Identification of Fungal Pathogens by Visible Microarray System in Combination with Isothermal Gene Amplification

Kanae Sakai · Plinio Trabasso · Maria Luiza Moretti · Yuzuru Mikami · Katsuhiko Kamei · Tohru Gonoi

Received: 3 October 2013/Accepted: 21 April 2014/Published online: 22 June 2014 © The Author(s) 2014. This article is published with open access at Springerlink.com

Abstract The increasing incidence of infectious diseases caused by fungi in immunocompromised patients has encouraged researchers to develop rapid and accurate diagnosis methods. Identification of the causative fungal species is critical in deciding the appropriate treatment, but it is not easy to get satisfactory results due to the difficulty of fungal cultivation and morphological identification from clinical samples. In this study, we established a microarray system that can identify 42 species from 24 genera of clinically important fungal pathogens by using a chemical color reaction in the detection process. The array uses the internal transcribed spacer

Electronic supplementary material The online version of this article (doi:10.1007/s11046-014-9756-2) contains supplementary material, which is available to authorized users.

K. Sakai · Y. Mikami · K. Kamei · T. Gonoi (⊠) Division of BioResources, Medical Mycology Research Center, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba, Japan e-mail: gonoi@faculty.chiba-u.jp

K. Sakai · P. Trabasso · M. L. Moretti · Y. Mikami · K. Kamei · T. Gonoi JST/JICA, Science and Technology Research Partnership for Sustainable Development (SATREPS), Chiba, Japan

P. Trabasso · M. L. Moretti

Departamento de Clínica Médica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brazil region of the rRNA gene for identification of fungal DNA at the species level. The specificity of this array was tested against a total of 355 target and nontarget fungal species. The fungal detection was succeeded directly from 10^3 CFU/ml for whole blood samples, and 50 fg DNA per 1 ml of serum samples indicating that the array system we established is sensitive to identify infecting fungi from clinical sample. Furthermore, we conducted isothermal amplification in place of PCR amplification and labeling. The successful identification with PCR-amplified as well as isothermally amplified target genes demonstrated that our microarray system is an efficient and robust method for identifying a variety of fungal species in a sample.

Keywords Diagnosis · Microarray · Fungal infection · Isothermal amplification

Introduction

Systemic fungal infections with high morbidity and mortality rates in immunocompromised patients are growing. Besides the increasing incidence, recent epidemiology of fungal infection shows the expanding variety of fungal pathogens [1].

Identification of the causative pathogen is a fundamental step for appropriate treatment of infectious diseases, and early initiation of antifungal therapy is crucial for reducing the mortality rate in infected patients. Despite efforts by many researchers, however, early and rapid diagnosis of systemic fungal infection remains limited. Conventional diagnostic procedures, such as cultivation of fungi from clinical samples, are time-consuming and suffer from low sensitivity. Furthermore, sufficient technique and experience are required at the identification step. In recent years, other methods, such as PCR and serological tests, have been established for rapid and sensitive detection of fungi from clinical samples [2, 3]. However, these methods are difficult to use to identify a variety of fungal species at a time. Although multiplex PCR can be used to identify several species in one test, its applicability is limited by the primer sets used because specific primer sets are needed for each species.

A variety of DNA array systems have been developed to identify several bacteria and/or fungi simultaneously with high sensitivity and specificity [4–8]. Fluorescent labels are widely used to detect the signal in DNA microarrays due to their high sensitivity. However, the low stability of most fluorescent dyes and the necessity of expensive scanning equipment call for the development of alternative labeling systems that are inexpensive and robust.

To facilitate the diagnosis of fungal infectious disease, we established a rapid and specific DNA microarray system for identifying a variety of causative fungal species simultaneously. We applied the chemical color reaction of biotin-peroxidase and its substrate as the signal detection for the microarray system, enabling examination of the spot pattern with the naked eyes, without the need for expensive scanning equipment. To evaluate the specificity and sensitivity of this visible DNA microarray system, we tested it on several kinds of samples, such as reference fungal strains, blood samples containing a certain number of fungal cells, serum samples with serial dilutions of fungal DNA, and blood culture samples from patients.

Conventional PCR methods have been used for labeling and amplifying DNA from pathogen in microarray identification systems, but this method could not be used for bedside analysis and therefore difficult to be widely adopted. Recently, several isothermal amplification methods that do not require expensive thermal cyclers, such as loop-mediated isothermal amplification (LAMP), helicase-dependent amplification (HAD), and isothermal and chimeric

primer-initiated amplification of nucleic acids (ICAN), have been developed to replace PCR amplification [9–12]. However, the maximum amplifiable length of the products in these isothermal methods is too small (100-500 bp) for our purposes, making primer design difficult. Hence, in this study, we applied the recombinase polymerase amplification cycle (RPA) for labeling and amplification of DNA products from the pathogen for microarray detection [13]. The RPA technology is based on a combination of polymerases and DNA recombinases. These enzyme mixtures are active at low temperature (optimum around 37 °C) and recognize template target sites by oligonucleotide primers, followed by strand-displacing DNA synthesis. Thus, exponential DNA amplification of the target region is proceeded under the isothermal condition.

Materials and Methods

Microorganisms and Growth Conditions

A total of 355 strains were obtained from the Medical Mycology Research Center IFM Collection (Chiba university, Japan) (Table S1). All fungal strains were cultivated on PDA medium at appropriate temperatures. Small amount of fungal cells were picked by toothpick and suspended in distilled water to become little bit cloudy solution and used as template for PCR amplification.

Design of Capture Probes

The fungal oligonucleotide probes were designed based on the whole internal transcribed spacer (ITS) sequences regions available in the GenBank database and from our own sequencing data. The alignment was prepared by BioEdit using several objective and nonobjective fungal ITS sequences as listed in Table S2. After sequence alignment, species- or genusspecific oligonucleotide sequences were selected to be unique to each species/genus. To evaluate the specificities against other organisms, we performed additional BLASTN searches of the GenBank database. The designed probes were consisted of 14–21 species/ genus-specific oligonucleotides and a poly-T anchor at the end of the oligonucleotides [14]. Detailed sequences of the capture probes are given in Table 1.

Table 1 Oligonucleotide sequence of probes

Organism	Probe name	Probe sequence $(5'-3')$	Length (bp)			
Common for all fungi	50-17	GATGAAGAACGCAGCGATTTTTTTTTT	27			
	50-19	CGATGAAGAACGCAGCGAATTTTTTTTT	29			
	51-17	GAGTCTTTGAACGCACATTTTTTTTTT	27			
	51-19	CGAGTCTTTGAACGCACATTTTTTTTTTT	29			
	52-17R	TTTTTTTTTTACCAAGAGATCCGTTGT	27			
	52-19R	TTTTTTTTTAACCAAGAGATCCGTTGTT	29			
Absidia corymbifera	Ab3-19t	CCGGATGGAGACTCTAGAGTTTTTTTTTT	29			
	Ab2-18Rt	ATTTAAGGCCATGACAGCTTTTTTTTTT	28			
	Ab2-t18R	TTTTTTTTTTTATTTAAGGCCATGACAGC	28			
Alternaria sp.	AlA-17Rt	GAAGTACGCAAAAGACATTTTTTTTTT	27			
	AlA-t17R	TTTTTTTTTGAAGTACGCAAAAGACA	27			
	AlD-16Rt	ACGCCCAACACCAAGCTTTTTTTTTT	26			
	AlE-16t	TCGGAGCGCAGCACAATTTTTTTTTT	26			
Aspergillus flavus	60B 1	TTTTTTTTTTGATCTAGTGAAGTCTGAG	29			
	60B 1R	TTTTTTTTTTTCTCAGACTTCACTAGATCA	29			
	60B 17R	TCAGACTTCACTAGATCTTTTTTTTTT	27			
	60C 1R	TTTTTTTTTTAACTGATTGCGATACAAT	29			
	60C 2R	TTTTTTTTTTACTGATTGCGATACAAT	27			
	60C-19R	TAACTGATTGCGATACAATTTTTTTTTTT	29			
Aspergillus fumigatus	33B-1R	TTTTTTTTTTAACTGATTACGATAATCAA	30			
	33B-2R	TTTTTTTTTTTAACTGATTACGATAATCA	29			
	33B-4R	TAACTGATTACGATAATCAATTTTTTTTTT	30			
	33C 1R	TTTTTTTTTTTAACTGATTACGATAATCAAC	31			
	33C 2R	TTTTTTTTTTACTGATTACGATAATCAAC	29			
	33C 3R	TTTTTTTTTTTCTGATTACGATAATCAAC	28			
Alternaria sp. Aspergillus flavus Aspergillus fumigatus Aspergillus nidulans	34A-8	TTGTCACCTGCTCTGTTTTTTTTTTT	26			
	34A-14	TTGTCACCTGCTCTTTTTTTTTTT	24			
Alternaria sp. Aspergillus flavus Aspergillus fumigatus Aspergillus nidulans Aspergillus nidulans	34A-17	GTCACCTGCTCTGTTTTTTTTTT	23			
	34A-20	TTTTTTTTTTTTTGTCACCTGCTC	24			
Aspergillus nidulans	64B 8	TTTTTTTTTAGTTCAGTGGTCCCCGGC	28			
	64B 9	TTTTTTTTTAGTTCAGTGGTCCCCG	26			
Common for all fungi Absidia corymbifera Alternaria sp. Aspergillus flavus Aspergillus fumigatus Aspergillus nidulans Aspergillus nidulans Aspergillus niger Aspergillus terreus	65A 15	GGCGTCTCCAACCTTTTTTTTTTTTT	25			
	65A 17	CGGCGTCTCCAACCTTATTTTTTTTTT	27			
	65A 19	CCGGCGTCTCCAACCTTATTTTTTTTTTTT	29			
Aspergillus niger	62A 4	TTTTTTTTTTATAGACACGGATG	23			
	63A 15	TTTTTTTTTCCAACCATTCTTTCCA	26			
	63A 17	TTTTTTTTTTCCAACCATTCTTTCCA	27			
	63A 19	TTTTTTTTTTTTCCAACCATTCTTTCCAG	29			
Aspergillus terreus	35A 17R	GCAAAGAATCACACTCATTTTTTTTTT	27			
	35A 19	TGAGTGTGATTCTTTGCAATTTTTTTTT	29			
	35A 19R	TTGCAAAGAATCACACTCATTTTTTTTT	29			
	36A 1	TTTTTTTTTGGCTTCGTCTTCCGCTCCG	29			
	36A 2	TTTTTTTTTGCTTCGTCTTCCGCTCC	27			
	36A 19	GGCTTCGTCTTCCGCTCCGTTTTTTTTT	29			
	36B 15	CGACGCATTTATTTGTTTTTTTTTT	25			

Table 1 continued

Organism	Probe name	Probe sequence (5'-3')	Length (bp)	
	36B 17	GCCGACGCATTTATTTGTTTTTTTTTT	27	
	36B 19	CGCCGACGCATTTATTTGCTTTTTTTTT	29	
Blastomyces dermatitidis	41A 17R	GTTCCTCCGGTCTAGGATTTTTTTTTT	27	
	41A 19R	GGTTCCTCCGGTCTAGGAGTTTTTTTTTT	29	
	42A 15	CCGGCCCCATCTCAATTTTTTTTTT	25	
	42A 17	TCCGGCCCCATCTCAAATTTTTTTTTT	27	
Candida albicans	14A 15	CGGAGATGCTTGACTTTTTTTTTTTT	25	
	14A 17	CGGAGATGCTTGACAATTTTTTTTTTTT	27	
	1A 17R	TTTTTTTTTAAGTTTAGACCTCTGGC	27	
	1A 19	CCGCCAGAGGTCTAAACTTTTTTTTTTTT	29	
	1B 15R	TTTTTTTTTTTTTTTTGGTGTGACAAG	25	
	1B 17R	TTTTTTTTTTTAATCTGGTGTGACAAG	27	
	1B 19	ACTTGTCACACCAGATTATTTTTTTTTTT	29	
	2A 15	CGTCCACCACGTATATTTTTTTTTT	25	
	2A 17	AACGTCCACCACGTATATTTTTTTTTT	27	
	2A 19	GTAACGTCCACCACGTATATTTTTTTTTT	29	
	2B 15	TTTTTTTTTTTTTTGCTTGCGGCGGT	25	
	2B 17	TTTTTTTTTACATTGCTTGCGGCGGT	27	
Candida dubliniensis	13A-2R	TTTTTTTTTAACAAAACACATGTGGT	27	
	13A-3R	TTTTTTTTTAACAAAACACATGTGG	26	
	13B 15	TTTTTTTTTTTATAAACTTGTCACG	25	
	13B 17	TTTTTTTTTTTATAAACTTGTCACGAG	27	
Candida famata	80B-1	TGGTCTGGACTAGAAATATTTTTTTTT	28	
	80B-1R	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	28	
	81A-1	TTTTTTTTTTAGTGCTATATGACTTTC	28	
	81A-3	TTTTTTTTTAGTGCTATATGACTTTC	27	
Candida glabrata	7A 15R	TTTTTTTTTTTTGTCTCTCTCCGAGC	25	
	7A 17R	TTTTTTTTTTTATGTCTCTCCCGAGCT	27	
	7A 19R	TTTTTTTTTGATGTCTCTCTCCGAGCTC	29	
	7B 17	CTCCTGCCTGCGCTTAATTTTTTTTTT	27	
	7B 19	TTCTCCTGCCTGCGCTTAATTTTTTTTTT	29	
	7B 19R	TTAAGCGCAGGCAGGAGAATTTTTTTTT	29	
	8A 17	TTTTTTTTTAACTTGAAATTGTAGGC	27	
	8A 19	TTTTTTTTTAACTTGAAATTGTAGGCCA	29	
	8B 15	TTTTTTTTTTTGCTGCTCGTTTGCG	25	
	8B 17	TTTTTTTTTTTGCTGCTCGTTTGCGC	27	
	8B 19	TTTTTTTTTTTTCTGCTGCTCGTTTGCGCG	29	
Candida guilliermondii	55A 17R	TTTTTTTTTAAAATTTGACTAACTGT	27	
	55A 19	TTTACAGTTAGTCAAATTTTTTTTTTTTTTT	29	
	55A 19R	TTTTTTTTTCAAAATTTGACTAACTGTA	29	
	55B 15	GTCGACCTCTCAATGTTTTTTTTTT	25	
	55B 17	TGTCGACCTCTCAATGTTTTTTTTTTTT	27	
	55B 19	CTGTCGACCTCTCAATGTATTTTTTTTTTT	29	
Candida kefyr	Ck1-t16R	TTTTTTTTTTGTCAGACGATTCCCCC	26	
	Ck2-20Rt	TAGCAGAGAATCAAGAACTGTTTTTTTTTT	30	

Table 1 continued

Organism	Probe name	Probe sequence (5'-3')	Length (bp)
	Ck2-t20R	TTTTTTTTTTAGCAGAGAATCAAGAACTG	30
	Ck4-t17	TTTTTTTTTCGTCTCGGGTTAACTTG	27
	Ck4-17Rt	CAAGTTAACCCGAGACGTTTTTTTTTT	27
	Ck4-t17R	TTTTTTTTTCAAGTTAACCCGAGACG	27
	Ck6-18Rt	GCAAGAGTCGAGTCCATATTTTTTTTTT	28
Candida krusei	9B 17R	GCTATATTCCACATTTTTTTTTTTTTTTT	27
Candida krusei Candida lusitaniae Candida rugosa Candida parapsilosis	9B 19R	ATGCTATATTCCACATTTTTTTTTTTTTTT	29
	9C-1R	TTTTTTTTTTCGACTATATGCTATATTC	29
	9C-2R	CGACTATATGCTATATTCCTTTTTTTTT	29
Candida krusei Candida lusitaniae Candida rugosa Candida parapsilosis	9C-3R	TTTTTTTTTCGACTATATGCTATATTCC	29
	10A 15	GCGGACGACGTGTAATTTTTTTTTT	25
	10A 17	GCGGACGACGTGTAAAGTTTTTTTTT	27
	10A 19	GAGCGGACGACGTGTAAAGTTTTTTTTT	29
	10B 15	TTTTTTTTTGAGCGAAGCTGGCCG	25
	10B 17	TTTTTTTTTAGCGAAGCTGGCCGAGC	27
	10B 19	TTTTTTTTTGAGCGAAGCTGGCCGAGCG	29
Candida lusitaniae	11C 14R	TGTTCGCAAAAACATTTTTTTTTTT	24
	11C 15R	TGTTCGCAAAAACAATTTTTTTTTT	25
	11C 16R	TGTTCGCAAAAACAATTTTTTTTTTTT	26
	11B 19	TTCGAATTTCTTAATATCATTTTTTTTTT	29
	11B 19R	TTGATATTAAGAAATTCGATTTTTTTTTT	29
	12A 17R	TTTCGGAGCAACGCCTATTTTTTTTTT	27
	12A 19	TTAGGCGTTGCTCCGAAATTTTTTTTTT	29
	12A 19R	TTTCGGAGCAACGCCTAACTTTTTTTTT	29
	12B 17	CGTTTACAGCACGACATTTTTTTTTTT	27
	12B 19	CACGTTTACAGCACGACATTTTTTTTTTT	29
Candida rugosa	17B 15R	GATCGGTACTTGAAGTTTTTTTTTT	25
	18B 15R	TTTTTTTTTAGACGGTCGCGTTTC	25
Candida parapsilosis	5A 17	CTGCCAGAGATTAAACTTTTTTTTTTTT	27
	5A 18	CTGCCAGAGATTAAACTCTTTTTTTTT	28
	5A 18R	GAGTTTAATCTCTGGCAGTTTTTTTTTT	28
	6A 17	TTTTTTTTTCCAAAACTTCTTCCATT	27
Candida rugosa Candida parapsilosis	6A 19	TTTTTTTTTTTCTCCAAAACTTCTTCCATT	29
	6A 19R	TTTTTTTTTTAATGGAAGAAGTTTTTGGAG	29
	6B 17	TTTTTTTTTTACTCCAAAACTTCTTCC	27
	6B 18	TTTTTTTTTTACTCCAAAACTTCTTCCA	28
	6B 18R	TTTTTTTTTTGGAAGAAGTTTTTGGAGT	28
Candida tropicalis	3A 16R	TTTTTTTTGGATTGCTCCCGCCAC	26
	3A 17R	TTTTTTTTTGGATTGCTCCCGCCACC	27
	3B 15R	TTTTTTTTTTTTATCAAGTTTGACTGT	25
	3B 17R	TTTTTTTTTAAATCAAGTTTGACTGT	27
	3B 19R	TTTTTTTTTAAATCAAGTTTGACTGTAA	29
	4A 15	TTTTTTTTTTATACGCTAGGTTTGT	25
	4A 17	TTTTTTTTTTTATACGCTAGGTTTGTTT	27
	4A 19	TTTTTTTTTCAATACGCTAGGTTTGTTT	29

Table 1 continued

Organism	Probe name	Probe sequence (5'-3')	Length (bp)	
	4B 17	GCTAGTGGCCACCACTTTTTTTTTTTT	27	
	4B 19	GCTAGTGGCCACCACAATTTTTTTTTTTT	29	
Candida zeylanoides	15A 19	GTTTTATACTAAAACTTCATTTTTTTTTT	29	
	15A 1	GGTTTTATACTAAAACTTCATTTTTTTTTT	30	
	15B 1	TTTTTTTTTTTTTGAATTGTTAATTAATTA	30	
	15B 1R	TTTTTTTTTTTAATTAATTAACAATTCAAT	30	
	16A 19	TTTTTTTTTGACCAGTATAGTATTTGT	28	
	16A 17	TTTTTTTTTACCAGTATAGTATTTG	26	
Coccidioides posadasii	37C 15R	GGAGGTGCGCAGCCGTTTTTTTTTT	25	
	37C 17R	GGGAGGTGCGCAGCCGGTTTTTTTTT	27	
	37C 19R	GGGGAGGTGCGCAGCCGGATTTTTTTTT	29	
	37E 15R	TTTTTGCTATGATGCTTTTTTTTTT	25	
	37E 17R	GATTTTTGCTATGATGCTTTTTTTTTT	27	
	37E 18R	GATTTTTGCTATGATGCTTTTTTTTTTTT	28	
	38D-1	TTATATCCGGTTTGACCTCTTTTTTTTT	29	
	38D-2	ATATCCGGTTTGACCTCTTTTTTTTTT	27	
	38D-3	TATCCGGTTTGACCTTTTTTTTTTT	25	
	38E 15	TTTTTTTTTACCCGATCGGGGCCG	25	
	38E 17	TTTTTTTTGACCCGATCGGGGCCGA	27	
	38E 19	TTTTTTTTAGACCCGATCGGGGCCGAT	29	
Cryptococcus neoformans var. neoformans, grubii, gattii	22A-8	GTTTATGTGCTTCGGCACTTTTTTTTT	28	
	22A 17	TTTTTTTTTTGTTTATGTGCTTCGGCA	27	
	23A 17	TTTTTTTTTGAAGGTGATTACCTGTC	27	
	23A 19	TTTTTTTTTGGAAGGTGATTACCTGTCA	29	
	23B 1	TTTTTTTTTTTTCGCTGGGCCTATGG	27	
	23B 2	TTTTTTTTTTGTTTCGCTGGGCCTATGGG	29	
Cryptococcus gattii	20-2R	TTTTTTTTTTGGACCGAAGCCCAGTATT	29	
	20-5R	TTTTTTTTTGACCGAAGCCCAGTATT	27	
	20-6R	TTTTTTTTGGACCGAAGCCCAGTAT	27	
Cunninghamella bertholletiae	70A-1R	CCCAAAGATCCCTTGATCTATTTTTTTTTT	30	
	70A-2R	CCCAAAGATCCCTTGATCTTTTTTTTTTT	29	
	71A 19	TAGTCGGCTTTAATAGATTTTTTTTTTTTT	29	
	71A 17	TAGTCGGCTTTAATAGATTTTTTTTTT	27	
	71A 15	AGTCGGCTTTAATAGTTTTTTTTTT	25	
	71B-1	TTTTTTTTTTAAATACAAGGCTCGACTTT	30	
	71B-2	TTTTTTTTTAATACAAGGCTCGACT	26	
	71B-3	TTTTTTTTTTTAATACAAGGCTCGACTTT	29	
Epidermophyton floccosum	76B 19R	CTCAGACTGAACCACCTATTTTTTTTTTT	29	
	76B 17R	TCAGACTGAACCACCTATTTTTTTTTT	27	
	76B 15R	CAGACTGAACCACCTTTTTTTTTTT	25	
	77A 19	TTTTTTTTTAGTTTCCGTCGGGAGGACG	29	
	77A 17	TTTTTTTTTTTGTTTCCGTCGGGAGGAC	27	
Fusarium sp.	7-16t	GGCCACGCCGTTAAACTTTTTTTTTT	26	
	7-18t	CTTCTGAATGTTGACCTCTTTTTTTTTT	28	

Table 1 continued

Organism	Probe name	Probe sequence (5'-3')	Length (bp)
	7-19t	CGCGGCCACGCCGTTAAACTTTTTTTTT	29
	7B-19t	CAACTTCTGAATGTTGACCTTTTTTTTTT	29
	7C-18t	ACCCCAACTTCTGAATGTTTTTTTTTT	28
	7C-19t	CCGTAAACCCCAACTTCTGTTTTTTTTTT	29
	10B-16Rt	GTATGTTCACAGGGGTTTTTTTTTTT	26
	10B-18Rt	GTATGTTCACAGGGGTTGTTTTTTTTTT	28
Fusarium solani complex (FSSC)	1-16Rt	CCGTCTGTTCCCGCCGTTTTTTTTTT	26
	1-18Rt	GCCGTCTGTTCCCGCCGATTTTTTTTT	28
	1-19Rt	CCGTCTGTTCCCGCCGAAGTTTTTTTTT	29
	2-19Rt	GCCGATCCCCAACGCCAGGTTTTTTTTT	29
	4-18t	CACCTCGCAACTGGAGAGTTTTTTTTTT	28
Fusarium solani complex (FSSC) Histoplasma capsulatum Malassezia furfur Microsporum canis	4-19t	GCTAACACCTCGCAACTGGATTTTTTTTT	29
	4-20t	GTAGCTAACACCTCGCAACTTTTTTTTTTT	30
	6B-17Rt	CAGAGTTAGGGGTCCTCTTTTTTTTT	27
	9-17t	ACGTTGCTTCGGCGGGATTTTTTTTT	27
Histoplasma capsulatum	39B-22	TTTTTTTTTCGTTCACCGACGGTTCTT	28
	39B-24	TTTTTTTTTTGTTCACCGACGGTTCT	26
	39B-25	TTTTTTTTTTGTTCACCGACGGTTC	25
	39C 15R	AGGTCCGGTAGACAATTTTTTTTTT	25
	39C 17R	CAGGTCCGGTAGACAAGTTTTTTTTTT	27
	39C 19R	ACAGGTCCGGTAGACAAGGTTTTTTTTT	29
Malassezia furfur	48A 15R	TTTTTTTTTCCAAACGGTGCACAC	25
	48A 17R	TTTTTTTTTTTCCAAACGGTGCACACG	27
	48A 19R	GATTTCCACGTTCATACAATTTTTTTTTT	29
	48B 15R	TTTCCACGTTCATACTTTTTTTTTT	25
	48B 17R	ATTTCCACGTTCATACATTTTTTTTTT	27
	48B 19R	GATTTCCACGTTCATACAATTTTTTTTTT	29
	49A 7	TGCGATTGCACTGCTTTGTTTTTTTTTT	28
	49A 8	GCGATTGCACTGCTTTGTTTTTTTTTT	27
	49A 9	CGATTGCACTGCTTTGTTTTTTTTTT	26
	49B 15	TTTTTTTTTGCATTAGCGCCTTTG	25
	49B 17	TTTTTTTTTTGCATTAGCGCCTTTGG	27
	49B 19	TTTTTTTTTTTTTGCATTAGCGCCTTTGGG	29
Microsporum canis	73A 6	TTTTTTTTTTGTAACCACCCACCGCTTA	28
	73A 7	GTAACCACCCACCGCTTAGTTTTTTTTTT	29
	73A 9	GTAACCACCCACCGCTTATTTTTTTTTT	28
	73B 19	CGCACCATGTATTATTCAGTTTTTTTTTT	29
	73B 17	GCACCATGTATTATTCATTTTTTTTTT	27
	73B 1	TTTTTTTTTCGCACCATGTATTATTCAG	29
Microsporum gypseum	74A 2R	GATTTTACTTGCTAACGTTTTTTTTTT	27
	74B 1	CGGAACAGTATTCATGGATTTTTTTTTTT	29
	74B 2	GGAACAGTATTCATGGATTTTTTTTTT	27
	74B 4	TTTTTTTTTCGGAACAGTATTCATGGAT	29
Mucor sp.	M1-t15R	TTTTTTTTTTTAATACAGTTCACAG	25
	M1-16Rt	AATAATACAGTTCACATTTTTTTTTT	26

Table 1 continued

Organism	Probe name	Probe sequence (5'-3')	Length (bp)
	M1-t16R	TTTTTTTTTAATAATACAGTTCACA	26
	M3-20Rt	GGTAAATAATAATAGGATACTTTTTTTTT	30
	M3-t20R	TTTTTTTTTGGTAAATAATAATAGGATAC	30
	M4-t15R	TTTTTTTTTGGTCTATGTTACAAT	25
Paracoccidioides brasiliensis	45A 15R	CCCCGTCCCCCACGTTTTTTTTT	25
	45A 17R	GCCCCGTCCCCCACGGTTTTTTTTTT	27
	45A 18R	GGCCCCGTCCCCCACGGTTTTTTTTT	28
	45B 15R	TTTTTTTTTTCAAAGCTCCGAACC	25
	45B 17R	TTTTTTTTTTGTCAAAGCTCCGAACCA	27
	45B 19R	TTTTTTTTTCGTCAAAGCTCCGAACCAG	29
	46A 15	CCCCACTCATCGACCTTTTTTTTTT	25
	46A 17	GCCCCACTCATCGACCCTTTTTTTTT	27
	46A 19	GGCCCCACTCATCGACCCCTTTTTTTTT	29
Penicillium marneffei	43B 15R	TTTTTTTTTTCAGACAGTCCATCT	25
	43B 17R	TTTTTTTTTTTCTCAGACAGTCCATCTT	27
	43B 19R	TTTTTTTTTTACTCAGACAGTCCATCTTC	29
	44A 17	TTTTTTTTTCCACCATATTTACCACG	27
	44A 19	TTTTTTTTTACCACCATATTTACCACGG	29
Pichia anomala	Pa2-16Rt	GACTATTGGTTAAAGGTTTTTTTTTT	26
	Pa3-17t	AGCAGTCTTTCTGAAATTTTTTTTTT	27
Penicillium marneffei Pichia anomala Pichia norvegensis	Pa3-t17	TTTTTTTTTAGCAGTCTTTCTGAAAT	27
	Pa4-20Rt	CTTCTAAACCTGCCTAGCTGTTTTTTTTTT	30
	Pa4-t20R	TTTTTTTTTTTTTTTTTTAAACCTGCCTAGCTG	30
Pichia norvegensis	Pin2-20t	CACGAATAACCATGTCACCCTTTTTTTTT	30
	Pin2-t20	TTTTTTTTTCACGAATAACCATGTCACCC	30
	Pin2-20Rt	GGGTGACATGGTTATTCGTGTTTTTTTTTT	30
	Pin2-t20R	TTTTTTTTTGGGTGACATGGTTATTCGTG	30
	Pin4-17t	GGCAGCGGGACTGAGCGTTTTTTTTTT	27
	Pin4-t17	TTTTTTTTTGGCAGCGGGACTGAGCG	27
	Pin4-t17R	TTTTTTTTTCGCTCAGTCCCGCTGCC	27
	Pin5-20t	CACTCGCGCTTGGCCCGCCGTTTTTTTTT	30
	Pin5-t20	TTTTTTTTTCACTCGCGCTTGGCCCGCCG	30
	Pin5-20Rt	CGGCGGGCCAAGCGCGAGTGTTTTTTTTT	30
Rhizomucor sp.	Rm1-17t	AGGGATTGCTCCAGATCTTTTTTTTTT	27
	Rm1-t17R	TTTTTTTTTGATCTGGAGCAATCCCT	27
	Rm2-17t	CTTTGGATTTGCGGTGCTTTTTTTTTT	27
	Rm2-17Rt	GCACCGCAAATCCAAAGTTTTTTTTTT	27
	Rm3-19t	GGGCTTGCTTGGTATCTATTTTTTTTT	29
	Rm3-19Rt	TAGATACCAAGCAAGCCCTTTTTTTTTT	29
	Rm4-19t	GATCTGAACTTAGACGGGATTTTTTTTT	29
	Rm4-t19R	TTTTTTTTTTTCCCGTCTAAGTTCAGATC	29
Rhizopus microspores*	Rizm1-19Rt	CTGAGAAGTAAATCCCAGTTTTTTTTTT	29
	Rizm1-t19R	TTTTTTTTTTTCTGAGAAGTAAATCCCAGT	29
	Rizm2-t20	TTTTTTTTTTTCTGGCGATGAAGGTCGTAAC	30
	Rizm2-20Rt	GTTACGACCTTCATCGCCAGTTTTTTTTTT	30

Table 1 continued

Organism	Probe name	Probe sequence (5'-3')	Length (bp)	
	Rizm2-t20R	TTTTTTTTTTGTTACGACCTTCATCGCCAG	30	
	Rizm3-19t	CTTCCTTGGGAAGGAAGGTTTTTTTTTT	29	
	Rizm3-t19	TTTTTTTTTTTCTTCCTTTGGGAAGGAAGG	29	
	Rizm3-19Rt	CCTTCCTTCCCAAAGGAAGTTTTTTTTTT	29	
	Rizm4B-17Rt	GCACGATGGCTAGGTAGTTTTTTTTTT	27	
	Rizm4B-t17R	TTTTTTTTTGCACGATGGCTAGGTAG	27	
Rhizopus oryzae	Rizo1-19Rt	TACCCCAGAGGAAACCCTATTTTTTTTTT	29	
	Rizo1-t19R	TTTTTTTTTTACCCCAGAGGAAACCCTA	29	
	Rizo2-t18R	TTTTTTTTTTTCTCCTGAAACCAGGAGTG	28	
	Rizo3A-19t	ACAGTGAGCACCTAAAATGTTTTTTTTTT	29	
	Rizo3A-t19	TTTTTTTTTACAGTGAGCACCTAAAATG	29	
	Rizo3B-19t	GCTAGGCAGGAATATTACGTTTTTTTTTT	29	
	Rizo3B-t19	TTTTTTTTTGCTAGGCAGGAATATTACG	29	
Rhodotorula mucilaginosa	Rho2-19Rt	CACCTCCTTCAATCATTAAGTTTTTTTTTT	29	
	Rho2-t19R	TTTTTTTTTCACCTCTTCAATCATTAAG	29	
	Rho5-18Rt	CTAGACCGTAAAGGCCAGTTTTTTTTTT	28	
	Rho5-17Rt	CGAGCTAGACCGTAAAGTTTTTTTTTT	27	
	Rho5-t17R	TTTTTTTTTCGAGCTAGACCGTAAAG	27	
Scedosporium prolificans	Scp2-t15R	TTTTTTTTTTGTATTGTATTCAGAA	25	
	ScpP-19Rt	GGCTTGTAAAAACCTAGGCTTTTTTTTTT	29	
	ScP-t19R	TTTTTTTTTGGCTTGTAAAAACCTAGGC	29	
Sporothrix schenckii*	Sps2-t20R	TTTTTTTTTTGTAGGGCCCGCCGCCCTGG	30	
	Sps4-20t	CACAACTCCCAACCCTTGCTTTTTTTTTT	30	
	Sps4-20Rt	GCAAGGGTTGGGAGTTGTGTTTTTTTTTT	30	
	Sps4-17t	GCGAACCGTACCCAATCTTTTTTTTTT	27	
Trichophyton mentagrophytes	68A 1	TTTTTTTTTTGTTTAGCCACTAAAGAGAG	29	
	68A 2	TTTTTTTTTTGTTTAGCCACTAAAGAGA	28	
	68A 4R	TTTTTTTTTTGTTTAGCCACTAAAGAGAGG	30	
	69A-10	GCCCCCGTCTTTGGGGGGTTTTTTTTTTT	28	
Trichophyton rubrum	66B 6R	TTTTTTTTTGCTCGAGGCTCCCAGAAGG	29	
	66B 13R	TTTTTTTTTTCTCGAGGCTCCCAGAAGG	28	
	66B 14R	TTTTTTTTTGCTCGAGGCTCCCAGAAG	28	
	67A 1	TTTTTTTTTCAGCCAATCCAGCGCCCTCA	30	
	67A 7	TTTTTTTTTCAGCCAATCCAGCGCCCTC	29	
	67A 8	TTTTTTTTAGCCAATCCAGCGCCCTCA	29	
	67B 17	AGCCAATTCAGCGCCCTTTTTTTTTTT	27	
	67B 19	CAGCCAATTCAGCGCCCTCTTTTTTTTT	29	
Trichophyton tonsurans	47A 6	CCTATCCTGGGGGGGCCTTTTTTTTTT	26	
	47A 7	TTTTTTTTTTCCTATCCTGGGGGGGCC	26	
	47A 19R	TTTTTTTTTTTTTTTTTCCTGGGGGGGCCGGCCT	29	
	47B 1	TTTTTTTTGAGCCGCTATAAAGAGAGG	29	
	47B 4	TTTTTTTTGAGCCGCTATAAAGAGAGGC	30	
	47B 19R	GAGCCGCTATAAAGAGAGGTTTTTTTTTT	29	
Trichosporon sp.	78A-3	TTTTTTTTTTTTCTTGCGCTCTCTGGTA	26	
	78C-1	TTTTTTTTTGCTCGCCTTAAAAGAGTT	28	

Table 1 continued

25
26
30
30
27

The probes with asterisk (*) shows cross-hybridization within the same genus

The ex-type classification name was used in some of the fungi

Preparation of DNA Microarray Slides

The synthetic oligonucleotides were diluted to 20 pmol/µl in TE buffer and mixed with an equal volume of 6× SSC [20× SSC is 3 M NaCl, 0.3 M sodium citrate (pH7.0)] to make a final concentration of 10 pmol/ μ l oligonucleotides in 3× SSC. The probe solutions were spotted on NGK plastic slides (NGK insulators LTD, Aichi, Japan) using a KCS-mini microarray printer (Kubota Comps Corporation, Hyogo, Japan). After spotting, the slides were irradiated with UV at 0.6 J/cm² using a UV cross-linker (model CL-1000; UVP, San Gabriel, Ca) to fix the probes on plastic slides. The slides were then gently shaken in blocking buffer [3 % BSA, 0.2 M NaCl, 0.1 M Tris-HCl (pH 8.0), and 0.05 % Triton X-100] for 5 min and washed with TE buffer for 10 min. The array slides were air-dried and stably stored at room temperature at least 3 years.

Infectious Mouse Model

As an infection model, male ICR mice (Charles River Laboratories) were infected intravenously with *Aspergillus fumigatus* Af293 or *Fusarium solani* complex IFM40718 (FSSC) conidia $(1 \times 10^6$ conidia/mouse) in a 200 µl volume of saline. Three mice were used in each fungal species. One hour after infection, mice were killed, and blood was collected from the heart tissues under sterilized conditions. The CFU was determined by inoculating 100 µl of collected blood on a PDA with Chloramphenicol plate, and colonies were counted after 24 h of cultivation at 30 °C. Blood samples were used directly as template for PCR.

Blood Culture

As the routine diagnosis of blood infection, blood samples were taken from patients and cultivated using the BD BACTEC FX system (BD, Tokyo, Japan) for 7 days, following the ethics of Chiba University Hospital. After cultivation, growth positive samples were inoculated onto several kinds of agar to identify bacteria and/or fungi. For the microarray identification, one growth positive and one growth negative blood culture samples were used directly as a template for PCR.

DNA Extraction

Fungal DNA was extracted as normal phenol–chloroform method. The conidia of *A. fumigatus* were inoculated in PDB medium and cultivated for 2 days at 37 °C. The mycelium was collected by filtration and ground by mortar using liquid N₂. The ground cells were suspended in DNA extraction buffer (200 mM Tris, 25 mM NaCl, 25 mM EDTA, 0.5 % SDS, pH 8.5) and extracted with phenol/chloroform/isoamyl alcohol. After that, RNase treatment and ethanol precipitation were conducted. The cells of *Candida albicans* were cultivated in PDB medium 1 day at 30 °C. The cells were collected by centrifugation, and the DNA was extracted using GenTorukun (TaKaRa Bio Inc., Shiga, Japan).

PCR Amplification and Labeling

The 5'-biotin-labeled fungus-specific universal primers ITS1-bio (5'-TCCGTAGGTGAACCTGCGG-3')

and ITS4-bio (5'-TCCTCCGCTTATTGATATGC-3') [15] were used for amplifying the entire ITS region and biotin labeling. The amplified fragment ranged from 426 to 930 bp depending on the fungal species. PCR was performed using MightyAmp DNA polymerase ver. 2 (TaKaRa Bio Inc.) in a total reaction volume of 10 µl containing 1 µl of template (fungal cell suspension, whole blood, serum, blood culture, and extracted DNAs). Amplification was carried out as follows, 2 min of initial denaturation at 98 °C, 40 cycles of DNA denaturation at 98 °C for 10 s, primer annealing at 55 °C for 15 s and elongation at 68 °C for 45 s, and a final elongation step at 68 °C for 5 min. After the PCR reaction, amplification was verified by electrophoresis. In case of low content of fungal cells or DNA, nested PCR was performed using ITS1-n (5'-GAGGAAGTAAAAGTCG-3') and ITS4-n (5'-TT CACTCGCCGTTACT-3') as the first-round PCR primer set. One µl of first-round PCR sample was then used as template in the second round of PCR performed in a total reaction volume of 10 µl.

Isothermal Amplification

Isothermal amplification was performed with a TwistAmp basic kit (TwistDx Limited, Cambridge, UK). Amplification was carried out at 37 °C for 40 min according to the manufacturer's protocol using 1.5 μ l of fungal cell suspension or DNA as template.

Microarray Hybridization and Signal Detection

Before microarray hybridization, amplified and labeled PCR samples were denatured at 95 °C for 2 min and chilled on ice for 2 min. Four µl of a denatured sample was then mixed with 16 µl of hybridization buffer (0.2 g tetramethylammonium chloride, 0.5 % SDS, and 1.9 mg EDTA in 1 ml of $6 \times$ SSC). Samples were applied to the array slide, covered with a cover-film to prevent sample evaporation, and incubated at 37 °C for 1 h in a moist-chamber. Array slides were then washed with PBS buffer at 37 °C for 5 min. A color development reaction was performed on the slide in accordance with the avidin-biotinylated peroxidase complex (ABC) method using a 3, 3', 5, 5'-tetramethylbenzidine (TMB) solution for visualization [16]. First, the conjugation reaction was performed with streptavidin and biotin-HRP for 30 min, and the array was washed twice with PBST buffer (PBS buffer with 0.1 % Tween 20) for 5 min. After washing, color development was performed with 0.02 % TMB, 0.015 % H_2O_2 , and 0.5 mg/ml alginic acid in 0.2 M acetate buffer (pH 3.3). Color development was terminated after 30 min by washing the array slides with distilled water. The results were evaluated by visual observation.

Results

Design of Probes and DNA Microarray Slides

Because the ribosomal RNA gene, especially the 28S rRNA gene, is highly conserved among species, sequences of the ITS region are widely used for identification of fungal species. We designed speciesand/or genus-specific probes within the ITS region and tested the specificity of selected sequences using 355 reference strains (Table S1). Genus-specific probes were designed for some fungi (Alternaria sp., Rhizomucor sp., Mucor sp., Trichosporon sp.); because they have highly conserved ITS region sequences within the genus, we could not design species-specific probes. We successfully designed 319 probes of species/genusspecific oligonucleotides ranging from 13 to 21 bp with a poly-T anchor at the 5' or 3' end for the identification of 42 species from 24 genera of fungal pathogens (Table 1). Three to twelve different specific capture probes were designed and spotted on the array slides for each fungal species/genus to ensure hybridization reaction for proper identification. Among the 319 probes, six universal probes for fungi were designed, so that the array would give a positive signal at universal probe even if fungal species in the tested sample was not listed on the Table 1. In other words, 6 universal probes could detect any fungi other than listed objective fungi without specific signal.

All designed probes and the positive control marker (biotinylated-poly-T) were spotted on one plastic slide. Figure 1a shows an example of the spot pattern of the microarray slide.

Evaluation of the Specificity of DNA Microarray Probes

To evaluate the specificity of the designed capture probes, 66 fungal strains were used (Table S1). All

identified fungi					identified fungi					identified fungi				
Histoplasma capsulatum	biotin	39B 22	39B 24	39B 25	Candida guiliermondii	biotin 55	A 19	55A 19R	55A 17R	Aspergillus nidulans	biotin	64B 8	64B 9	
		39C 19R	39C 17R	39C 15R		55	B 19	55B 17	55B 15			65A 19	65A 17	65A 15
					C. lusitamia e	biotin 110	16R	11C 15R	11C 14R	A. terreus	biotin	35A 19	35A 19R	35A 17R
Coccidioides posadasii	biotin	37C 19R	37C 17R	37C 15R		11	B 19	11B 19R				36A 19	36 A 1	36A 2
		37E 18R	37E 17R	37E 15R		12	A 19	12A 19R	12A 17R			36B 19	36B 17	36B 15
		38D-1	38D-2	38D-3		12	B 19	12B 17		A. miger	biotin	62A 4	62 A 4	
		38E 19	38E 17	38E 15	C. krusei	biotin 9B	19R	9B17R				63A 19	63A 17	63A 15
						90	1R	9C 2R	9C 3R	A. flavus	biotin	60B 17R	60 B 1	60B 1R
Paracoccidioides brasiliensis	biotin	45A 18R	45A 17R	45A 15R		10	A 19	10A 17	10A 15			60C 19R	60C 1R	60C 2R
		45B 19R	45B 17R	45B 15R		10	B 1 9	10B 17	10B 15	A. fumigatus	biotin	33B-1R	33B-2R	33B-4R
		46A 19	46A 17	46A 15	C. glablata	biotin 7A	19R	7A 17R	7A 15R			33C 1R	33C 2R	33C 3R
						78	319	7B 17	7B 19R			34A 8		
Blastomyc es dermatitidis	biotin	41A 19R	41A 17R			8/	19	8A 17				34A 14	34A 17	34A 20
		42A 17	42A 15			88	319	8B 17	8B 15					
					C. parapsilosis	biotin 5/	18	5A 17	5A 18R	Trichophyton rubrum	biotin	66B 6R	66B 13R	66B 14R
						6/	19	6A 17	6A 19R			67A 1	67 A 7	67A 8
Cryptococcus neoformans	biotin	22A 17	22A-8			68	3 1 8	6B 17	6B 18R			67B 19	67B17	
var. neoformans, gulbii, gattii		23A 19	23A 17		C. tropicalis	biotin 3A	17R	3A 16R		Tp. Mentagrophytes	biotin	68A4R	68A 1	68A 2
		23B 17	23B 1	23B 2		38	19R	3B17R	3B 15R			69A 10		
						4/	19	4A 17	4A 15	Tp. Tonsurans	biotin	47A 19R	47A 6	47A 7
Trich osporon sp.	biotin	78A-3	78C-1			48	319	4B 17				47B 19R	47B 1	47B 4
	biotin	79A-5	79A-6a		C. dubliniensis	biotin 13.	A-2R	13A-3R						
	biotin	31A-2	31A-4R			biotin 13	817	138 15		Penicillium marneffei	biotin	43B 19R	43B 1/R	43B 15R
		32A 17			2 ///	14.	A 17	14A 15				44A 19	44A 1/	
		404.400	404.430	101.150	C. albicans	biotin 1/	19	1A1/R	10.150					
Malassezia furtur	DIOTIN	48A 19R	48A 17R	48A 15R			519	IBI/R	IB ISR					
		48B 19R	48B1/R	488 15K		2/	19	2A 17	2A 10			50.10	50.17	-
		49A /	49A 8	49A 9	0.6	23	21/	28 15		tungai universai	DIOTIN	50-19	50-17	
		498.19	49817	49B 10	U. Tamata	dodn 80	B-1	808-TR			DIOTIN	51-19	51-17	-
						8	A-1	81A-3			biotin	52-19R	52-1/R	
B										a		T. as	sahii	
												C		
										1p. rubru	т	С. а	ibican	S
1 funiorat		C	albie		C tranicalia	The	ahaa			1 funda	4	Com		
A. Iumigai	us	U	. aibic	ans	C. tropicans	111	cnos	poror	a sp.	A. jumiga	ius	Cry.	neojo	rmans
•		•		•					• .	•				
													: :	
			•											
• •				•							50.0			
				•										100
• •											12	1575		
					· [*::.] ·		•	• •		• •		•		10514
				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1										
														a contract of the second second

Fig. 1 a Example layout of capture probes on microarray slide. Probe names correspond to probe names listed in Table 1. The *black column* labeled "biotin" indicates the spots for positive control (biotinylated-poly-T) and positional marker. b Typical hybridization patterns using fungal suspension of different fungal species as PCR template. Species-specific signals are enclosed in *solid line frames*, while universal signals for fungi

fungal samples tested showed the expected species/ genus-specific hybridization patterns as shown in Fig. 1b. Although some probes showed cross-hybridization within the same genus because of their highly conserved sequence (e.g., *Rhizopus stlonifer* was cross-hybridized to *Rhizopus microsporus* probes), listed organisms are the major fungi causing infection (Table 1). Moreover, the array system enabled us to identify all the mixed fungi in one test even when several fungal mixtures were used as template (Fig. 1c). Resulted spot number is sometimes varied depending on the sample (e.g., the spot of fungal common probes in Fig. 1b), because the affinity of each designed probes is different.

are enclosed in *dotted line frames*. These figures show representative results for *A. fumigatus, Trichosporon asahii, C. tropicalis,* and *C. albicans.* **c** Simultaneous hybridization of several species in one array slide. Fungal cell mixtures of *C. albicans, Cryptococcus neoformans,* and *T. asahii* or of *A. fumigatus* and *Trichophyton rubrum* were directly used as template for PCR amplification and detected on the array slide

Sensitivity of the DNA Microarray System

To evaluate microarray detection sensitivity, we used blood samples containing a known number of fungal cells and serum with fungal DNA in place of actual clinical samples. Serial ten-fold dilutions of fungal cells in blood (10^6-10^0 CFU/ml) were prepared by adding *A*. *fumigatus* conidia or *C. albicans* cells to rabbit whole blood. The PCR reaction was performed directly using 1 µl of rabbit whole blood with or without fungal cells as template (see Materials and Methods). After the PCR reaction, amplification was verified by electrophoresis, and the samples were used for microarray analysis (Fig. 2a). For both *A. fumigatus* and *C. albicans*,

Α

Fig. 2 Agarose gel electrophoresis of PCR products. **a** PCR amplification of ITS region using blood sample spiked with *A*. *fumigatus* cells as template. *Upper panel* shows the results of normal PCR; *lower panel* shows the results of nested PCR. *Lanes*: M, molecular marker (Gene Ladder Wide 1: NIPPON

 10^3 CFU/ml was the minimum concentration needed for PCR amplification followed by the microarray detection. Although 10^2 CFU/ml could be considered as the limit of detection, amplification at this concentration is not reproducible. To increase the sensitivity, we conducted nested PCR. However, it did not enhance the sensitivity.

We also evaluated detection limits of *A. fumigatus* and *C. albicans* DNA in serum. Extracted fungal DNA ranging from 10 ng to 10 fg was separately added to 200 μ l of rabbit serum. When 1 μ l of the serum sample was used directly as template for PCR, the detection limit was 5 fg per 1 μ l of serum. After nested PCR, the minimal amount of DNA required for fungal identification decreased to 0.05 fg per 1 μ l of serum (Fig. 2b).

Identification of the Infected Fungi from Mice

Blood samples from infected mice were tested in place of actual human clinical samples. After 1 h of fungal

GENE co., Tokyo, Japan); 1–7, blood sample spiked with conidia. **b** PCR amplification of ITS region using serum sample with *C. albicans* DNA as template. *Upper panel* shows the results of normal PCR; *lower panel* shows the results of nested PCR. *Lanes*: M, molecular marker; 1–8, DNA in 1 ml of serum

infection, blood was collected and used directly for PCR amplification. Because the first-round PCR did not yield enough amplicon, nested PCR was performed to increase the labeled amplicon, making it possible to detect inoculated fungi in the blood from the infected mouse by microarray. At this moment, the CFU of *A. fumigatus* and FSSC remained in blood stream were 500 ± 50 (colonies/ml) and 230 ± 30 (colonies/ml), respectively. This detection level is consistent with the result of sensitivity test using rabbit whole blood spiked with fungal cells.

Identification of the Fungi from Blood Culture Sample

Blood from a patient was cultivated in a blood culture bottle for 7 days; one culture positive and one negative sample were subjected to microarray analysis. Samples from blood culture bottle were used directly as a template for nested PCR amplification. The

Fig. 3 Isothermal amplification. Agarose gel electrophoresis of fungal DNA obtained by isothermal amplification using TwistAmp Basic kit. *Lanes*: M, molecular marker; Af, A. *fumigatus*; Ca, C. *albicans*; Cn, Cryptococcus neoformans; Fs, FSSC; Mf, Malassezia furfur; Ta, T. asahii; Ro, Rhizopus oryzae

microarray result was consistent with the identification made by the Chiba University Hospital clinical laboratory.

Isothermal Sample DNA Amplification

Because PCR amplification requires a thermal cycler, which is not always available, in small hospitals, or in less developed regions, we attempted to carry out isothermal amplification for biotin labeling of sample DNA using RPA technique [13]. The RPA cycle was performed using 1.5 μ l cell suspensions of various fungi as template (Fig. 3). If amplification reaction was successful, the microarray system we developed gave correct identification results in all of the tested samples, even though several amplification bands were observed in some samples.

Discussion

Fungal infections cause severe morbidity and mortality in immunocompromised patients. Early start of proper treatment is crucial point to achieve better outcome in these patients. Because sensitivity to antifungal drugs differs among different fungal species, identification of the causative fungal agent is important for proper treatment. Rapid detection and identification of pathogens are therefore key points for diagnosis.

Recently, microarray methods have been developed for the identification of a variety of pathogens, including viruses [17], bacteria [4, 8], and fungi [5– 7]. These methods are powerful tools to simultaneously detect multiple pathogens. In this study, we developed an easy-to-use, rapid and inexpensive microarray method utilizing biotin-conjugated HRP and color development of the substrate for signal detection. In addition to making the detection system straightforward, we immobilize DNA probes to ordinary plastic slides without any surface modification using UV irradiation via the poly-T anchor of the capture probes [14]. This immobilization system allowed us to use inexpensive, mass-produced, and commercially available ordinary plastic slides as the DNA microarray substrate.

For our DNA microarray, we selected ITS regions of fungal rRNA genes as target because the ITS sequence have been widely used to identify fungi. Although it was difficult to design species-specific probes for some of the fungal genera (Alternaria sp., Rhizomucor sp., Mucor sp., Trichosporon sp.), pathogenic species of these genera have similar MIC values against several antifungal drugs, making designing genus-specific probes useful [18-21]. To our knowledge, the number of fungal species/genera that could be identified by our array system, 42 species from 24 genera, is the largest among microarray identification systems reported to date [5-7]. And the number of identifiable fungal species can be further increased depending on demand of clinical use. Considering the increasing incidence of infectious diseases caused by fungi, this microarray system, which can be used to identify a variety of fungi simultaneously, has great potential.

The sensitivity of our microarray system was evaluated using whole blood spiked with a certain number of fungal cells and serum with fungal DNA. When 1 μ l of either sample was used directly as the PCR template, the limit of the detection was 10^3 cells/ml for blood, and 5 pg/ml of DNA for serum. Nested PCR increased the sensitivity to 50 fg/ml of DNA in serum, but no change in sensitivity was observed in the blood sample. According to calculations, in the 10^3 cells/ml blood sample, 1 µl of template contains 1 cell, so in case of lower concentration sample, 1 µl of template does not contain any cells. That is why the amplification of 10^2 cells/ml sample was not constant and sensitivity could not increase by nested PCR. However, DNA extraction or concentration of cells from larger volume of blood or serum sample will have a possibility to decrease detection limit.

When we tested the sample from an infected mouse model and blood culture, it was difficult to get enough intensity in microarray detection with only one step of PCR amplification. This indicated that the amount of DNA in the actual clinical samples is smaller than the detection limit of our microarray system. Nested PCR, however, increased the sensitivity of amplification, and the nested PCR samples successfully gave the expected diagnostic results.

The PCR step in conventional microarray systems has remained as a crucial barrier for wide use in laboratories or hospitals not equipped with a PCR machine. In the present work, we adopted isothermal amplification of DNA samples using the RPA technique as an alternative to PCR to solve this problem. Although, the RPA technique has been used for rapid identification of viruses and bacteria [13], this is the first report of fungal DNA amplification by the RPA technique directly from a fungal cell suspension within 1 h. However, in the present study, the RPA method was found to be less sensitive than the conventional PCR technique. Further optimization of sample preparation and RPA conditions are expected to yield improved results.

In conclusion, we were able to establish a rapid microarray system that can specifically identify a variety of fungal pathogens. Furthermore, we demonstrated that the ABC method could yield enough sensitivity to detect signals from clinical samples, providing an alternative to expensive fluorescencescanning methods. We also demonstrated that the isothermal amplification technique in combination with this array system has high potential for future applications, such as for bedside diagnosis. This type of assay technique enables simultaneous identification of several agents in a few, relatively simple steps and therefore will become a useful tool in the identification of a wide range of both pathogenic and nonpathogenic microorganisms.

Acknowledgments This work was supported by JST/JICA, SATREPS, and the Cooperative Research Grant of NEKKEN 2012, by a research Grant to T.G. (#24659479), by the National BioResource Projects, and SATREPS by JICA/JST, from the Ministry of Education, Culture, Sports, Science, & Technology in Japan. The authors are grateful to Drs. Kizaki and M. Tanaka for critical comments and technical support. **Open Access** This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

References

- Kume H, Yamazaki T, Togano T. Epidemiology of visceral mycoses in autopsy cases in Japan: comparison of the data from 1989, 1993, 1997, 2001, 2005 and 2007 in annual of pathological autopsy cases in Japan. Med Mycol J. 2011; 52:117–27.
- Fujita S. Serologic diagnosis of fungal infections. Nihon Rinsho. 2008;66:2313–8.
- Su C, Lei L, Duan Y, Zhang KQ, Yang J. Culture-independent methods for studying environmental microorganisms: methods, application, and perspective. Appl Microbiol Biotechnol. 2012;93:993–1003.
- Hong BX, Jiang LF, Hu YS, Fang DY, Guo HY. Application of oligonucleotide array technology for the rapid detection of pathogenic bacteria of foodborne infections. J Microbiol Methods. 2004;58:403–11.
- Spiess B, Seifarth W, Hummel M, et al. DNA microarraybased detection and identification of fungal pathogens in clinical samples from neutropenic patients. J Clin Microbiol. 2007;45:3743–53.
- Sato T, Takayanagi A, Nagao K, et al. Simple PCR-based DNA microarray system to identify human pathogenic fungi in skin. J Clin Microbiol. 2010;48:2357–64.
- Hung WT, Su SL, Shiu LY, Chang TC. Rapid identification of allergenic and pathogenic molds in environmental air by an oligonucleotide array. BMC Infect Dis. 2011;11:91–9.
- Sakai T, Kohzaki K, Watanabe A, Tsuneoka H, Shimadzu M. Use of DNA microarray analysis in diagnosis of bacterial and fungal endophthalmitis. Clin Ophthalmol. 2012;6: 321–6.
- Vincent M, Xu Y, Kong H. Helicase-dependent isothermal DNA amplification. EMBO Rep. 2004;5:795–800.
- Gill P, Ghaemi A. Nucleic acid isothermal amplification technologies: a review. Nucleosides Nucleotides Nucleic Acids. 2008;27:224–43.
- Mori Y, Notomi T. Loop-mediated isothermal amplification (LAMP): a rapid, accurate, and cost-effective diagnostic method for infectious diseases. J Infect Chemother. 2009; 15:62–9.
- Uemori T, Mukai H, Takeda O, et al. Investigation of the molecular mechanism of ICAN, a novel gene amplification method. J Biochem. 2007;142:283–92.
- Euler M, Wang Y, Otto P, et al. Recombinase polymerase amplification assay for rapid detection of *Francisella tularensis*. J Clin Microbiol. 2012;50:2234–8.
- Kimura N. One-step immobilization of poly(dT)-modified DNA onto non-modified plastic substrates by UV irradiation for microarrays. Biochem Biophys Res Commun. 2006;347: 477–84.
- 15. White TJ, Bruns T, Lee S, Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes for

phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ, editors. PCR Protocols : a guide to methods and applications. San Diego: Academic Press Inc.; 1990. p. 315–22.

- Rubtsova MY, Ulyashova MM, Edelstein MV, Egorov AM. Oligonucleotide microarrays with horseradish peroxidasebased detection for the identification of extended-spectrum β-lactamases. Biosens Bioelectron. 2010;26:1252–60.
- Huguenin A, Moutte L, Renois F, et al. Broad respiratory virus detection in infants hospitalized for bronchiolitis by use of a multiplex RT-PCR DNA microarray system. J Med Virol. 2012;84:979–85.
- 18. Hamid B, Sybren GDH, Ilse C, et al. *In vitro* activities of eight drugs against 70 clinical and environmental isolates of

Alternaria species. J Antimicrob Chemother. 2009;63: 1295–7.

- Wang SB, Li LY, Yu J. Identification and susceptibility of *Rhizomucor* spp. isolated from patients with cutaneous zygomycosis in China. Med Mycol. 2011;49:799–805.
- Vitale RG, de Hoog GS, Schwarz P, et al. Antifungal susceptibility and phylogeny of opportunistic members of the order mucorales. J Clin Microbiol. 2012;50:66–75.
- Guo LN, Xiano M, Kong F, et al. Tree-locus identification, genotyping, and antifungal susceptibilities of medically important *Trichosporon* species from China. J Clin Microbiol. 2011;49(11):3805–11.