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Abstract Stability of a system described by the time-varying nonlinear 2-D Fornasin-
i-Marchesini model is considered. There are given notions of stability of the system and
theorems for stability and asymptotic stability which can be considered as the Lyapunov
stability theorem extension for the system.
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1 Introduction

The Lyapunov stability theorem is frequently used in control theory. It enables ones to test
stability of linear time-invariant and time-varying systems as well as nonlinear systems.
Approach based on the Lyapunov theorem is also often used for analysis and design of
robust control systems.

Two dimensional (2-D) systems have found many applications, for instance in analysis
of systems described by the partial differential equations, in the design of digital filters,
etc. However, one of the main problems in analysis and design of 2-D systems is stability.
Whereas 2-D system may be viewed as a generalization of 1-D one, the extension of 1-D
stability tests for 2-D systems is rather difficult. Until now there is no simple stability test for
linear 2-D systems like for 1-D systems. Therefore, every new method for stability testing
of 2-D systems can be useful.

In Kurek (1995) there is given stability condition for 2-D system described by the nonlin-
ear Roesser model. The condition is similar to the Lyapunov one. Analogous conditions for
linear Roesser model one can find in El-Agizi and Fahmy (1979), Bliman (2002). In Kojima
et al. (2011) it is shown that asymptotic stability of linear 2-D system is equivalent to the
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existence of a vector Lyapunov functional satisfying certain positivity conditions together
with its divergence along the system trajectories. In Tatsuhi (2001) it is, however, shown
that application of 2-D Lyapunov matrix inequality is limited in application to robust stabil-
ity of a system described by the Fornasini-Marchesini model. Alternatively, in Zidong and
Xiaohui (2003) robust stability of the linear uncertain Fornasini-Marchesini model is con-
sidered using the LMI approach. Some recent results concerning stability of the nonlinear
Fornasini-Marchesini model one can find in Zhu and Hu (2011).

In this note we consider the stability problem for nonlinear 2-D systems described by
model similar to the Fornasini-Marchesini one. The stability and asymptotic stability notions
are defined for the system. Next, sufficient conditions for stability and asymptotic stability are
formulated similar to the second Lyapunov stability theorem. Presented results are illustrated
by numerical example. Finally, concluding remarks are given. Obtained stability conditions
are simply and can be used for testing stability of 2-D nonlinear as well linear systems.

2 Stability of 2-D system

There is a number of state-space models for linear digital 2-D systems, eg. Roesser (1975),
Fornasini and Marchesini (1980), Kurek (1985). In this paper we will deal with digital time-
varying nonlinear 2-D system described by a model similar to the 2-D Fornasini-Marchesini
one

x(k + 1, t + 1) = f01[x(k, t + 1), k, t + 1] + f10[x(k + 1, t), k + 1, t] (1)

where x ∈ Rn is a state vector and f 01 and f 10 take values in Rn . The system we will call
the time-varying nonlinear 2-D Fornasini-Marchesini system.

The state vector of 2-D system is finite dimensional but the solution to the system is
calculated under infinite dimensional set of boundary conditions (BC). For instance, the BC
set for system (1) can be defined as follows

x(k0, t0 + j) = xk0(t0 + j) and x(k0 + i, t0) = xt0(k0 + i) for i, j = 0, 1, . . . (2)

or

x(k0 + i, t0 + j) = x0(k0 + i, t0 + j) for i + j = 0 and i = . . .,−1, 0, 1, . . . (3)

Since BC set (3) can be considered as a global state χ(h) of the 2-D system, χ(h) =
{x(k, t) for k + t = h}, we define, for simplicity of the presentation, stability of system (1)
assuming this BC set.

Then, denoting by ||x || a vector norm, the Lyapunov stability of 2-D system (1) can be
defined analogously to 1-D systems.

Definition 1 A state xe ∈ Rn is an equilibrium state of system (1) if and only if for each
integer numbers k0, t0 < ∞ the equality ||x(k0 + i, t0 + j) − xe || = 0 for i + j = 0 implies
||x(k0 + i, t0 + j) − xe || = 0 for i + j > 0.

Definition 2 An equilibrium state xe of system (1) is stable if and only if for each real num-
ber ε > 0 and integer numbers k0, t0 < ∞ there is a real number δ(ε, k0, t0) > 0 such that
||x(k0 + i, t0 + j) − xe|| ≤ δ(ε, k0, t0) for i + j = 0 implies ||x(k0 + i, t0 + j) − xe|| ≤ ε

for i + j > 0.

Remark It follows from the definition that ||x(k, t) − xe|| ≤ ε for k > k0 and t > t0 for
stable equilibrium state xe independent on BC set, also for BC set (2).
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Definition 3 An equilibrium state xe of system (1) is asymptotically stable if and only if for
each real number ε > 0 and integer numbers k0, t0 < ∞ there is a real number δ(ε, k0, t0) > 0
such that ||x(k0+i, t0+ j)−xe|| ≤ δ(ε, k0, t0) for i+ j = 0 implies ||x(k0+i, t0+ j)−xe|| ≤ ε

for i + j > 0 and ||x(k0 + i, t0 + j) − xe|| → 0 for i + j → ∞.

Remarks

1. In short one can say that the equilibrium state xe of system (1) is asymptotically stable
if and only if it is stable and ||x(k, t) − xe|| → 0 for k + t → ∞.

2. From the definition it follows that x(k, t) → xe for k, t → ∞ for asymptotically stable
equilibrium state xe independent on BC set, as well for BC set (2).

Definition 4 The equilibrium state xe is stable (asymptotically stable) in the large if and only
if it is stable (asymptotically stable) and δ(ε, k0, t0) → ∞ for ε → ∞.

Definition 5 The equilibrium state xe is uniformly stable (asymptotically stable) if and only
if it is stable (asymptotically stable) and for each ε, k0 and t0 there exists δ(ε, k0, t0) = δ(ε)

independent on k0 and t0.

Moreover, we say that an equilibrium state xe is unstable if it is not stable.
Then, analyzing stability of the system it is easy to note that the system can have, analo-

gously to 1-D systems, many stable, asymptotically stable or unstable equilibrium states but
only one equilibrium state if the state is asymptotically stable in the large.

3 The main result

Based on Definition 1 one can prove the following Theorem (Kurek 1995).

Theorem 1 A state xe ∈ Rn is an equilibrium state of system (1) if and only if

xe = f01(xe, k, t + 1) + f10(xe, k + 1, t) for all k, t

Next one can prove the following theorems similar to the well known second stability
theorem of Lyapunov for 1-D systems (Ogata 1967).

Theorem 2 Given system (1) with equilibrium state xe = 0. The equilibrium state is uniformly
stable if there exist real numbers ξ > 0 and ρε[0, 1], and real scalar function ϕ(x, k, t) :
Rn × R × R → R, such that for ||x || ≤ ξ and all k, t

(a) ϕ(x, k, t) is a positive definite function in x, i.e. ϕ(x, k, t) = 0 if x = 0 and ϕ(x, k, t) >

0 if x �= 0,
(b) ϕ(x, k, t) has an upper bound α(||x ||) such that ϕ(x, k, t) ≤ α(||x ||) where α(·) is a

nondecreasing continuous scalar function such that α(0) = 0,
(c) ϕ(x, k, t) has a lower bound β(||x ||) such that ϕ(x, k, t) ≥ β(||x ||) where β(·) is a

nondecreasing continuous scalar function such that β(0) = 0 and β(a) > 0 for a > 0,
and

(d) the change �ϕ(x, k, t; ρ) of function ϕ(x, k, t) along trajectory x of system (1)

�ϕ(x, k, t; ρ) = ϕ[x(k + 1, t + 1), k + 1, t + 1]
−ρϕ[x(k, t + 1), k, t + 1] − (1 − ρ)ϕ[x(k + 1, t), k + 1, t]

= ϕ{ f01[x(k, t+1), k, t+1]+ f10[x(k + 1, t), k + 1, t], k + 1, t + 1}
−ρϕ[x(k, t + 1), k, t + 1] − (1 − ρ)ϕ[x(k + 1, t), k + 1, t] (4)
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Fig. 1 Plots of functions α, β and ϕ

is negative semi-definite function for ||x || ≤ ξ , i.e.

�ϕ(x, k, t; ρ) = ϕ[ f01(x1, k, t + 1) + f10(x2, k + 1, t), k + 1, t + 1]
−ρϕ(x1, k, t + 1) − (1 − ρ)ϕ(x2, k + 1, t) ≤ 0

for ||x1||, ||x2|| ≤ ξ (5)

The equilibrium state xe is uniformly stable in the large if conditions (a), (b), (c) and
(d) are satisfied for ξ → ∞ and

ϕ(x, k, t) → ∞ if ||x || → ∞ (6)

Proof Since α(·) and β(·) are continuous functions for every ε ∈ (0, ξ ] one can find
δ(ε) ∈ (0, ε] such that α[δ(ε)] = β(ε), Fig. 1. Thus, for x0 such that ||x0|| ≤ δ(ε) one
has ϕ(x0, k, t) ≤ α(||x0||).

Then, according to (4) one has

�ϕ(x, k, t; ρ) = ϕ{ f01[x(k, t + 1), k, t + 1] + f10[x(k + 1, t), k + 1, t], k + 1, t + 1}
−ρϕ[x(k, t + 1), k, t + 1] − (1 − ρ)ϕ[x(k + 1, t), k + 1, t]

≥ ϕ[x(k + 1, t + 1), k + 1, t + 1]
− max{ϕ[x(k, t + 1), k, t + 1], ϕ[x(k + 1, t), k + 1, t]}

Hence, for every BC set (3) such that ||x0(k0 + i, t0 + j)|| ≤ ||x0|| according to (5) we
have for k + t + 1 ≥ k0 + t0

ϕ[x(k + 1, t + 1), k + 1, t + 1] − max{ϕ[x(k, t + 1), k, t + 1], ϕ[x(k + 1, t), k + 1, t]}
≤ 0

and one finds

ϕ[x(k + 1, t + 1), k + 1, t + 1] ≤ max{ϕ[x(k, t + 1), k, t + 1], ϕ[x(k + 1, t), k + 1, t]}
(7)
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Thus, we obtain

ϕ[x(k + 1, t + 1), k + 1, t + 1] ≤ max
i∈[k0−k−1,t+1−t0] ϕ[x0(k0 + i, t0 − i), k0 + i, t0 − i]

≤ max
i+ j=0

ϕ[x0(k0 + i, t0 + j), k0 + i, t0 + j] ≤ α(||x0||)

This, however, implies ||x(k + 1, t + 1)|| ≤ ε, Fig. 1. Clearly, for ε ≥ ξ there exists
δ(ε) = δ(ξ). Thus, for every ε there exists δ(ε) ≤ δ(ξ) such that ||x(k + 1, t + 1)|| ≤ ε. It
means, however, that the equilibrium state xe is stable. Then, since functions α(·) and β(·)
depend neither on k nor on t also δ(ε) is independent on k and t . Thus, the equilibrium state
xe is uniformly stable.

Finally, if ξ → ∞ and condition (6) is satisfied also α(||x ||) → ∞ and there exists
β(||x ||) → ∞. Thus, Fig. 1, also δ(ξ) → ∞ and the equilibrium state xe is uniformly stable
in the large. �	

Remarks

1. One should note that conditions (b) and (c) are satisfied if function ϕ(x, k, t) is contin-
uous in x, k and t since in this case ϕ(x, k, t) → 0 only if x → 0.

2. Any equilibrium state xe �= 0 can be shifted to the origin of the coordinates by translation
of coordinates. Thus, the theorem gives a general result.

3. From proof of theorem it follows that except the stable equilibrium state xe = 0 there
could be also other equilibrium states xs , stable or unstable, such that ||xs || ≤ ξ if
theorem conditions are satisfied.

4. Function ϕ(·) satisfying conditions (a)–(c) can be named candidate of the Lyapunov
function for 2-D system (1) and ϕ(·) satisfying all the conditions (a)–(d) can be named
the Lyapunov function for 2-D system (1).

5. It is rather easy to find that instead of the change �ϕ(x, k, t) in (4) one can use the
following change of ϕ(·) in condition (d)

�̄ϕ(x, k, t) = ϕ[x(k + 1, t + 1), k + 1, t + 1]
− max{ϕ[x(k, t + 1), k, t + 1], ϕ[x(k + 1, t), k + 1, t]}

or more general for η, λ ≥ 0 and η + λ ≤ 1

�̃ϕ(x, k, t; η, λ) = ϕ[x(k + 1, t + 1), k + 1, t + 1]
−ηϕ[x(k, t + 1), k, t + 1] − λϕ[x(k + 1, t), k + 1, t]

Theorem 3 Given system (1) with equilibrium state xe = 0. The equilibrium state is uni-
formly asymptotically stable if there exist real numbers ξ > 0 and ρ ∈ [0, 1], and function
ϕ(x, k, t) such that for ||x || ≤ ξ and all k, t conditions (a), (b), (c) of Theorem 2 are
satisfied and

(d) the change �ϕ(x, k, t; ρ) of function ϕ(x, k, t) along trajectory x of system (1) has
an upper bound γ (||x1||, ||x2||) such that

�ϕ(x12, k, t; ρ) = ϕ[ f01(x1, k, t + 1) + f10(x2, k + 1, t), k + 1, t + 1]
−ρϕ(x1, k, t + 1) − (1 − ρ)ϕ(x2, k + 1, t)

≤ γ (||x1||, ||x2||) < 0

for x1 �= 0 or x2 �= 0 and ||x1||, ||x2|| ≤ ξ (8)
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where γ (||x1||, ||x2||) is a nonincreasing continuous scalar function such that γ (0, 0) = 0
and γ (||x1||, ||x2||) ≥ γ (||x1|| + a, ||x2|| + b) for a, b ≥ 0.

The equilibrium state xe is uniformly asymptotically stable in the large if the conditions
are satisfied for ξ → ∞ and condition (6) is fulfilled.

Proof According to Theorem 2 the equilibrium state xe is uniformly stable if conditions of
the theorem are satisfied. Moreover, because of (8) it follows from Theorem 1 that there is
only one equilibrium state xe = 0 for ||x || ≤ ξ .

Next, from (8) and (7) one finds that function ϕ[x(k, t), k, t] is a decreasing function for
k + t + 1 ≥ k0 + t0 and BC set (3) such that ||x0(k0 + i, t0 + j)|| ≤ ξ

ϕ[x(k + 1, t + 1), k + 1, t + 1] < max{ϕ[x(k, t + 1), k, t + 1], ϕ[x(k + 1, t), k + 1, t]}
This implies

max
i+ j=2

ϕ[x(k + i, t + j), k + i, t + j] < max
i+ j=1

ϕ[x(k + i, t + j), k + i, t + j]

and since positive definite function ϕ[x(k, t), k, t] ≥ 0 is a decreasing function for k+t → ∞
there exists ϕ0 such that

max
k+t=h

ϕ[x(k, t), k, t] → ϕ0 for h → ∞

Therefore, for BC set (3) such that ||x0(k0 + i, t0 + j)|| ≤ δ(ξ) one has for h +1 ≥ k0 + t0

max
k+t=h

�ϕ(x, k, t; ρ) = max
k+t=h

{ϕ[x(k + 1, t + 1), k + 1, t + 1] − ρϕ[x(k, t + 1), k, t + 1]
−(1 − ρ)ϕ[x(k + 1, t), k + 1, t]} −→

h→∞ ϕ0 − ρϕ0 − (1 − ρ)ϕ0 = 0

However, according to (8) it is possible if and only if x(k, t) → 0 and this implies that
the equilibrium state is asymptotically stable. In this case also ϕ[x(k, t), k, t] → 0. Thus,
ϕ0 = 0, too.

Finally, similarly as in the proof of Theorem 2, one easily finds that the equilibrium state
xe is uniformly asymptotically stable in the large if condition (6) is satisfied and ξ → ∞. �	

Remarks

1. All remarks to Theorem 2 applies respectively to Theorem 3. Particularly, instead of
condition (8) one can use the following one

�̄ϕ(x12, k, t) ≤ γ (||x1||, ||x2||) for ||x1||, ||x2|| ≤ ξ

or, more general

�̃ϕ(x12, k, t; η, λ) ≤ γ (||x1||, ||x2||) for ||x1||, ||x2|| ≤ ξ

2. If �ϕ(x, k, t; ρ) in (8) is negative definite function in x and it is also continuous function
in x,k and t then condition (d) is satisfied since in this case �ϕ(x12, k, t; ρ) → 0 only
if x1, x2 → 0.

3. From Fig. 1 one can see that ||x || < δ(ξ) is a subregion of attraction of the asymptot-
ically stable equilibrium state xe and there is only one equilibrium point xe such that
||xe|| ≤ ξ .

One can note that the following corollaries simply follow from Theorem 2.
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Corollary 1 The equilibrium state xe is unstable if there exists ξ > 0 such that the change
�ϕ(x, k, t; ρ) of function ϕ(x, k, t) along trajectory x of system (1) is positive definite in x
for all k and t, i.e.

�ϕ(x12, k, t; ρ) > 0 for ||x1||, ||x2|| ≤ ξ and x1, x2 �= 0

Corollary 2 The equilibrium state xe can be stable or unstable if there exists ξ > 0 such
that the change �ϕ(x, k, t; ρ) of function ϕ(x, k, t) along trajectory x of system (1) is neither
negative nor positive definite function for ||x || < ξ .

Remark In this case, checking the stability, one has to design another function ϕ(x, k, t) or
apply different stability test.

In practice, for instance image filtering, we rather deal with linear 2-D systems. Unfortu-
nately, in the contradiction to 1-D systems, there is no effective tests for its stability testing
in spite of that the necessary and sufficient stability conditions for linear 2-D systems are
well known. For the reason, we present simple examples which illustrate stability testing of
linear 2-D system using the presented results.

Example 1 Given 1st order linear time invariant 2-D system described by the following
equation

x(k + 1, t + 1) = 0.5x(k + 1, t) − 0.3x(k, t + 1)

It is easy to find that the system has an equilibrium state xe = 0. Testing stability of the
equilibrium state we choose candidate for the Lyapunov function ϕ(x, k, t) as follows

ϕ(x, k, t) = ϕ(x) = x2

Then, one finds

ϕ[x(k + 1, t + 1)] = x2(k + 1, t + 1) = [0.5x(k + 1, t) − 0.3x(k, t + 1)]2

= 0.25x2(k + 1, t) + 0.09x2(k, t + 1) − 0.3x(k + 1, t)x(k, t + 1)

Next, testing the stability condition (8) with ρ = 0.4 we have

�ϕ[x(k, t + 1), x(k + 1, t), k, t; ρ] = ϕ[x(k + 1, t + 1)]
−0.4ϕ[x(k, t + 1)] − 0.6ϕ[x(k + 1, t)]

= 0.25x2(k + 1, t) + 0.09x2(k, t + 1)

−0.3x(k + 1, t)x(k, t + 1)

−0.4x2(k, t + 1) − 0.6x2(k + 1, t)

= −0.35x2(k + 1, t) − 0.31x2(k, t + 1)

−0.3x(k + 1, t)x(k, t + 1)

Calculating the above function one finds that for x(k + 1, t)x(k, t + 1) ≥ 0 we have �ϕ

negative. Next, for x(k + 1, t)x(k, t + 1) < 0 such that 0 ≤ |x(k + 1, t)| ≤ |x(k, t + 1)| one
finds

�ϕ[x(k, t + 1), x(k + 1, t), k, t; ρ] ≤−0.35x2(k + 1, t)−0.31x2(k, t+1)+0.3x2(k, t+1)

= −0.35x2(k + 1, t) − 0.01x2(k, t + 1)
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and for 0 ≤ |x(k, t + 1)| ≤ |x(k + 1, t)| we obtain

�ϕ[x(k, t+1), x(k+1, t), k, t; ρ] ≤−0.35x2(k + 1, t)−0.31x2(k, t+1)+0.3x2(k + 1, t)

= −0.05x2(k + 1, t) − 0.31x2(k, t + 1)

Thus, we see that change of the function ϕ(x, k, t) along the trajectory is decreasing neg-
ative function and tends to 0 as k, t → ∞. This, according to Theorem 3, means that the
equilibrium state xe = 0 is asymptotically stable. Moreover, since it is satisfied for every x
the equilibrium state is asymptotically stable in the large.

Remarks

1. Let us note that the proper choice of the Lyapunov candidate function can significantly
improve stability test. For instance using the following function

ϕ(x, k, t) = ϕ(x) = |x |

one can analogously show that every 1st order system

x(k + 1, t + 1) = a10x(k + 1, t) + a01x(k, t + 1) (9)

such that |a10| + |a01| < 1,has asymptotically stable in the large equilibrium state xe =
0.

2. One can note that system (9) is unstable if a10, a01 > 0 and a10 + a01 > 1. Indeed, in
this case for x(k + 1, t) = x(k, t + 1) = x0 one has x(k + 1, t + 1) > x0.

Example 2 Given linear time-invariant 2-D Fornasini-Marchesini system

x(k + 1, t + 1) = A01x(k, t + 1) + A10x(k + 1, t)

where x ∈ Rn .
The equilibrium state of the system clearly is xe = 0. Checking stability of the equilibrium

state we choose the following positive definite function ϕ(x, k, t)

ϕ(x, k, t) = xT Px (10)

where PεRn×n is a symmetric positive definite matrix. Since the function is continuous
conditions (b) and (c) of Theorem 2 are satisfied according to remark 1 to Theorem 2.

Then, one has

ϕ[x(k + 1, t + 1)] = x(k + 1, t + 1)T Px(k + 1, t + 1)

= [A01x(k, t + 1) + A10x(k + 1, t)]T P[A01x(k, t + 1)

+A10x(k + 1, t)]

=
[

x(k, t + 1)

x(k + 1, t)

]T
[

AT
01 P A01 AT

01 P A10

AT
10 P A01 AT

10 P A10

][
x(k, t + 1)

x(k + 1, t)

]
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and

ρϕ[x(k, t + 1)] + (1 − ρ)ϕ[x(k + 1, t)] = ρxT (k, t + 1)Px(k, t + 1)

+(1 − ρ)xT (k + 1, t)Px(k + 1, t)

=
[

x(k, t + 1)

x(k + 1, t)

]T [
ρ P 0
0 (1 − ρ)P

]

×
[

x(k, t + 1)

x(k + 1, t)

]

Thus, we obtain

�ϕ(x, k, t; a, b) = ϕ[x(k + 1, t + 1)] − ρϕ[x(k, t + 1)] − (1 − ρ)ϕ[x(k + 1, t)]

=
[

x(k, t + 1)

x(k + 1, t)

]T

Q

[
x(k, t + 1)

x(k + 1, t)

]
(11)

where

Q =
[

AT
01 P A01 AT

01 P A10

AT
10 P A01 AT

10 P A10

]
−

[
ρP 0
0 (1 − ρ)P

]

Hence, the equilibrium state is asymptotically stable if the matrix Q is negative definite
since in this case the quadratic form (11) according to remark 3 to Theorem 3 has an upper
bound because it is continuous negative definite scalar function with maximum in x = 0.

Finally, since function ϕ(x, k, t) in (10) satisfies conditions (a), (b) and (c) of Theorem 2
for all x for ξ → ∞ as well since the change �ϕ(x, k, t) is negative definite for all x if
matrix Q is negative definite and condition (6) is satisfied then the equilibrium state xe is
asymptotically stable in the large.

Remark Matrix Qcan be negative definite only if matrices

Q11 = AT
01 P A01 − ρ P and Q22 = AT

10 P A10 − (1 − ρ)P

are negative definite. It is easy to see that the above condition can be satisfied only if ρ >

max
i

|λi |2 and (1 − ρ) > max
i

|μi |2 where λi and μι denote, respectively, eigenvalues of

matrices A01 and A10, i = 1, . . ., n. This means, however, that the stability condition can be
satisfied only if max

i
|λi |2 + max

i
|μi |2 < 1.

4 Concluding remarks

The stability notion for nonlinear parameter-varying digital 2-D systems was presented. Then,
stability conditions were formulated for nonlinear time-varying digital 2-D systems similar
to the Fornasini-Marchesini model. In particular, Example 2 gives simple sufficient stability
condition for 2-D system described by the linear time-invariant Fornasini-Marchesini model.

The 2-D Roesser model can be easily presented as the Fornasini-Marchesini one. Thus,
results obtained for stability of the Fornasini-Marchesini model can be also easily applied to
the system described by the Roesser model. Then, it is easy to find that the presented stability
conditions are neither simple consequence nor simple generalization of the results for the
Roesser model for instance given in Kurek (1995), they are similar but different. This is a
consequence of the fact that the conditions are only sufficient not necessary and sufficient.
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It is, however, well known that there can be a lot of different only sufficient or only necessary
stability conditions for the system.

The presented stability theorems are similar to the Lyapunov stability theorem for 1-D
discrete-time systems and can be considered as a generalization. However, the presented the-
orems are not a simple consequence of the Lyapunov theorem since BC sets for 2-D systems
are infinite dimensional, whereas they are finite dimensional for 1-D systems.

The presented results can be easily generalized on N-D systems.

Open Access This article is distributed under the terms of the Creative Commons Attribution License which
permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source
are credited.
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