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Abstract Both Petri nets and differential equations are

important modeling tools for biological processes. In this

paper we demonstrate how these two modeling techniques

can be combined to describe biological gradient formation.

Parameters derived from partial differential equation

describing the process of gradient formation are incorpo-

rated in an abstract Petri net model. The quantitative

aspects of the resulting model are validated through a case

study of gradient formation in the fruit fly.

Keywords Gradient formation � Petri net � Process
validation � Quantitative modeling � Partial differential
equation

In this paper we present a Petri net model of the bio-

logical process of gradient formation, incorporating

parameters derived from a partial differential equation

model of this process. In biology, a gradient is a graded

change in concentration of specific signaling molecules,

called morphogens, through a group of cells (Entchev and

González-Gaitán 2002; Fischer et al. 2006; Gurdon et al.

1999; Gurdon and Bourillot 2001; Tomlin and Axelrod

2007). The morphogens get produced by a cell or group

of cells, called the source, and emanate from there

spreading throughout the tissue. At the same time mole-

cules get degraded in the tissue. This simultaneous pro-

duction and degradation establishes a slope in

concentration levels, known as the morphogen gradient.

Cells in the tissue sense the morphogen concentration in

their direct surroundings and respond by adopting a

specific behavior. In this way morphogens have a direct

effect on cell development and differentiation and are

therefore of the utmost importance (Wolpert 2002). For

this reason, a model which furthers our understanding and

analysis of the process, both from an operational as well

as a denotational perspective, is of great use to the field of

biology.

By combining a Petri net with parameters determined by

a system of partial differential equations, we have con-

structed a generic Petri net model for the formation of

molecular gradients.

An abstract proof of concept for the application of the

Petri net framework to this biological phenomenon, has

been presented in Bertens et al. (2012). This early model

represents the process of gradient formation as a global

decrease in concentration levels of molecules throughout

the cells in the tissue. In the model, the spreading of

molecules is governed by a fixed ratio of molecular con-

centration between neighboring cells. This ratio represents

the combined effect of molecules being transported

between cells and degrading in the cells.
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In the current paper we present an elaboration of this

model that makes it possible to include parameters derived

from differential equation (DE) modeling. Starting from

the proof of concept of Bertens et al. (2012), we move

from an abstract approach towards a more detailed and

applied approach. The events of molecule production,

diffusion and degradation are modeled explicitly and are

governed by individual parameters. For gradient formation,

partial differential equation models exist which provide

accurate quantitative data about this process (Gregor et al.

2005; Kicheva et al. 2007; Yu et al. 2009). By linking the

parameters of the Petri net model to the parameters in the

discretized form of such a DE model, the net can be used to

produce quantitative data about discrete space and time

points in the process, similar to the DE model, while at the

same time retaining the advantages of the Petri net

framework. In order to validate the Petri net model, we

present a case study; from literature we have selected a

study in which experimental observations of gradient for-

mation have been modeled using partial differential equa-

tions. We use the parameters from this DE model and show

how the simulation data obtained from executing the

resulting Petri net correspond to the data obtained from the

equations.

Both Petri nets and DE models have clear benefits for

the study of biological processes (Ellner and Gucken-

heimer 2006; Gilbert and Heiner 2006; Gilbert et al. 2007;

Heiner et al. 2008; Koch et al. 2011; Krepska et al. 2008;

Matsuno et al. 2003; Steggles et al. 2006); by combining

Petri nets and DEs we strive to bring characteristics of both

together in one model. Many biological processes, in par-

ticular biochemical processes such as metabolic and signal

transduction pathways, have been modeled using differ-

ential equations (Ellner and Guckenheimer 2006; Gregor

et al. 2005; Kicheva et al. 2007; Yu et al. 2009). These

mathematical models describe changes in process variables

and enable precise quantitative studies, parameter sensi-

tivity and bifurcation analysis. They assume the evolution

of processes in continuous time and even continuous space.

This allows the deduction of properties of the system

mathematically, e.g. the existence and stability of steady

states, by analyzing the system of DEs. Analysis is com-

plemented by numerical simulations, to investigate the

transient behavior, when the system is moving towards its

long-term behavior. The simulation techniques involve

discretization of the DEs, in time and space. The resulting

computational scheme describes the change of state vari-

ables in discrete time steps.

On the other hand, the modeling framework of Petri nets

(Petri 1962; Reisig 2010; Reisig and Rozenberg 1998), as

an algorithmic process model aims to describe the mech-

anisms underlying (local) changes in a system (Ellner and

Guckenheimer 2006; Priami 2009). Petri nets are moreover

of particular use to biological studies, because of their

origin in the modeling of chemical reactions and molecular

interactions, and the explicit rendering of concurrent

behavior, i.e. the independent and potentially simultaneous

occurrence of events, which is a common feature of bio-

logical systems (Fischer et al. 2011; Koch et al. 2011).

Futhermore, Petri nets combine graphical and mathemati-

cal elements, making them intuitive to communicate,

execute and understand visually, while also allowing for-

mal analysis. Implementation of a Petri net yields an

operational process model. Using analysis tools such as

state space exploration and analysis of, e.g., deadlocks and

boundedness properties, the behavior of such a process can

then be studied. In this way Petri nets provide a view point

complementary to DE models. As for DE models, an

interest in modeling biological processes with Petri nets

has emerged, especially in the field of systems biology, and

new ways to apply this modeling technique to the life

sciences are constantly being developed (Banks 2009;

Chaouiya 2007; Gilbert and Heiner 2006; Gilbert et al.

2007; Heiner et al. 2008; Koch et al. 2011; Krepska et al.

2008; Matsuno et al. 2003; Steggles et al. 2006). In Li and

Yakota (2009), parameters for a Petri net representing bone

remodeling are determined from a mathematical model for

the biological process in terms of ordinary differential

equations, whereas here we directly consider a partial

differential equation. Furthermore, in Gilbert et al. bio-

chemical processes evolving in time and space are con-

sidered with a spatial modeling approach which employs

colored Petri nets for space discretization. For continuous

models it corresponds to discretising partial differential

equations. All analysis build on standard analysis/simula-

tion techniques; e.g., the continuous Petri nets are simu-

lated with standard ordinary differential equation solvers.

In contrast, in this paper we present an alternative approach

to solving partial differential equations using (discrete)

Petri nets with an execution semantics based on the prob-

ably simplest time concept possible for this purpose.

It should be noted here that the Petri net model pre-

sented in this paper is not intended to just provide an

alternative solution to a DE model of gradient formation.

Rather it will be shown how parameters derived from the

discretization of a PDE model for gradient formation pro-

vide quantitative information for an abstract Petri net

model of this process. The resulting Petri net visualises the

physical interaction on the level of particles (morphogens)

and, where a DE model is based on global averages, the

Petri net provides a view on local interactions between

cells which offers new possibilities for a deeper under-

standing of gradient formation.

The paper is organized as follows. First, we give notions

and notations related to Petri nets and we describe the

modeling decisions. Subsequently, the discretization of the
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DE model is set out along with the connection of DE

parameters to parameters in the Petri net modeling solu-

tion. Then we present the resulting Petri net model. A case

study of gradient formation of the protein Dpp in the fruit

fly is used for the validation. Finally, we present conclu-

sions and remarks on future work.

The work presented in this paper was carried out as part

of the PhD research of the first author (Bertens 2012).

1 Preliminaries

1.1 PT-nets with activator arcs

For a general introduction to Petri nets we refer to Reisig

and Rozenberg (1998). In this paper, we use Place/Tran-

sition-nets with activator arcs (Kleijn and Koutny 2007),

PTA-nets for short, and a maximally concurrent execution

rule (Burkhard 1983).

Petri nets are defined by an underlying structure with

places and transitions as basic elements, connected by

directed, weighted arcs. In the Petri net model considered

in this paper, there are moreover activator arcs connecting

places to transitions. In modeling, places are usually the

passive elements, representing local states, and transitions

the active elements. Here, global states, referred to as

markings, are defined as mappings assigning to each place

a natural number (of tokens corresponding to available

resources).

A PTA-net is a tuple N ¼ ðP; T;W ;Act;m0Þ such that:

• P and T are finite disjoint sets of places and transitions,

respectively.

• W : ðT � PÞ [ ðP� TÞ ! N is the weight function of

N.

• Act � P� T is the set of activator arcs of N.

• m0 : P ! N is the initial marking of N.

In diagrams, such as that shown in Fig. 1, places are drawn

as circles, transitions as boxes, and arcs are arrows. If

Wðx; yÞ� 1, then (x, y) is an arc leading from x to y; it is

annotated with its weight if this is greater than one. Acti-

vator arcs have black-dot arrowheads. A marking m is

represented by drawing in each place p exactly mðpÞ tokens
as small black dots, or just inserting there the integer mðpÞ.
We assume that each transition t has at least one input

place (there is at least one place p such that Wðp; tÞ� 1).

When a single transition t occurs (‘fires’) at a marking, it

takes tokens from its input places and adds tokens to its

output places (with the number of tokens consumed/pro-

duced given by theweights of the relevant arcs).Moreover, if

there is an activator arc ðp; tÞ 2 Act, then transition t can only

be executed at the given marking if p contains at least one

token, without the implication of tokens in p being consumed

or produced when t occurs. Thus, the difference with a self-

loop, i.e. an arc from p to t and vice versa, is that the activator

arc only tests for the presence of tokens in pwithout requiring

exclusive access rights to these tokens during firing.

We define the executions of N in more general terms of

simultaneously occurring transitions. A step is a multiset of

transitions U : T ! N. Thus U(t) specifies how many

times transition t occurs in U. (Note that if we exclude the

empty multiset, single transitions can be considered as

minimal steps.) A non-empty multiset U can be written in

the form of a formal sum Uðt1Þt1 þ � � � þ UðtnÞtn if T ¼
ft1; . . .; tng and if UðtiÞ is 0, the term 0ti is skipped. Step U

is enabled (to occur) at a marking m if m assigns enough

tokens to each place for all occurrences of transitions in

U and, moreover, all places tested through an activator arc

by a transition in U, contain at least one token.

Formally, step U is enabled at marking m of N if, for all

p 2 P:

• mðpÞ�
P

t2T UðtÞ �Wðp; tÞ
• mðpÞ� 1 whenever there is a transition t such that

UðtÞ� 1 and ðp; tÞ 2 Act.

If U is enabled at m, it can be executed leading to the

marking m0 obtained from m through the accumulated

effect of all transition occurrences in U:

2
p1

p2

p3

2
p4

a b c
7 2 [2b

p1

2
p2

15
p3

2
p4

a b c
7 2

[2a+ 2c

2

p1

p2
11

p3

2

p4

a b c
7 2

Fig. 1 A PTA-net N and its

evolution N½2biN 0½2aþ 2ciN 00

generating the max-enabled step

sequence ð2bÞð2aþ 2cÞ. Note
that we use integers rather than

tokens to represent markings

greater than 1
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• m0ðpÞ ¼ mðpÞ þ
P

t2T UðtÞ � ðWðt; pÞ �Wðp; tÞÞ for all
p 2 P.

Finally, a step U is said to be max-enabled at m if it is

enabled at m and there is no step U0 which is also enabled

at m and strictly contains U (meaning that U0 6¼ U and

UðtÞ�U0ðtÞ for all transitions t). We denote this by

m½Uim0. A (max-enabled) step sequence is then a sequence

r ¼ U1. . .Un of non-empty steps Ui such that m0 ½U1im1

. . .mn�1 ½Unimn, for some markings m1; . . .;mn of N. Then

mn is said to be a reachable marking of N (under the

maximally concurrent step semantics). Figure 1 depicts a

max-enabled step sequence.

This particular net model was chosen in Bertens et al.

(2012) to describe the formation of a gradient for the fol-

lowing reasons. First of all, it follows from the above

definitions that the chosen Petri net semantics (the rules for

the execution of steps) allows auto-concurrency, the phe-

nomenon that a transition may be executed concurrently

with itself. This approach makes it possible to use transi-

tions for a faithful modeling of natural events like the

independent (non-sequential) occurrence in vast numbers

of a biochemical reaction in a living cell. Note that the

degree of auto-concurrency of a transition can easily be

controlled by a dedicated place with a fixed, say k, number

of tokens connected by a self-loop with that transition

implying that never more than k copies of that transition

can fire simultaneously.

Activator arcs are a means of testing for the presence of

at least one token in a place (see, e.g., Kleijn and Koutny

2007), and so they are similar to other kinds of net features

designed for the same reason. We mentioned already self-

loops by which the presence of a token in a place can be

tested by a single transition which ‘takes and returns’ the

token, but not simultaneously by an arbitrary number of

transition occurrences in a step. Two other mechanisms

which do allow such multiple testing are context arcs

(Montanari and Rossi 1995) and read (or test) arcs (Vogler

2002). Activator arcs are however more permissive since

they only check for the presence of a token before the step

is executed (this is often referred to as a priori testing). We

feel that a priori testing is more appropriate for biological

applications as the ‘lookahead’ implied by the other two

kinds of test arcs is hard to imagine in reality.

Finally, the maximal concurrency in the steps that are

executed, reflects the idea that execution of transitions is

never delayed. This may also be viewed as a version of

time-dependent Petri nets where all transitions have a firing

duration of 1. Moreover, applying maximal concurrency in

this paper, was inspired by Petri nets with localities (Kleijn

et al. 2006) and their associated locally maximal semantics.

Here one may think of, e.g., the locally synchronous

occurrence (in pulses) of reactions in individual

compartments of a cell. Such an approach, based on

localities of activities, seems also appropriate when various

aspects of a developmental process are to be modeled.

1.2 Modeling decisions

We choose to use cells as the elementary units in our

model, represented by places. Tokens represent morphogen

levels, conducted from cells to neighboring cells by the

transitions. Tokens can represent exact molecule numbers,

as is the case in our validation, or a limited range of semi-

qualitative concentration levels. This is a relevant charac-

teristic, since biological gradients often work in a rather

discrete, semi-qualitative manner; a number of cell

responses (such as activation of a particular gene) exists for

a given gradient and threshold values in morphogen con-

centration demarcate the boundaries between these

responses, resulting in a stepwise change in cellular

behavior throughout the tissue. Due to this, both semi-

qualitative and quantitative ways of modeling can represent

biological situations realistically; our Petri net model is

applicable to both.

Our model focuses on local signaling between neigh-

boring cells. In the biological situation, the number of

morphogens to be transported from one cell to the next

depends solely on the difference in morphogen level

between these two neighboring cells; cells have no

’knowledge’ of morphogen transport in other parts of the

tissue. In order to accurately reflect this situation we base

the computation of transported tokens solely on the dif-

ference in token numbers between the neighboring cells.

This makes the model easily scalable, i.e. the number of

cells in the tissue is irrelevant to the computation and can

be adjusted without altering the workings of the model.

With these biological decisions in mind we have opted

to use concurrent steps rather than individually occurring

transitions. Morphogen transport between cells is not

directly influenced by events taking place in non-adjacent

cells, which means these processes should be able to take

place concurrently and non-adjacent cells can be simulta-

neously involved in the transport of morphogens. More-

over, since in the biological situation morphogens move to

the next cell as soon as this is possible, we have chosen to

use maximal enabled steps for our net semantics.

Instead of merely calculating the final distribution of the

tokens, we want our net to model the gradual process of

morphogen movement through the tissue, i.e. to represent

also intermediate steps. This results in an operational

description of the behavior of the system, which will allow

the user to simulate experiments in which the biological

process is altered while running; e.g., grafting experiments,

in which parts of the tissue get removed or replaced, can be
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simulated by taking cells out of the net at a certain moment

during execution.

2 Derivation of Petri net model parameters
from the discretized DE model

In this section the temporally and spatially continuous

situation, modeled by a DE model, is translated to a dis-

crete situation, which is subsequently linked to the Petri net

solution. We consider the following reaction-diffusion

equation

oC

ot
¼ D

o2C

or2
� kC ð1Þ

on the one-dimensional interval (0, L). This is used in the

case study in Kicheva et al. (2007) as the effective equa-

tion to describe their data. It reflects the measurement of

fluorescence of GFP-labeled morphogens when these form

a gradient in a rectangular sample of cell tissue. The

morphogens are homogeneously emanating from a source,

which is a strip of cells at the left border (r ¼ 0) of this

rectangle. The morphogens move from the source to the

right, i.e. towards r ¼ L. The fluorescence measurements

are made in multiple vertical layers in the tissue and

summed, reducing the situation to two dimensions. The

morphogen concentration can be assumed constant in the

direction transversal to r, further reducing the situation to

one dimension. Thus, C(r, t) represents the areal density of

observed morphogen at location r at time t. D is the

effective diffusion coefficient (lm2/s), combining passive

diffusion and possible other transport processes such as

endocytosis and active diffusion, and k is the degradation

rate (s�1). Equation (1) is complemented with an initial

condition Cðr; 0Þ ¼ f ðrÞ and zero-flux boundary conditions

at L and constant influx areal density J0 through the left

side of the sample at r ¼ 0, i.e. D o
or
Cð0Þ ¼ �J0.

The standard procedure of spatial discretization at

equidistant points 0 ¼ r0\r1\. . .\rn ¼ L, with ‘ ¼
riþ1 � ri and CiðtÞ :¼ Cðri; tÞ, followed by temporal dis-

cretization at time points tj, in which j represents the

number of steps and the steps are equally separated at time

intervals Dt (corresponding to a fixed number of n0 steps)
yields

DCiðtjÞ
Dt

� D

‘2
�
Ci�1ðtjÞ � 2CiðtjÞ þ Ciþ1ðtjÞ

�
� kCiðtjÞ

ð2Þ

for i ¼ 1; . . .; n� 1, where DCiðtjÞ :¼ Ciðtjþ1Þ � CiðtjÞ. We

take ‘ equal to the cell length and h to the cell height.

Multiplying both sides of (2) with the cell area A ¼ ‘h in

the plane of observation yields a similar, slightly rewritten

expression for the change in the number mi ¼ miðtjÞ of

molecules in cell i at time tj (omitting time dependence):

Dmi �
DDt
‘2

�
mi�1 � mi

�
� DDt

‘2
�
mi � miþ1

�
� kDt mi

ð3Þ

for i ¼ 1; . . .; n� 1, with Dmi ¼ miðtjþ1Þ � miðtjÞ.
Approximation (3) is appropriate when Dt and ‘ are such

that DDt
‘2

\1 and kDt\1 are sufficiently small. Equation (3)

is complemented by similar equations at i ¼ 0 and i ¼ n

that incorporate the boundary conditions:

Dm0 ¼ J0hDt � DDt
‘2

�
m0 � m1

�
� kDt m0 ð4Þ

Dmn ¼
DDt
‘2

�
mn�1 � mn

�
� kDt mn : ð5Þ

If we now consider a Petri net with the maximally

concurrent step semantics and a sequence x1; . . .; xn of

places representing the biological cells, the equations

above correspond to the three main events in the process of

gradient formation in the following manner: the first term

on the right hand side of (4) represents morphogens being

produced in the source and transported to the first cell, x1;

the transport between neighboring cells xi and xiþ1 is given

by the first two terms on the right hand side of (3), while

the degradation in every xi is given by the third term on the

right hand side of (3). In other words, the marking of the

places xi (for all places except x1) after jn0 steps can be

approximated well by the solution of the diffusion equation

(1) at times tj ¼ jDt:

miðjn0Þ � h

Z i‘

ði�1Þ‘
Cðr; tjÞ dr ð6Þ

� ‘h � 1
2

�
Cðði� 1Þ‘; tjÞ þ Cði‘; tjÞ

�
ð7Þ

where we have used the trapezium rule to approximate the

integral. In this way we relate the molecule number mi to

the marking of place xi, i.e. mðxiÞ. This brings us to the

Petri net solution and its exact workings.

3 Modeling solution

The previous section illustrated the discretization of the DE

model and how to link the resulting parameters for pro-

duction, transport and degradation to a Petri net model. In

this section we present our Petri net model and give a

detailed account of its dynamics. We propose a formal,

general Petri net model for gradient formation. Given is a

segment of n adjacent biological cells with the i-th cell as

the immediate neighbor of the ðiþ 1Þ-st cell. This is rep-
resented in the Petri net by places x1; . . .; xn. Morphogens
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are represented by tokens and can be transported only

between immediate neighbors. Transitions t01; . . .; t
0
n�1 rep-

resent the transport of tokens, in the direction x1 to xn. We

will focus on one-directional gradient formation, strictly

from x1 to xn. Figure 2 shows the basic structure of the net;

here the first neighboring cells on the left side of the

modeled biological tissue are shown as x1, x2 and x3.

(Places and transitions with the same name should be

identified; such fusion elements are shown in grey.) Above

we discussed the derivation of parameters from differential

equations for three basic elements in the process. Here we

explain the way in which these parameters are incorporated

into the Petri net model.

1. Morphogen production and transport from the source

to the adjacent cell x1 are modeled by the transition s

and comply to the first term of (4), which is directly

translated to the weight J0hDt of the arc from s to x1.

2. The morphogen transport from xi to xiþ1 follows the

first term on the right hand side of (3), which

corresponds to the effective diffusion from left to

right. In order to incorporate this term into the Petri

net, additional, auxiliary places x01; . . .; x
0
n�1 and

x002; . . .; x
00
n are used. These places are initially empty.

Through the simultaneous and maximal concurrent

firing of transitions ci (1� i� n), all places x0i where

1� i� n� 1, are filled with pDDt � mðxiÞ tokens and

all places x00i where 2� i� n, with pDDt � mðxiÞ tokens.
Here we have introduced a new constant p which is

used later to control the accuracy of the computation

and handle rounding errors. Next all places x0i and x00iþ1

(1� i\n) are depleted simultaneously by transitions

di, emptying x00iþ1 and leaving x
0
i with a token difference

of

pDDt � mðxiÞ � pDDt � mðxiþ1Þ :

Here we use that mðxiÞ�mðxiþ1Þ for every reachable

marking m if initially place xi contains no less tokens

than xiþ1. The number of tokens to be transported from

xi to xiþ1 is

bi ¼
DDt � mðxiÞ � DDt � mðxiþ1Þ

l2

in other words, for every l2 tokens in place xi one token

is to be moved by transition t0i from xi to xiþ1,

respectively. In the Petri net this is implemented using

the constant p: for every pl2 tokens in place x0i a token

is moved from xi to xiþ1:

The steps described here correspond directly to Eq. (3)

without the element of degradation (to be discussed

below), as can be seen from the following:

m0ðxiÞ ¼mðxiÞ � bi þ bi�1

¼mðxiÞ �
pDDt � mðxiÞ � pDDt � mðxiþ1Þ

pl2

þ pDDt � mðxi�1Þ � pDDt � mðxiÞ
pl2

¼mðxiÞ �
DDt
l2

ðmðxiÞ � mðxiþ1ÞÞ

þ DDt
l2

ðmðxi�1Þ � mðxiÞÞ

ð8Þ

3. Simultaneously with morphogen transport, morphogen

degradation also takes place in the cells, which

w1

w1w1

e2 e3

c2 c3

d2

w2

x2 x3

pDΔt pDΔt

pl2w1w1

w1w1

e1 e2

c1 c2

d1

w2

x1 x2

pDΔt pDΔt

pl2

f

s
t1 t2

w3 w3

J0hΔt
x1

w4

g1 g1

q1
r1 w5

bkΔt b

x2

w4

g2 g2

q2
r2 w5

bkΔt b

x3

w4

g3 g3

q3
r3 w5

bkΔt b

Fig. 2 The main construction of

the net, shown for the first three

neighboring cells. Note that the

grey places and transitions are

fusion elements
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corresponds to the third term on the right hand side in

(3). For every xi, this process is modeled by the

transitions gi and g0i and the place ri, which is again an

auxiliary place used to determine the number of tokens

to be removed from xi. The place ri is filled through the

maximal concurrent occurrence of gi, with bkDt � mðxiÞ
tokens; multiplication with b is used to prevent having

to round off kDt, since due to the small value of k for

most biological gradients, this will often lead to 0.

Subsequently, since kDt� 1, for every b tokens in ri, a

token from xi disappears. This results in a degradation
bkDt
b

¼ kDt, which corresponds with the third element

on the right hand side in (3).

These processes of production, transport and degrada-

tion take place in a cycle of 5 steps. An auxiliary net,

shown in Fig. 3, is used to regulate these phases and the

corresponding transitions. This net is similar to the auxil-

iary net employed in Bertens et al. (2012); in this earlier

model, degradation was not modeled in explicit steps

(diffusion and degradation were combined in one param-

eter) and the cycle was limited to three steps. The auxiliary

net controls the transitions via five places w1 � w5, and

activator arcs. For the full picture of the system one should

identify (fuse) all places with the same name in Figs. 2

and 3 (where these fusion places are shown in grey). In the

auxiliary net a token moves cyclically from one place wj to

the next and consequently the events in the main net are

scheduled in the following order, with the number of a step

corresponding to the number of the place w which contains

the token at that point:

1. For 1� i� n, transition ci fills in mðxiÞ auto-concurrent
occurrences, place x0i (if i\n) and place x00i (if i[ 1)

with pDDt � mðxiÞ tokens. In the same step, transitions

e0i and e00iþ1 empty x0i and x00iþ1 of any residual tokens left

from the previous cycle. In addition, if place f contains

a token, transition s outputs J0 � Dt � h tokens to x1.

2. Transition di removes tokens from places x0i and x00iþ1 in

mðx00iþ1Þ auto-concurrent occurrences, thereby empty-

ing x00iþ1 and leaving the difference a in x0i; in other

words, in the resulting marking m0 we have

m0ðx0iÞ ¼ a ¼ pDDt � mðxiÞ � pDDt � mðxiþ1Þ.

3. Transition t0i fires and transports a
pl2

tokens from xi to

xiþ1.

4. In the steps corresponding to w4 and w5, the degrada-

tion of morphogens in the individual cells is addressed.

In step 4 transition gi inserts bkDt � mðxiÞ tokens into

place ri. Simultaneously, transition qi empties ri of any

residual tokens left from the previous cycle.

5. Subsequently, transition g0i removes one token from xi
for every b tokens present in ri.

The auxiliary net regulates the five phases of the com-

putational process which determines for all locations the

number of morphogens moving from one cell to the next,

the actual transport, and the amount of degradation. Places

representing neighboring pairs of cells are either all

involved in calculation steps or tokens are transferred

between them or disappear. During the computation steps

(1, 2, and 4), the token numbers in all places xi, except

place x1, are not changed and their current number of

tokens can be checked by other transitions. In other words

the computational process is orthogonal to the basic oper-

ations of gradient formation. Another important feature of

this approach is that it is purely local; interactions between

neighboring cells are independent of the token numbers in

other cells or the length of the chain of cells. Due to the

maximal auto-concurrency semantics, the Petri net exhibits

a fully concurrent behaviour. Interactions between the cells

and the passing of tokens representing particles (mor-

phogens) take place everywhere as soon as locally possible

and such interactions are completely independent of

interactions taking place elsewhere.

As we will demonstrate later, the Petri net model is a

computational implementation of observations of gradient

formation (as recorded in a PDE model). Only the places xi
and their markings, modeling cells and morphogens, reflect

a biological reality. The rest of the net performs a com-

putational process to realize the diffusion process of mor-

phogen transport between cells. Thus, e.g., places x01, x
00
2 do

not correspond to biological substances, but are local

counters and provide the input to the local calculations by

the Petri net.

4 A case study of Dpp gradient formation
to validate the Petri net model

For a validation of the Petri net model we use data pre-

sented in Kicheva et al. (2007). In this study, gradient

formation was examined for the protein Dpp (Decapenta-

plegic) in the wing of the fruit fly, Drosophila melanoga-

ster. The protein was studied as it emanated from a source

through the wing epithelium. The gradient could be treated

as a series of physical localities. The 3D situation was

w1 w2 w3

w4w5

Fig. 3 The auxiliary construction of the net, determining the order of

execution in the main net. Note that the grey places are fusion places
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captured in a stack of images. Firstly, a maximum pro-

jection of this stack reduced the tissue to a two-dimensional

plane; this could further be reduced to a line of places,

since the rectangular region of interest lay parallel to the

rectangular source tissue and movement at the lateral sides

was negligible.

Kicheva et al. studied the behavior of gradient formation

and the role played in this by the process of endocytosis,

i.e. the uptake of particles through membrane vesicles into

the cell, which is known to contribute to the formation of

many gradients, in addition to diffusion (Gilbert and Heiner

2006; Gurdon and Bourillot 2001; Lander et al. 2002;

Scholpp and Brand 2004; Teleman et al. 2001). To this end

the authors created a partial endocytotic block in animals

which were mutant for the shibire allele and in which the

source was rescued by a shibireþ transgene. Using an

experimental set-up, monitoring fluorescent recovery after

photobleaching (known as a FRAP assay), the values for D

and k were determined under different experimental con-

ditions of the gradient formation. Here we simulate the

gradient formation for the Dpp shibire mutant at 32	C
(Dpp-rescue) and the Dpp control group at 32	C (Dpp).

For these conditions the following values for D and k

were found by Kicheva et al. (2007) and used here in the

Petri net model presented (omitting the standard deviation):

for Dpp D ¼ 0:10 and k ¼ 2:52 and for Dpp-rescue D ¼
0:06 and k ¼ 1:53. Based on these values, values for p and

b were set at p ¼ 102 and b ¼ 105, in order to minimize

rounding errors. The simulation results from the Petri net

model were compared to those predicted by the DE model,

using the experimentally determined parameter values for

D, k, l, j0 and h as found by Kicheva et al. (2007). For this

validation the number of cells to be modeled has been set at

30, which is a large enough number to accurately model L,

given the current case study. The Petri net therefore

describes the situation of a linear array of 30 cells, with a

constant influx of morphogens at the left (r ¼ 0). At the far

right side we assumed that morphogens cannot flow out of

the last cell. In our DE model this is represented by zero

flux boundary conditions at r ¼ L (see above; L ¼ 30l).

Note that this differs from the DE model employed in

Kicheva et al., where the array of cells is assumed to extend

infinitely far. This has consequences for the exact solution

at steady-state and the time-dependent solutions.

Gradient formation is considered to be finished once a

steady state has been reached, i.e. a state in which mor-

phogen concentrations stay the same in all cells, due to a

balance between production, diffusion and degradation. For

the diffusion equation model, the exact steady-state solu-

tion C
 to the diffusion equation (1) with infinitely

extending array of cells (L ¼ 1) is given by

C
ðrÞ ¼ j0
ffiffiffiffiffiffi
kD

p e�lr; l :¼
ffiffiffiffi
k

D

r

: ð9Þ

In our case, with a finite array of cells and Neumann

conditions at r ¼ L, (9) requires an additional correction

factor: the exact steady state solution becomes

C
ðrÞ ¼ j0
ffiffiffiffiffiffi
kD

p e�lr � 1þ e2lðx�LÞ

1� e�2lL
: ð10Þ

The time-dependent solutions in both cases will start to

differ once morphogens have reached the end at x ¼ L in

sufficient amounts. In the case of a finite array these

morphogens will start influencing the flux at positions

x\L, which will not happen in the infinitely extended case,

because then they escape to infinity. For a proper com-

parison between the partial differential equation model and

the Petri net these boundary effects have been taken into

account in (10).

For comparison of the density description by means of C

with the number of tokens in a cell as computed by the

Petri net, we convert the first to the number Nk of mor-

phogen molecules in cell k, by means of

NkðtÞ :¼ h

Z kl

ðk�1Þl
Cðr; tÞdr; ð11Þ

where l denotes the cell length, h the cell height and

k ¼ 1; 2; . . .; 30. The integral in (11) is approximated by

means of the basic trapezoidal rule, yielding

NkðtÞ � hl � 1
2

�
Cððk � 1Þl; tÞ þ Cðkl; tÞ

�
: ð12Þ

Here l ¼ 2:6 lm and h ¼ 2:6 lm.

In the Petri net a steady state is reached once the

marking of the entire net after two consecutive step cycles

is the same. This is because the net is deterministic and the

parameter values remain unchanged. For each of the

experiments the Petri net solution with corresponding

parameter values was implemented in the software tool

Snoopy (Rohr et al. 2010), which in its latest version also

supports constants. The markings of the places x1; . . .; xn
for every 5 steps (the step cycle) were obtained using our

in-house analysis tool PetriCalc. Snoopy was used as an

interface for the creation of the net, but due to the size of

the net and the high numbers of tokens to be processed,

analysis was done with PetriCalc. The steady state as

reached by the Petri net for Dpp and Dpp-rescue was found

to closely correspond to the steady state given by (10) and

(12), with only minor deviations: at most 1.4 % for Dpp-

rescue and 0.2 % for Dpp.

In addition to the steady state, we also compared the

gradient formation at t ¼ 600 s and t ¼ 2400 s. For the DE
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model, these time-dependent solutions were computed

using the finite element package1 COMSOL Multiphysics

(version 4.2.0.150). Again the Petri net and the DE model

yielded corresponding results, with minor deviations: on

average 0.01 % for Dpp with a maximum of 0.46 % and on

average 0.02 % for Dpp-rescue with a maximum of 0.2 %.

In Fig. 4, the Petri net marking corresponding to times

t ¼ 600 s, t ¼ 2400 s and t = 12,000 s are compared to

the values predicted by the DE model; the situation at

t = 12,000 s represents the steady state.

5 Conclusion and discussion

We have presented a Petri net model for biological gradient

formation based on a transfer of parameters of a DE model

to a Petri net structure with the aim to describe the local

changes within the process. The model is generic in the

sense that it has parameters that can be instantiated on basis

of concrete PDE systems describing gradient formation.

The quantitative aspects of the model have been validated

through a case study of Dpp and Dpp-rescue gradient

formation in the fruit fly.

The combination of DE models and Petri nets as pro-

posed in this paper leads to an alternative point of view on

the process modeled. Implementing a DE description of a

biological phenomenon in a PN model makes it possible to

move from a macroscopic, global approximation of a

biological process to a description closer to physical

interactions and subprocesses. In general, this method

requires an understanding of the process concerned in

terms of causes and effects (modeled in the Petri net) that

would fit observations captured in a DE model.

In this paper, the biological process is gradient forma-

tion described in the form of a one-dimensional reaction-

diffusion equation which provides the parameters for an

abstract Petri net modeling local relations within the pro-

cess. Whereas the PDE model is based on global averages,

the Petri net takes the spatial discreteness of the cellular

tissue into account from the start. It visualises the physical

interaction on the level of particles (morphogens) and

provides a view on local interactions between cells. It does

not assume knowledge of PDEs and how to solve them.

Transient solutions are replaced by easier to manipulate

sequences of marked places. Moreover, we have shown

that the distribution of markings at discrete time points of

the Petri net corresponds to the values obtained for the PDE

model. Thus the Petri net model facilitates and supports the

implementation, simulation, and visualisation of different

scenarios and their effect on gradient formation and offers

new possibilities for a deeper understanding of this process.

One could, e.g., investigate what-if scenarios by running

the net for a new situation. Differences in morphogen

uptake and release characteristics, tissue inhomogeneities,

either natural or experimentally induced, can be more

easily modeled in the Petri net model than in the PDE

model where the cellular spatial structure is lacking.

The current model is amenable to experimental set-ups

which interfere with the unfolding of the process. It is

possible to simulate for instance grafting experiments, in

which part of the tissue is removed or replaced and the

effects are studied. For gradient formation in particular,

experiments have been performed with fluorescence

recovery after photobleaching (FRAP; Carrero et al. 2003;

Fig. 4 Visualization of different stages in the process of gradient formation

1 Ideally, one would like to compare the changes in markings in the

Petri net over discrete time steps with an exact time-dependent

solution of the PDE model. Since a tractable analytic expression for

the latter is not available, we used a readily available and well-

accepted numerical simulation tool to compute the time-dependent

solution which uses a finite element scheme to get a good

approximation of the true solution of the PDE model.
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Kicheva et al. 2007). In such experiments part of a tissue

containing fluorescently labeled proteins is locally photo-

bleached, after which recovery of the gradient of fluores-

cence is studied. Since the structure of the presented Petri

net closely resembles the observed biological situation, it

can be used to simulate such experiments, by removing

places which correspond to particular biological cells or

depleting these of tokens. Similarly, one can investigate

what happens in case of bounded cell capacities by

blocking or leaking tokens in the Petri net model.

While the current model represents the tissue as a one-

dimensional structure, i.e. a line of cells, the approach is

amenable to extension in two and three dimensions. Again

this potential is due to the combined strength of the for-

malisms; while DEs enable the user to easily compute the

steady state of a gradient system, this becomes increasingly

difficult when multiple spatial dimensions are included.

Each added dimension results in additional boundary

conditions, making computations highly complex. In con-

trast to this, the spatial arrangement of places in a Petri net

can be extended relatively easily, to include more dimen-

sions. We are currently investigating the adaptation of the

Petri net, to model 2-dimensional cell layers and 3-di-

mensional tissues. Furthermore, by adding one more chain

of transitions t002 ; . . .; t
00
n , the Petri net can be made to model

transport of tokens between neighboring cells in two

directions, as illustrated in Fig. 5. A Petri net with bi-di-

rectional transport could be calibrated and then validated

for a DE system and corresponding case describing such

process (when at hand).

The model is versatile and due to its modular nature, it

can easily be adjusted to a variety of instances of gradient

formation, with regard both to changes in parameter values

and to the length of the tissue under study (and folded into

a colored Petri net, see Gilbert et al.). As a combination of

PDEs with a Petri net, the model offers a wide range of

possibilities for analysis and in silico experiments. Similar

to DE models, it allows quantitative analysis of gradient

formation. Thus the possibilities of Petri nets and DE

models complement each other, yielding a powerful

framework for the study of gradient formation.

Since gradients play a pivotal role in developmental

biology, the development of tools for the description and

analysis of this process, e.g., in embryology, is of great

value. Using an hierarchical approach like the one exem-

plified in Viana de Carvalho et al. (2015) the Petri net

modeling gradient formation could be integrated into a

hierarchical net model together with (Petri net) models of

other processes underlying or regulating gradient forma-

tion. As future work, we also hope to explore other pos-

sibilities of building hierarchical nets, using for instance

nets-within-nets (Valk 2004) and/or refinement, to model
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d2

w2

x2 x3

pDΔt pDΔt

pl2
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Fig. 5 The main construction of

the net and auxiliary net, in the

case of two-directional gradient

construction
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particular subcellular processes of gradient formation, such

as passive and active diffusion through the extracellular

space and degradation by means of endocytosis.
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