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Abstract
We present a new detection method for color-based object detection, which can improve the
performance of learning procedures in terms of speed, accuracy, and efficiency, using spatial
inference, and algorithm. We applied the model to human skin detection from an image;
however, the method can also work for other machine learning tasks involving image pixels.
We propose (1) an improved RGB/HSL human skin color threshold to tackle darker human
skin color detection problem. (2), we also present a new rule-based fast algorithm (packed k-
dimensional tree— PKT) that depends on an improved spatial structure for human skin/face
detection from colored 2D images.We also implemented a novel packed quad-tree (PQT) to
speed up the quad-tree performance in terms of indexing.We compared the proposed system
to traditional pixel-by-pixel (PBP)/pixel-wise (PW) operation, and quadtree based proce-
dures. The results show that our proposed spatial structure performs better (with a very low
false hit rate, very high precision, and accuracy rate) than most state-of-the-art models.

Keywords Image processing . Skin detection . Information retrieval . Spatial dataModelling .

Interpolation . Classification . Pattern recognition . Tree data structure . Computer vision

1 Introduction

Humanly related tasks like; pornographic image filtering, personal identity, hand detection and
tracking, verifications video surveillance, face detection and tracking, image retrieval, human
pose modelling, naked people detection, and facial expression analysis, depend largely on skin
detection algorithms to perform optimally. Existing systems for human skin pattern
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classification/detection, suffer from certain major setbacks, including, individual pixel opera-
tion (otherwise known as pixel-by-pixel (PBP) or pixel-wise (PW) operation), high rate of
false hit and poor performance especially in terms of predicting darker complexioned skin.
These systems still pose challenging pattern recognition tasks for computer vision; thus, it has
attracted a great deal of research in recent years [17, 28, 54]. Skin detection methods utilize
color information from conventional color space. However, according to [8], there is a
substantial disparity in the accuracy of classifying darker skin colors against their lighter
counterparts, therefore, requiring urgent attention of commercial companies in building gen-
uinely fair, transparent, and accountable skin analysis algorithms. Skin detection algorithms
suggest the presence of human skin in a digital image. It is an important pre-processing step for
techniques like face detection and semantic filtering of web content. According to [2], every
color space contains an optimal skin detector scheme such that the performance of all the
schemes is the same.

In [36], the basic steps in skin detection include representation of image pixels in color
spaces, suitable distribution of skin and non-skin pixels, and skin colour modelling (which
uses an underlying skin color distribution characteristic on a colour space to detect skin colour
pixels quickly). However, human skin appearance in images is affected by various factors such
as illumination, background, camera characteristics, and ethnicity, as such, skin detection
using color information can be a challenging task [22, 28]. Numerous techniques exist in
the literature for skin detection using color, nonetheless, due to real-world conditions such as
illumination and viewing conditions, many of these studies are limited in performance. These
techniques according to [28, 53] are prone to false skin detection in most cases, therefore, they
are not able to cope with the variety of human skin colors across different ethnic groups. Thus,
in this paper, we have proposed a fast algorithm based on an improved, combined (HSL and
RGB) color model threshold value, for human skin detection from coloured 2D images using
our new packed k-dimensional tree (PKT). The accepted skin colour threshold value was
deduced from exhaustive experimentation for toning human skin color. The procedure in-
volves the normalization of the RGB/HSL color channels of several randomly selected colored
images. The final standardized RGB/HSL coordinate values, lead to the realization of the
adopted skin color threshold. Additional comprehensive channel toning was equally adopted
to facilitate enhancement on colour insensitivity due to luminance.

For the pixel-by-pixel (PBP) problem, common structures used for performance
enhancement is the quad-tree. However, the idea of repeated deep quad-tree-like
tedious partitioning seems to be cumbersome; and in some cases, the quad-trees have
been proven to have a poor shape analysis and poor performance on pattern recog-
nition due to their inability to compare two images with different translation or
rotation efficiently. So, we present the PKT to overcome most of the challenges in
these structures. The PKT algorithm starts by reducing the size of the image, thereby
achieving only about 60% of the image size. The data reduction pre-processing
technique only aims at increasing the speed of the application. The main purpose of
the proposed model is to eradicate the common state-of-the-art PBP/PW approach of
pixel classification, common in recognition procedures.

To the best of our knowledge, this is the first time a structure like PKT is developed. The
structure shows high prospect, in terms of speed, low rate of false hits, reduced computational
cost and complexity, high accuracy and precision rate. Going by to the performance compar-
ison of existing models in [28], our experiments show that the proposed algorithm is
characterized by a very high accuracy rate, precision, and efficiency (Table 4).

32808 Multimedia Tools and Applications (2021) 80:32807–32839



1.1 Description of color spaces (channels)

According to [2, 25, 38], the RGB (Red, Green, and Blue), HSV (Hue, Saturation, and Value),
HSL (Hue, Saturation, Lightness) and YCbCr (Luminance, Chrominance) color models are
some of the main parameters for identifying and recognizing a skin pixel. In [33], the HS color
hexagon was described as what picture windows use in their color picker to display the
brightest possible versions of all possible colors, based on their hue and saturation. This
justifies our decision to adopt the color model as a choice tool for skin color detection.
Additionally, the characterization of color range for skin detection is achieved by manipulating
the H channel of the HS color model [13]. From the RGB coordinates of the image, the values
for H, S, and L, are derived. The H channel of the HSL is applied to characterize the color
range for skin detection. The S channel defines the saturation of the H pigment. The L channel
normalizes the shade or saturation of both H and S.

We have used the PKT for the classification, prediction, and recognition of human skin
pixel in an image, however, we have shown that the model is robust and versatile and can be
useful in many other fields of machine learning procedures and pattern recognition including
clustering (for instance, clustering skin pixels on the face as a blob in face recognition, cell/
DNA clustering in biology for matching purpose, etc.), design of discovery systems (e.g. gene
pattern discovery and identification in bioinformatics, data mining and knowledge discovery,
etc.).

The major differences between the current study and existing models in terms of colour are

a. The adaptability of the hue channel to different ethnic skin colour shades; achieved
through significant range normalization between these color categories,

b. The speed up (Table 5) of segmentation and classification procedures using a spatial
model

c. Most importantly, our model achieved a high precision and accuracy (Table 4).

2 Related work

Human skin related recognition and identification technologies according to [49] have proven
to work less accurately on darker skin. One reason this may be so according to a study by [8],
is that skin type classification systems are overwhelmingly designed to favour lighter-skinned
subjects, with an error rate of up to 34.7%, leading to higher overall accuracy rates for
identifying men than that for women. Their study established that darker-skinned females
are the most misclassified group. Illumination, pose, noise and expressions, are the opposing
factors faced during face capture and analysis. According to [53, 55], these factors greatly
affect especially, the performance of facial recognition systems. Thus, among all biometric
systems, according to the authors, facial recognition has shown the highest false acceptance
and rejection rates. Several algorithms are proposed to solve this problem, notwithstanding,
they only manage to attain slightly acceptable results characterized by high false positives [28,
54]. This means that human skin related recognition systems need to develop better skin
detection algorithms to improve their performances. Besides, great attention has been paid to
real-time human detection in applications such as vehicle autonomous driving, video surveil-
lance and human activity understanding. However, despite a large body of work devoted to
human detection in the last decades, it is still an open problem [48].
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2.1 PBP (PW) operations

Most existing skin detection methods [4, 28, 51, 59], depend on building an n-dimensional
histogram for pixel classification. In most cases, two histograms are constructed at the start
with sample pixels, for training purposes. One histogram for skin-related pixels, the other for
non-skin related pixels. Using these two histograms, a classification rule such as Bayes (or any
other), is applied to each pixel of the test pixels or image to complete the detection process.

Many state-of-the-art techniques for human skin detection from images, depends wholly on
PW operation. However, the efficacy of the PW classification is limited [23]. The main
objective of PW skin color detection according to [57] is to build up a decision rule that
classifies each pixel as skin or non-skin individually. [23, 31] claimed that the performance of
skin detection algorithms has not been high in accuracy due to the high overlapped degree
between “skin” and “non-skin” pixels. As a solution, they applied a Bayesian classifier and
connected component algorithm to identify individual “true skin” pixels using the first
posterior probability threshold. Though this method helps to improve skin classification
performance, especially the false positive rate, it goes through the rigorous task of checking
all pixels individually, thereby not efficient for speed.

Several state-of-the-art methods for skin detection use single color region approach accord-
ing to [18]; in contrast to this, they applied genetic algorithms to determining optimal skin
color regions from a selected color space, which considers skin color as a union of multiple
smaller CbCr color regions rather than the aforementioned single color region counterpart.
However, even though they applied an optimization on the CbCr color model, which they used
in their work, the image pixels were as other systems tested individually. The work in [30], like
our proposed system, starts by reducing the size of the given image and then applies the RGB
and YCbCr colour models. However, it eventually ends up with processing individual
candidate pixels that are in the range of skin color, for detecting human skin. Like other
models presented so far [35] offered a similar method of individual pixel examination using
only the HSV color model but applied two different types of noise filters NOGIE (Noise
Object Global Image Enhancement) and NOWGIE (Noise Object with Global Image En-
hancement) for an improved result.

In [9], an adaptive neuro-fuzzy inference system (ANFIS) for skin/non-skin pixels detection
was proposed. [25] presented a new threshold based on a combination of RGB, HSV and
YCbCr values for skin/non-skin pixels detection. A modified likelihood ratio, in addition to
multi-scale, was used for classification in [40] for PBP skin pigment classification. Likewise,
by establishing some correlation rules between the chrominance components PCr and PCb of a
pixel P, [17] formulated two equations (PCr − PCb ≥ IP and |PCb − PCbs | ≤ JP) that must be
true before a single pixel (P) can be classified as skin or not. Note: IP =max between (PCr,
PCb) and JP =maxDistance between points ((PY, PCb), (PY, PCbs)), where PY = the pixel
value of P on the Y components of the YCbCr space, and PCbs is an estimated value of PCb.
[56] equally presented a system that uses a pixel-by-pixel operation for pixel classification.

In [23], a spatial based system for skin detection was presented. The system applies a
discriminative feature space as a domain for spatial analysis of skin pixels, based on textural
features extracted from skin colour probability maps. The texture is extracted in the form of
seed, taking advantage of the fact that real skin areas have pixels with a high-skin probability
threshold if an image is binarized. A distance function is applied for finding the shortest routes
from large blobs of the seed to every pixel. Eventually, pixels that are not close to any of the
seed blobs are rejected and then the skin regions are extracted. While this method seems
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promising due to its texture-based idea, the method does not involve actual space partitioning,
which is typical of hierarchical classification for efficient distance threshold queries, as such,
query performance is impaired due to bulky distance calculation between seeds and individual
pixels. Again, Pixel-wise (PW) classification was applied to hand detection procedure in [27],
to find a human hand on pixel-level from a video. [28, 54] also applied the PW classification
method for pixel matching purposes.

2.2 Tree-based solutions

Many tree-based systems have been proposed for the improvement of skin prediction proce-
dures. However, as discovered in this study, these systems are still faced with a high rate of
false hits. Therefore, the effectiveness of our model will contribute to improving time and
computational complexity in learning systems. [14], in addition to Deep Neural Network and
Naïve Bayesian models, presented a decision tree-based solution for skin detection that
overcomes the challenge of color range thresholding. By calculating the probability of each
pixel, their proposed equation is tested by PW technique before a pixel is classified using a
skin/no-skin decision tree. Their method performs reasonably. However, it still portrays the
shortcomings of most existing systems including inefficiency with time due to stages that are
involved in processing individual pixels, and inaccuracy in certain skin type prediction, as
stated by the author.

The quad-tree structure in [40] differs greatly from what we have presented here, such that
for each 32 × 32 sized neighborhood pixels, if a boundary is detected, the 32 × 32 neighbor-
hood is further divided into four sub-neighborhoods, and the modified likelihood ratio test is
performed on each of these sub-neighborhoods. The procedure is repeated recursively until a
decision is reached, or the window becomes so small that a significant decision cannot be
made. This method might be promising but the idea of repeated deep quadtree-like partitioning
seems to be cumbersome. The method proposed in [1] applied the Bayesian Rough Decision
Tree (BRDT) classifier to improve the accuracy of human skin detection. Quadtree classified
vector quantization (QCVQ) method was used in [11]. This method firstly partitions a
quadtree into its usual segmentation and then classified into smooth and high-detail
blocks. The authors claim that the scheme yields better retrieval performance com-
pared to the well-known vector quantization (VQ)-based image retrieval methods.
However, even though quad-trees are very good on images with large areas of a
single color, which eventually become compact, they have been proven to have a poor
shape analysis and poor performance on pattern recognition due to their inability to
compare two images with different translation or rotation efficiently, especially with
an image that has different colors for every pixel. [16, 24, 50, 58] discussed other
tree-based structures that are similar to decision trees or quad-trees.

2.3 Super-pixels

The Super-pixel (Sp) paradigm, introduced in [39] and presented in [19, 29, 32, 47], is a pre-
processing activity that divides an image into adjacent regions/clusters of pixels. In most Sp
based procedures, watershed image segmentation process is carried out on the image
before creating Sp(s). Constructing Sp(s) requires the application of a pre-defined
similarity measure that is based on perceptual features. The steps in creating Sp(s)
using the common SLIC algorithm, include:
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1. Create initial regions based on ¢ (the parameter that determines the number of Sp(s))
2. Group the regions to cluster pixels using a similarity criterion.
3. Modify the connection between regions.

Thus, based on ¢, the number of pixels in a Sp would be:

Y ¼
ffiffiffiffiffiffiffiffiffiffi
N�

&

q

Where N is the number of pixels in the input image, ¢ is the estimated number of super-pixels
(sub-regions) constructed, and Y is the number of pixels in each Sp(s). The above equation is
different from the concept of PKT. After constructing the Sp(s), the sums of the probabilities of
their (training set images) pixels are computed; these sums are compared to the probability
map of an input image and the Sp(s) of the input image with lower sums are returned as the
predicted cells/values. The procedure described above is totally different from the procedure of
the PKT. Unlike the supervised/semi-supervised construction process (using an initial human
marked image segmentation) of the Sp-based systems, PKT is fully automatic and unsuper-
vised. It does not require hand annotated images, training sets, initial estimated regional
clusters, or an input parameter (like ¢). Rather than find Y, PKT computes Δ as in the equation
below (see ALGORITHM 1 for details).

Δ ¼ DLð Þ=μð Þed e

In the above equation, Δ is compared to ¢, DL to N, and Y to μ. However, while ¢ is estimated
in Sp(s), Δis automatically computed in PKT based on the number of dimensions of the image
or the number of principal attributes of the data table (for non-spatial data). PKT is a
multidimensional structure and can apply to higher dimensional space or high dimensional
datasets. Moreover, the projected number of regions of Sp(s) based on ¢, can lead to over-
segmentation [19], whereas the number of PKT sub-regions Δ is optimally computed based on
the fixed determinant value (μ = 25). In addition, setting an initial position for Sp regions using
constant distance increments, presents the challenge of possibly placing these positions
(centres) at an image border and thus, Sp might fail to obtain a good segmentation [29]. This
is not the case with PKT. PKT cells (regions) are generated automatically and instantly through
a recursive partitioning strategy. Furthermore, only 5 strategic pixels are selected from each
PKT sub-region, as against computing the sum of the probabilities of pixels of Sp’s sub-
regions. Finally, the use of predefined determinants μ to automatically detect the optimal
number of PKT sub-regions, reduces the time taken to find the skin colour pigments, by
eliminating the daunting search for ¢.

In fact, all the methods presented above are quite different from our proposed system. One
thing that is common amongst some of the above methods and approaches is, PBP examina-
tion to develop a classification rule. Even with tree-based enhancement, there are still some
required adjustments if performance is of interest. For example, the decision tree is only an
analytical, decision or visualization support tool and might not be proficient for multidimen-
sional or spatial analysis. The quad-tree as we have mentioned is not balanced and therefore
not very efficient during computation. Moreover, an image that has different colours for every
pixel, will involve very tedious partitioning, thereby losing effect. Additionally, the four
children constraint, and constant partitioning in quad-trees limit the proper utilization of the
leaf nodes of the quadtree. Besides, [51] reiterated that in neural network methods, the training
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stage may take a long time if the number of training patterns is very large. In addition, even
though we have stated that most spatial-based models for skin segmentation use the Bayesian
classifier (BC), BC methods alone according to [28] are not efficient because they do not have
the capability of detecting skin pixels without false alarms. Thus, to overcome the above
limitations and challenges, including the complications associated with quadtree-like structures
and to reduce the use of PBP/PW methodologies, we present the PKT and PQT.

3 Proposed system (PKT)

Our proposed tree structure is an integration of the methods described in [42, 43, 45, 46]. In
these materials, various related spatial indexing and modelling mechanisms including a
description of improvement strategies for spatial structures and techniques were presented.
Nevertheless, this current work is an aggregate classic study that produces an efficient
technique for spatial modelling, which we have applied in this paper to predicting human
skin related pixels.

The basic concept/idea behind our technique is the fact that skin pixels are hardly
isolated. That is, once a skin pigment is encountered at a certain position/location, there
is a high probability that the neighbouring pixels are equally skin. As such, selecting a
tiny fraction of the pixels, in that bounded area, will most probably guarantee the
satisfaction of the skin/no-skin classification condition. Therefore, we build an effective
k-dimensional tree structure, for partitioning and indexing the pixels in an input image
into sub-groups. After the partitioning, we interpolate (by inverse distance weighting -
IDW) through the leaf nodes using only a very few sample pixels (r out of Ω 0,
where Ω0 is the total pixels in the leaf node) from the leaf node. Finally, only the leaf
nodes where all r pixels satisfy the skin/no-skin criteria (i.e., Eq. 6 evaluates to T for
those pixels) are returned.

Notice the high rate of false hit on the other methods with combined colours in Figs. 7b and
7c. Most parts of the skin area in some images were not captured. In some other images, non-
skin areas were captured as skin. Our suggestion in Fig. 8 shows an improvement to
these problems and this improvement contributes to the high precision and accuracy
of our spatial model.

3.1 Method description (spatial modelling)

The segmentation procedure in Section 3.4, for predicting skin and non-skin pixels in
an input image based on the defined color threshold, is normally performed (in the
most state-of-the-art systems) by testing individual pixels (PBP or PW operations).
However, this process is very slow with a significant degree of false hits (Table 2),
but it can speed up and perform better if enhanced by a k-dimensional data structure
like PKT that is efficient for detecting patterns from colored k-dimensional images.

The model largely depends on an arbitrary value μ, which determines its perfor-
mance. With an exhaustive experiment, μ = 25 was established as the most fitting
value for any image type and size, although this depends on the underlying task. For
dimension k = 2, and an image of size = DL, given that Δ = ((DL)/μ) 1/k, the number
of pixels to be processed reduces from DL to ð, where ð = r x Δ x Δ, r = 5/Ω0, Δ =
numbers of partitions in each dimension, and Ω 0 is the number of data elements
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(pixels) on each leaf node (Ln) of the proposed tree. This means that; for an image of
size 3000 pixels, rather than processing the entire pixel elements, only 605-pixels are
processed yet an efficient outcome is achieved.

3.1.1 Spatial analysis

Elucidation Given a set of P points/pixels in a 2-dimensional (ℝ2) space of an N x N image
(raster), each point pj, j = 1, 2, …, P, pj occupies a single location (∂j) as shown in Fig. 1a —
the grid of P pixels.

Thus, in k = 2 dimension, we define a spatial operation for the image of the form:

A ¼ f ∂1; ∂2…::∂NxNð Þ for ∂ j∈ℝk; j ¼ 1; 2;…;N x N ð1Þ

Eq. 1 depicts a region of local spatial features (A) for the input image, that is to say, A is a
function of a k-dimensional region of dispersed elements (∂). This means that ∂j is the location
of a group of features for the jth pixel. In this case, ∂j is the X, Y position/location of pixel
pj (pjx, pjy), on the N x N image raster. Therefore, A can be represented as an N x N matrix as
in Eq. 2.

A0 ¼ ∂1 x1; y1ð Þ; ∂2 x2; y2ð Þ…∂Nx N xN xN; yN x Nð Þ½ � ð2Þ

Thus, in Eq. 3, we create a row/column vector representation of the image as in Fig. 1b,
without explicitly reflecting the xy tuple.
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A′′ ¼ ∂1; ∂2…::∂N x N½ � ð3Þ

3.2 PKT

Building the PKT generally starts with compressing the size of the image to only 60%
of the actual size. This pre-processing technique increases the speed of the applica-
tion. Similar to the KD-tree [26, 41] where the space and dimension of the dataset
are considered in terms of partitioning, which is carried out on each dimension in an
iterative manner, the PKT partitioning considers space and dimensions too; however,
it employs a recursive partitioning strategy i.e., partitioning on one dimension is
recursively completed before moving to the next.

The PKT (typical structure Fig. 2) performs the partitioning of a k-dimensional
space (see output of the tree is in Fig. 5). Building a static PKT from P points/pixels
has the average time complexity of O (log n), the case is the same with PKT skin
detection operation. After the size reduction, The PKt starts the partitioning procedure

(a)                                       (b)

(c)

Fig. 1 Sample input image, (a) showing pixel locations (b) vectorized form of the input image pixel locations (c)
a block diagram of our skin detection procedure
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in ALGORITHM 1. The partitioning is simply an array sub-division procedure for
spatial data, where the dimension of the array is determined by the underlying space
that is holding the image. For non-spatial datasets, the computation for Δ in ALGO-
RITHM 1 will vary, such that μ might be the number of attributes/columns, or it
might be the number of attributes divided by an undetermined arbitrary value (to
avoid only one item per leaf node). Everything else remains the same. For now, we
are concentrating on spatial datasets.

The tree does not go deeper than a maximum depth of two (2), for 2 dimensional, and
depth of 3, for 3-dimensional spaces, respectively. This means that the partitioning will
always end up with an axis-aligned bounding box of the leaf. Fig. 2 shows the root node
as a forest of internal subtrees; each internal node is equally a forest of sub-nodes. These
sub-nodes could be leaf nodes (Ln) containing the image pixels if the partitioning
procedure has reached the last dimension. Note: if the size of the pixel array (DL) =
P = N x N is not even, the last leaf node will be extended to a super-node. The idea of a
super-node does not affect the performance of the PKT, because in terms of pixel
classification, the mid pixel in the bounding box, is assumed to carry the most classifi-
cation weight (Eq. 10).

For static datasets, the tree employs a recursive top-down partitioning strategy,
such that, partitioning only takes place if the number of elements in the dataset
(DL) ≥ a certain value (Δ). All sub nodes are stored in the root as internal node and
then further partitioning of internal nodes occurs only if the number of elements in
partition j (Δubscript>j) is greater than the value of Δ (ALGORITHM 1).

For a dynamic dataset, the above procedure will start from the leaf, in the sense that a total
ofΩ0 number of pixels are recursively stored on each leaf, and a total of Δ leaf nodes are stored
on the upper (internal) node until the root is reached.

The output of the tree after the partitioning is shown in Fig. 5 with different values
of μ (see Fig. 5e). The μ, is the determinant of tree behavior and performance. μ

Fig. 2 Typical PKT in two (2) dimensions
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stands for the expected number of items in the leave node (Ln), increasing the value
means more items in the leave node, while decreasing the value means otherwise.
Any of these actions will affect the tree significantly. After several repeated, exhaus-
tive experimentation, we have chosen 25 as the most efficient value for μ that
behaves perfectly for all image sizes.

⇒ Ω0≅μ

In ALGORITHM 1, we perform (by sorting A′′ on all the dimensions) the partitioning of A′′

(a row/column vector of the image pixels, with length DL, derived in Eq. 3), into
predetermined sub-regions using the proposed partitioning strategy. After the partitioning,
each array A′′

jk containing a total of ¥k elements, is further divided by Δ until the last dimension
is reached, and a certain condition is met. Ultimately, each cell in the grid (with Ω0 elements,
bounded by an axis aligned bounding box denoted as (ℤjk = k1) forms the leaf node (Ln) of the
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PKT and a group of Ln forms an internal node ℤk.

ALGORITHM 1. (a) describes the construction of the PQT (Fig. 14c), which is an
improved quad-tree. Similar to the conventional quad tree, PQT continues partitioning until
a certain condition is met. However, with PQT, the value of the partitioning parameter is pre-
set by automatically computing Δ.

After extracting the pixels of an input image into array A ′ ′, partitioning begins if the length
of A ′ ′ is greater than Δ, this means that partitioning will terminate if:

A
0 0 � 4≤Δ

The depth of the PQT is given as:

dep≅
log2

DL
�
Δ

� �
2

& ’

and the number of children in each of the leave node of PQT is approximately:
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Ω0≅DL
�
4dep

The PQT is a highly balanced tree as all the leave nodes will always reside on the same level/
depth.

Note, with the above equations, PQT will easily adapt to various tasks as the parameters
that determines the structure can easily be adjusted to suit the task at hand. The depth of the
tree and the number of children to reside in each leave node can be established a priori.

Next, we find R (ALGORITHM 2). R is an array of qualifying pixels selected by spatial
interpolation from Ω0 elements using the inverse distance weighting (IDW) function in
Section 3.3. In this program, only the elements in R will be processed during the classification
stage.

Note that the length of R is constant for any size of A ′ ′.

3.2.1 Selecting r pixels

r pixels are selected from each leaf node (ℤjk = k1) of to form a single R (ALGORITHM 2),
such that they match the pixels depicted in Fig. 4c and 4d, where:

r1 pixel at (top left of the bounding box of ℤjk = k1).
r2 pixel at (top right of the bounding box of ℤjk = k1),
r3 pixel at (bottom left of bounding box ℤjk = k1)
r4 pixel at (bottom right of the bounding box of ℤjk = k1),
r5 pixel at (middle of the bounding box of ℤjk = k1)

After computing R, next we find the value of ð (the total expected significant pixels in an
image for efficient skin/no-skin classification).

It has been established that Ω 0 = total pixels in each leaf node (ℤjk = k1), r = size of array
R→ 5 (selected significant pixel in a cell), DL is the size of the input array of image pixels.
Thus, in 2-dimension, the total pixels in the image to be processed should normally be:
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DL ¼ Ω0 xΔxΔ ð4Þ
However, since we have selected only 5 pixels/elements out of Ω 0, the new total pixels in the
image to be processed would be

ð5Þ

It is evident from Eqs. 4 and Eq. 5, that the total number of potential candidate pixels (ð) is
lesser than DL.

Note: ð in Eq. 5 can vary greatly, depending on the size of A ′ ′. However, r and Ω 0

(typically ≅ 24 Eq. 8) are constant. r is not arbitrary, as we have chosen only 5 strategically
positioned pixels from each cell/leaf node). Note also that the number of occurrences of Δ in
ALGORITHM 1, will directly depend on the number of dimensions of the space holding the
input image or number of principal components, for non-spatial datasets. Therefore, for a k
dimensional space, we would have

Δ x Δ x……x Δk as the total number of leaf nodes in PKT:

Below, we show that Eq. 5 will greatly reduce the size of the computation in terms of
predicting pixels that correspond to human skin. i.e., for our example image of size DL (length
of A ′ ′), where DL = 3000 in 2-dimensions, we will have:

The above enhancement indicates that rather than matching all 3000 available pixels in A ′ ′,
against the skin color threshold in Table 1 to find human skin, only compare 605 pixels are
compared, reducing the number of computations to only 20% of the actual total.

3.3 Interpolation process

For pixel matching purposes, the skin segmentation program should normally test a
total of DL elements/pixels (Eq. 4). However, this will make the segmentation/
classification process highly inefficient and impractical. Therefore, we find R (from
ALGORITHM 2) to reduce the computation from DL to ð (Eq. 5). Hence, the
interpolation procedure below is adopted to classify the pixels into skin or non-skin
pixels, using only a total of ð pixels.

Consider the P pixels and the locations in A ′ ′ as a set of S spatial events {p1, p2 …}, as
illustrated in Eq. 3. LetЊ be some color threshold as we defined in Table 1, for classifying pj,

Table 1 Skin color threshold comparison

Others Our model

HSV: (0.0<= H<= 50.0 && 0.23<= S<= 0.68). HSL: H>=10.0 && H<=30.0 &&
S>=0.20 && L1>=0.10)

RGB: (R>95 && G>40 && B>20
&& R>G && R>B && | R - G |>15 && A>15).

RGB: (R>50 && G<220 && B!=60 &&
B<200 && R>G&& R>B && | (R - G) |>20)
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as skin/no-skin i.e.:

If the function evaluates to T, it implies that pj is skin and non-skin otherwise.

Proposition If Њ in Eq. 6 is accurate, only ð pixels instead of DL is significant for the
prediction in Eq. 10 and Eq. 11 to hold, with an accurate, precise, and fast result.

Proof 1 Let the instances of S be each pj located on a single location (∂j) on the grid of P
pixels. This means that for the array of pixels (A ′ ′), since there is a discrete hybrid partition
(i.e., PKT) of A ′ ′ based on spatial proximity between locations, ∂j, j = 1, 2, …., DL, a spatial
inferential rule (as in Eq. 7) can be discovered faster and more efficiently.

Following Proof 1, we can now say that with μ =25, k =2, the total pj (for any subset pj⊆P),
in each leaf node of PKT (ALGORITHM 1) is:

C≅ DL=Δ=Δb c
Where Δ≅ DL=μ

�� �1=k

� 	
ALGORITHM 1ð Þ ð7Þ

Eq. 7 means that following the analysis in Proof 1, for any object or image, in k-dimensional
space, there will always be only approximately C (computed in Eq. 8) data elements (pixels in
the case of images) in the leaf node of PKT.

For example, let DL = 3000, k = 2

¼> ceil 3000
�
25

� �1=2
¼ 11

¼> floor 3000=11=11ð Þ≅24
□C ¼ Ω 0≅24 number of pixels=points in leave node for all input sizesð Þ

ð8Þ

Eq. 8 is affected significantly by the value of μ. Notice that if μ is 100, Eq. 8 will become
≅102, this means there are approximately 102 items in the leave node. Having such huge
number of elements in the leave node might lead to an inefficient model due to oversized sub-
region. Similarly, having less than 24 elements in the leave node might equally lead to
inefficiency.

Proof 2 Spatial autocorrelation measures the similarity between samples of a given popula-
tion, as a function of spatial distance [6, 7, 44]. Figure 3 is a plot showing the relationship
between sample skin pixels from the input image (Fig. 5). Fig. 3a shows how these pixels (pj),
are highly correlated with a correlation coefficient r = 0.9181. The figure also shows that the
pixels are densely clustered. Figure 3b shows the degree of normality in pixel distribution,
within the sample image.

Thus, with the assumption that the skin pixels are highly correlated and are located within
near-zero proximity with their neighbours, we define q –the measure of the spatial distance
(SP) between locations ∂j– as any spatial construct:

(6)
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q ¼ q∶q∈SPf g;Thus q ¼ 0; if SP
0

p j

� �
;

≥1; otherwise

(
ð9Þ

SP′ signifies a very close proximity (within a bounding box) between pj in P.
□ ∀ pj, in Proof 1, since spatial autocorrelation occurs due to correlation of a variable with

itself through space [10], we assume q = 0 in Eq. 9. That is, ∀pj : pj ∈ P, ∀pr : pr ∈ P,
observations made from pr include information present in pj. Therefore, it is rational that the
sample size, r, be less than the total number of observations Ω 0 in each Ln bounding box/cell.

We, therefore, select only r sample pixels (described in ALGORITHM 2) on strategic
locations from each Ln cell (Fig. 4), as the five significant sample points for interpolation and
then move on to the interpolation procedure in Section 3.3.1.

3.3.1 Prediction by interpolation using IDW

In this section, we describe how we predicted 24 points (pixels) from only 5 points (pixels).
Now, since all the Ω0 elements in the Ln cell are highly correlated pixels, and since the cell is

(a)  (b)
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Fig. 3 Sample skin pixels from the input image in Fig. 5 (a) shows relationships between image pixels, with a
correlation coefficient r = 0.9181 (b) The degree of normality in pixel distribution

Unknown 
values

Fig. 4 Interpolation procedure (a) underlying idea of predicting new unknown cell values from known ones
based on known sample points, (b) Expanded cells showing skin and non-skin pixel (in their bounding boxes) as
classified by PKT cropped from Fig. 11f, (c) Expanded single cell from skin area from (b-ii), (d) Expanded single
cell from the non-skin area from (b-i)
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very small (Fig. 5e), there is a high probability following proof 2, that if the mid pj in the cell
(pjM) passes the threshold test in Eq. 10, then every other pj in the cell will pass i.e.

Interpolation as depicted in Fig. 4a, is a way of predicting values in a cell from a limited
number of sample data points. The diagram in Fig. 4, depicts the prediction procedure, the
white points in Figs. 4c and 4d are arbitrary unknown pixel values. The blue point at the
middle pjM is a known sample point, which carries the largest classification weight (w
= d(pr, pj)2), where d = distance between known pixel pr and unknown pixel pj as in Eq. 12.

We already showed that q = 0 in Eq. (12). That means the distance between pjM and all pj in
R (ALGORITHM 2) = 0. Therefore, to find the value of pj ∉R, for each Ln cell, we interpolate
(Eq. 12) through locations ∂j to test the color channels of pj against the threshold Њ based on
the known points/pixels in R i.e.:

So, let pr be pj∈ R, and Њ(pr) be their threshold value, let d be the distance between pr and
unknown pj thus from Eq. 12, we find a discrete assignment of pj in each cell using inverse
distance weighting (IDW) with a power of 2:

Following the evaluation in Eq. 12, the threshold values of all pj in each cell are projected such
that:

Thus, all cells that meet the criterion in Eq. 13 are returned as skin cells (ALGORITHM 3).
Based on this proposition, the calculation in Eq. 4, reduces to the calculation in Eq. 5
warranting up to 80% less work and time.

Fig. 5 Output of the PKT on different values of μ (a) the original image (b, c, d, and e) outcome of the partition
based on different values of μ. (b) = > μ =20. (c) = > μ =40. (d) = >μ =100. (e) = > μ =25

(10)

(11)

(12)

(13)
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Note, combining the interpolation processes with a fast, spatial search structure like PKT,
achieves an efficient log N interpolation performance, which is highly suitable for large-scale
problems.

It is evident from Eq. 13 that for an image or object of any size in 2 dimensions, only r = 5 x
Δ x Δ, rather than Ω 0 x Δ x Δ of the data elements/pixels, would be tested for matching
purposes.

If we convert the calculation in Eq. 14 (Q), into a percentage using our example image of
size 3000, that is, we find the ratio of the number of operations to the size of the input size and
multiply by 100, then

Q ¼ the number of operations

Size of the input

⇒Q ¼ 605=3000ð Þ � 100
�
≅20%:

ð14Þ

Thus, we conclude that the percentage of pixels/points needed to detect human skin or match/
classify patterns from any image is

3.4 Finding the human skin pixel

We have described our interpolation procedure, using IDW in Section 3.3. Now, let
us look at how the PKT carries out the classification/segmentation process (using our
proposed HSL and RGB color models in Table 1), for identifying human skin
presence in an image.

Initially, the program starts by extracting all the pixels from the image and then store them
in a k-1 dimensional array (as described in Section 3). Next, the array is partitioned to produce
the leave node Ln following the procedure in ALGORITHM 1.

The process of mining patterns from images can generally be enhanced, by
adopting a k-dimensional data structure like PKT, which is efficient for detecting
patterns from coloured k-dimensional images. ALGORITHM 3, highlights the steps
involved in this operation.

From each Ln (the tiny rectangles/cells in Fig. 5e), containing Ω0 pixels, only r
pixels elements belonging to R, are selected strategically. The RGB values of each r
pixel (pr) in the array are converted to HSL values. All unknown pr in each cell are
compared recursively to match the skin/no-skins threshold in Table 1, eventual, only
Ln where all pr meet the colour matching criteria are returned.
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4 Results/discussion

4.1 Experiment

PKT experiment was implemented from scratch in JavaScript and ran on a machine with
Intel® Core™ i5-5200U CPU @ 2.20GHz 2.20 GHz, 8 GB RAM, with Windows 10. All
PKT modules/functions (ALGORITHM 1–3 etc.), sub-functions (e.g., bounding boxes,
selecting r, etc.) and helper functions (e.g., color channel conversion and matching procedures,
sort, sum, distance etc.) were custom-built de novo in JavaScript and visualised using Html
tags ran on Python’s HTTP local host server.

4.2 Datasets

We conducted the experiments using real-world datasets, synthetic datasets, and image
segmentation datasets (all two-dimensional). The ColorFERET dataset [34] (Fig. 12b),
Pratheepan human skin dataset [52] (Fig. 12a), and various other images of diverse complex-
ion, pose, orientation, age, variation of illumination and sex, selected from the internet
(Fig. 12c). The results of applying our algorithm to these datasets is shown on Figs. 12 and 13.
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4.3 Elucidation

The proposed improved skin colour threshold in Table 1 and the multidimensional spatial
structure (PKT) are applied in this work for effectively detecting human skin from an image.
Below we have presented the results of the model. The results show that the structure is very
versatile as it is promising, showing tendencies of greater prospects (Table 4).

By performing a few geometric operations on the reverse aspect of the model (Fig. 6), some
facial features including the face, nose, eyes mouth and so on, can be detected. In Fig. 6, the
non-skin areas have been marked with red points by PKT. Using some simple distance
metrics, the head and neck could be extracted. Additionally, working out the position of facial
features can help find the nose, mouth, and eyes, but this will be looked at in a later version.

4.4 Comparison between common color thresholds for human skin classification
and ours

[12] Described several color thresholds for modeling skin colors. However, researchers
including [3, 5, 21, 25, 37], adopted similar RGB/HS color models for human skin identifi-
cation and possible recognition. These models fall within a given threshold for all skin color
types (Table 1)

Our study is disputing the human skin color threshold premise and assumption made by
authors [3, 5, 21, 25, 37], as it falls short of reality for certain human skin color codes. Three
main colors (Red, Pink, Brown) pose the most problem in the human skin color threshold
setting. Of course, this is because they are very close in shades to the red color underlying the
human skin [20]. After an exhaustive toning on both the HSL and RGB color models, to
enhance insensitivity to luminance, we came up with a more efficient threshold (Table 1) to
tackle darker skin color problems mentioned earlier in Section 2 (Figs. 7 and 8).

It was noted, however, that these color models do not perform efficiently when applied
discretely. That is, there is always a high degree of false hit. Hence, we tested a combination of
both, and the results are found in Fig. 9 (for suggestions from others), and Fig. 10 (for our
suggestion). The improved colour threshold we suggested in Table 1 is efficient especially as
an improvement for darker skin prediction. Evidence of this is shown is equally shown in Figs.
9 and 10.

Figure 11 shows the various stages of the procedures of the PKT. The ground truth image
Fig. 11a, original image Fig. 11b and the result of various stages of the skin detecting process
using different values of μ. Figure 11f is our final result (with μ = 25). The red points on the
face are midpoints of the bounding boxes on each leaf node ℤjk = k1 where Eq. 6 evaluates to T.

Fig. 6 a Is the reverse aspect of
our test image; non-skin areas are
shaded b cropped portion of the
image isolating facial features
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Figure 11g shows only the points representing the skin area. As we can see, the μ affects the
performance and behavior of the tree. In Fig. 11c, where μ=500, some parts of skin pigments were
not detected, thiswill give rise to a high rate of false hits. Even thoughFig. 11d –whereμ=100 – looks
promising, there is still a tendency of some measure of false-negative hit. Figure 11e shows the
outcome of Fig. 11d without displaying the tree. At μ=25 in Fig. 11f, a perfect result was achieved.
Figure 11h shows how the PKT was used to smooth out the result of the image in Fig. 10c.

In Fig. 12, we show the result of applying the PKT algorithm to find human skin of varying
types, complexion, illumination, shade, pose, position, etc. The images in Fig. 13 are skin
pigments, detected using the same technique. However, the tree boundaries are not displayed.

4.5 Evaluation

In order to evaluate the performance of the tree structure against the commonly used methods
(PBP/ PW operations and quad-tree like structures) adopted by many authors, we have

Fig. 7 a Original image b and c shows common HSL, RGB color model as adopted in [3, 5, 21, 25, 37]. (b)
RGB (R > 95 and G > 40 and B > 20 and R >G and R >B and | R - G | > 15 and A > 15). (c) HS > > 0.0 < = H
< = 50.0 and 0.23 < = S < = 0.68

32827Multimedia Tools and Applications (2021) 80:32807–32839



compared the tree performance with these techniques. Figure 14, shows the performance of the
various models. In Fig. 14a, we have the ground truth image, Fig. 14 (a-i) shows the skin area
and Fig. 14 (a-ii) highlights non-skin areas as identified by the PW technique. No enhancement
was applied, thus each pixel was checked individually based on our purported color threshold
for skin pixel classification in Section 3.1.

In Fig. 14b, we show the same image with the skin area mapped out with the PKT. In
Fig. 14 (b-i) the tree boundaries are not displayed and in Fig. 14 (b-ii), the reverse effect of the
tree was depicted, showing non-skin areas as identified by the tree.

Figure 14c is the result of applying the PQT to the skin prediction procedure based on our
improved color threshold in Section 3.1. Skin areas mapped out with the PQT is shown in
Fig. 14 (c-i) without displaying the boundaries. In Fig. 14 (c-ii), the reverse effect of the PQT
was depicted, showing non-skin areas as identified by the tree.

Fig. 8 (a) and (b) our suggested color models, (a) HSL (H > =10.0 && H < =30.0 && S > =0.20 &&
L1> =0.10), (b) RGB (R > 50 && G< 220 && B! = 60 && B < 200 && R>G&& R>B && | (R - G) | > 20)

Fig. 9 RGB+HSL shows the result of the combination of HSL, RGB color models (other methods)
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4.6 Performance graph

A plot of time performance for the various structures is shown in Fig. 15. In Fig. 15a, a
comparison of time of construction between the PKTand the PQT is shown. Needless to say
that the quad-tree deep quad partitioning strategies have a negative effect on the speed
performance of the structure. Though the quad structure performs fairly in terms of classifi-
cation (Fig. 14c), a little improvement might be necessary to speed up the system. As can be
seen, the worst performance in terms of time consumption for pixel classification is the PBP
technique, followed by the PQT method (Fig. 15b). This means that even though there is no
structure to build in the PBP method, the method can not improve beyond a time complexity of
O(n). Note, the timing here includes the pixel extraction time, array manipulation, tree
partitioning, and pixel classification. These comparisons are also shown in Table 5.

4.7 Precision, recall and accuracy

To evaluate the accuracy and precision of our proposed model, we have prepared Tables 2, 3
and 4 for different pixel sizes. The tables show the accuracy, recall and precision rate of these
three methods in terms of pixel classification and skin segmentation. The accuracy, recall and
precision calculation for proper evaluation of our skin/no-skin pixel classification model, were
based on the formula in [15]. The higher precision and accuracy rate have been achieved by
PKT because of the large IDW weight value attached to the midpoint pixel (pjM) of the leaf
bounding boxes, such thatЊ(pjM) must evaluate to T (Eq. 10) for any other unknown pixel pj
to be a valid skin pixel. Even though the PQT method employs a similar restriction strategy,
the four-child partitioning technique is bound to limit the restriction, by partitioning a cell with

Fig. 10 RGB+HSL shows the result of the combination of HSL, RGB color models (our suggestion)

Fig. 11 The skin detection procedure completed with the proposed tree structure (a) ground truth image. (b) the
original image. (c) Output showing skin area, when μ = 500. (d) Output when μ = 100. (e) Midpoints of leaf
bounding boxes (that match our skin threshold value (ALGORITHM 3) shown as red points. (f) The expected
and final result of the skin detection process. Extracted skin areas marked as red points. (g) Points representing
skin area, extracted from an image using PKT (h) PKT smoothed image of in Fig. 10c
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(a) Pratheepan images

(b) ColorFERET images

(c) Internet images

Fig. 12 Other images, showing detected skin using our proposed model. a Pratheepan images, b ColorFERET
images, c Internet images
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Fig. 13 More images tested (tree not displayed)

PBP

 (a) 

PKT

(b) 

PQT

 (c) 

(b-i) (b-ii)

(c-i) (c-ii)

(a-i) (a-ii)

Fig. 14 Comparison of performance between the three methods of study, using an image from Pratheepan
dataset (a) the ground truth image, (a-i) PBP predicted skin pixels (in red), (a-ii) reverse process of PBP,
showing non-skin pixels in red, (b) result and performance measure of PKT(proposed model) skin identification
procedure, (b-i) extracted skin area in red (red points represents the midpoint of the leaf node (Ln) in the region),
(b-ii) reverse process showing non-skin area, (c) result and performance measure of the PQT skin identification
procedure, (c-i)) extracted skin area in black points, (c-ii) reverse process showing the non-skin area

32831Multimedia Tools and Applications (2021) 80:32807–32839



very close neighbors into two different cells of dissimilar subsets. PBP based systems do not
have such constraint as such, the system selects every area of the image where there seems to
be a trace of the defined colour threshold (Њ).
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5 Conclusion and future works

PBP operations for human skin detection or skin pixel classification is sometimes character-
ized by a high rate of false hits, and increased time consumption. In this paper, we have
presented an improved color threshold-based algorithm for recognizing and classifying human
skin pixels in an image using the combination of RGB-HSL color models. To speed up the
process and improve performance, we have proposed and implemented a k-dimensional
structure for the classification procedure. Our proposed model shows very high promising
results in terms of precision, recall and accuracy as compared to most state-of-the-art systems.

Images from different sources were tested, and the model scaled high. From the results
presented in Tables 2, 3 and 4 (the overall performance of the algorithm), it can be seen that the
proposed model provides a very significant reduction in false detection rates as compared to
the PBP testing mechanism and quad-tree like techniques applied in many systems. Quad-trees
have been in use for speeding up of the detection process however, we proposed and
implemented PQT, an improved quadtree structure to which we compared our main model
PKT (Table 5).

Although there is a significant improvement as compared to the PBP techniques in terms of
speed and accuracy, the quad-tree structure showed certain drawbacks in terms of speed of
construction and speed of classification of pixels, which can be attributed to the structures’
partitioning strategy. We can boldly say that the proposed approach yields better detection
performance compared to that of the state-of-the-art PBP and the quad-tree based techniques
with a significant reduction in time and computational cost.

We have equally shown that with little geometry, the algorithm can detect a face, hand, and
other features and gestures. For future work, an improved PKT is currently being investigated,
which performs a second level filtering of the PKT cells (sub-regions) to produce a (skin) patch
rather than skin pixels. This second PKT variants (which will include an edge detection
procedure), will apply more smoothly to generalised object detection, segmentation, and
recognition. We shall equally investigate parallelizing the structure to further improve its
speed and efficiency in terms of general pattern mining. We are also investigating the
implementation of PKT and PQT for higher dimensional spaces, and for clustering non-
spatial datasets.

Finally, we claim that using these structures (PKT, PQT), only ≅20% of the pixels in an
image are required to classify the pixels in a skin detection procedure.

Table 5 Run-time of the different number of pixels

Number of pixels PKT
time (s)

PQT
time (s)

PBP
time (s)

50,000 0.473 0.803 1.173
137,460 1.309 1.597 2.000
260,820 2.847 3.555 3.602
71,148 0.645 0.965 1.346
120,000 1.030 1.372 1.484
196,608 1.519 2.037 2.050
55,920 0.616 0.880 0.870
118,272 1.073 1.755 2.048
194,400 1.686 2.566 2.300
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