in the

range of 10 nm for gold NPs. Instead, it is useful to

analyze colored NP which, as shown here, can help to

identify subpopulations of particles. First results have

also shown that plasmonic particles undergo a color
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Fig. 4 Size distribution of the bimodal AuNP mixture from

NanoTrackJ. The 561 tracks of Au NPs shown in Fig. 3 are

evaluated. The modal value is 60 nm
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Fig. 5 Assignment of color information to the size of gold NP.

The size distribution from Au NPs shown in Fig. 3 was

separated. Upper histogram: For the orange distribution, the

wavelength range is 583–620 nm and the green size distribution

includes particles with a range of 450–582 nm. The modal

values are 60 and 80 nm, respectively. (Color figure online)

J Nanopart Res (2014) 16:2419 Page 7 of 10 2419

123



change secondary to cellular uptake (Wang et al.

2010). This opens new possibilities for visualizing

alterations of the chemical surrounding, compartmen-

talization and/or corona formation of NPs, while

simultaneously studying their movement inside cells.

Conclusion

DFM is a valuable tool for characterizing nanoparticle

suspensions. The technique is especially applicable for

nanoparticle tracking from color videos of diffusing

plasmonic NPs. The exploitation of the color infor-

mation can improve the identification of particle

subpopulations under defined conditions. This means

that not only size information may be retrieved, as

shown here, but also changes of chemical surrounding

and/or particle coating may become experimentally

accessible, e.g., during the uptake of NP by cells.

Therefore, the open source software NanoTrackJ was

devised as a tool for the expanding scientific commu-

nity of nano researchers.

Acknowledgments This paper was supported by Grants of the

German Federal Ministry of Education and Research (BMBF,

NanoGEM Project, FKZ 03X0105G, and 03X0105H). We thank

Martin Ward from the University of Edinburgh for helpful

discussions and software testing.

Open Access This article is distributed under the terms of the

Creative Commons Attribution License which permits any use,

distribution, and reproduction in any medium, provided the

original author(s) and the source are credited.

Appendix

Precision analysis: covariance estimator,

regression estimator and the Cramer–Rao Bound

In this section, we will provide a comparison of the

precision of the regression and covariance estimator

under localization noise. Both estimators are accurate,

which means that they are unbiased. The precision of

an estimator is quantified by its variance. We will

compare the variance of the estimators with each other

and, secondly, also with the minimal attainable

variance of an unbiased estimator, called the Cra-

mer–Rao bound. To derive this bound, we need a

model of the diffusion process which includes

localization noise: Let x½n� be the measured positions

of a one dimensional diffusion of a particle with the

diffusion coefficient D then

x½n� ¼ xtrue½n� þ nn ð10Þ

xtrue½n� ¼ xtrue½n� 1� þ bn ; ð11Þ

where b is normal random variable Nðlb ¼ 0; r2
b ¼

2DMtÞ which represents the step length distribution,

Mt is the time between two measurements, xtrue½n� is

the true position of the particle, and n is the normal

distributed localization noise with mean ln ¼ 0 and

standard deviation rn. For the expected value and the

variance of the position differences apply

x½n� � x½n� 1�h i ¼ bnh i þ nnh i þ �nn�1h i ¼ 0

ð12Þ

ðx½n� � x½n� 1�Þ2
D E

¼ bn þ nn � nn�1ð Þ2
D E

ð13Þ

¼ 2DMt þ 2r2
n ð14Þ

Now we are able to define the likelihood function of

the position differences. Let x ¼ ðx½0�; :::; x½N � 1�Þ
then the likelihood is

pvðx; DÞ ¼
Y

N�1

1

exp � ðx½n��x½n�1�Þ2
4DMtþ4r2

n

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4pDMt þ 4pr2
n

q

ð15Þ

¼
exp � S

4DMtþ4r2
n

� �

ð4pDMt þ 4pr2
nÞ
ðN�1Þ

2

; ð16Þ

where

S ¼
X

n¼N�1

n¼1

ðx½n� � x½n� 1�Þ2 ð17Þ

The second derivative of the log-likelihood is

o2 ln pðx; DÞ
o2D

¼ ðN � 1ÞMt2

2ðDMt þ r2
nÞ

2
� Mt2S

2ðDMt þ r2
nÞ

3

ð18Þ

and taking the expectation results in

o2 ln pðx; DÞ
o2D

� �

¼ � ðN � 1ÞMt2

2ðDMt þ r2
nÞ

2 ð19Þ
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This leads to the Cramer–Rao inequality

varð ^DÞ� � 1

o2 ln pðx;DÞ
o2D

D E ¼
2ðDMt þ r2

nÞ
2

ðMtÞ2ðN � 1Þ ð20Þ

To compare the precision of the estimators, we have

carried out Monte Carlo simulations. Therefore, we

define a signal to noise ratio as

SNR ¼
ffiffiffiffiffiffiffiffiffiffiffi

2DMt
p

rn
ð21Þ

For each signal to noise ratio, 3,000 trajectories with

tracklength of 30 were generated and the variance was

calculated. Figure 6 shows the precision comparison

of the covariance estimator suggested by Vestergaard

(2012) and the regression estimators based on the time

lag 2� 5 (R2�5) and 1� 2 (R1�2) as suggested by

Ernst and Köhler (2013) and Wieser and Schütz

(2008), respectively.

For signal to noise ratios below 1, the R2�5 estimator

has a higher precision than the R1�2 estimator. For

more practically relevant signal to noise ratios ([1),

the R1�2 estimator has a significant higher precision.

The covariance estimator provides a higher precision

as both regression estimators for all signal to noise

ratios but does not attain the Cramer–Rao bound even

for large SNRs. However, the Cramer–Rao bound

does not provide any information if such an estimator

even exists. We, therefore, recommend that the

covariance estimator should be used instead of the

regression estimator because of its higher precision

and easy implementation which needs no numerical

fitting.
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Wieser S, Schü tz GJ (2008) Tracking single molecules in the

live cell plasma membrane-Do’s and Don’t’s. Methods

46(2):131–140

Yang Z, Liu ZW, Allaker RP, Reip P, Oxford J, Ahmad Z, Ren G

(2010) A review of nanoparticle functionality and toxicity

on the central nervous system. J R Soc Interface

7(Suppl\_4):411–422

2419 Page 10 of 10 J Nanopart Res (2014) 16:2419

123

http://dx.doi.org/10.6084/m9.figshare.805052
http://dx.doi.org/10.6084/m9.figshare.805052

	Dark field nanoparticle tracking analysis for size characterization of plasmonic and non-plasmonic particles
	Abstract
	Introduction
	Material & methods
	Particles
	Imaging equipment and data acquisition
	Nanoparticle tracking analysis
	(i) Identifying each particle
	(ii) Tracking each particle
	(iii) Diffusion coefficient estimation
	(iv) Estimation of the size distribution


	Results and discussion
	Quality control of NanoTrackJ
	Utilizing the surface plasmon resonance for dark field NTA
	Detection limit of dark field nanoparticle tracking

	Conclusion
	Acknowledgments
	Appendix
	Precision analysis: covariance estimator, regression estimator and the Cramer--Rao Bound

	References


