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Abstract The increase of HTTP-based video popularity causes that broadband and Inter-
net service providers’ links transmit mainly multimedia content. Network planning, traffic
engineering or congestion control requires an understanding of the statistical properties of
network traffic; therefore, it is desirable to investigate the characteristic of traffic traces
generated by systems which employ adaptive bit-rate streaming. Our first contribution is
an investigation of traffic originating from 120 client-server pairs, situated in an emulated
content distribution network, and multiplexed onto a single network link. We show that the
structure of the traffic is distinct from the structure generated by the first and second genera-
tion of HTTP video systems, and furthermore, not similar to the structure of general Internet
traffic. The obtained traffic exhibits negative and positive correlations, anti-persistence, and
its distribution function is skewed to the right. Our second contribution is an approxima-
tion of the traffic by ARIMA/FARIMA processes blue and artificial neural networks. As
we show, the obtained traffic models are able to enhance the performance of an adaptive
streaming algorithm.

Keywords Multimedia service management · Performance management · Stochastic
processes · IP networks

1 Introduction

During the past years, web-based video sharing services like YouTube, Hulu or Dailymotion
have become very popular. The users of YouTube, which allows for the distribution of user-
produced multimedia content, alone request millions of videos every day [1]. Consequently,
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a popularity of this kind results in a drastic shift in Internet traffic statistic, which reports an
increase in traffic from Web-based video sharing services [2].

Video streaming in the above-mentioned services is HTTP-based; therefore, being trans-
ported using TCP. HTTP and TCP are general purpose protocols and were not primarily
designed for streaming of multimedia. Thus, attempts are being made to adapt the delivery
of multimedia content to the Internet environment. One of such attempts tries to introduce an
additional layer of application control to transmitted video traffic [3]. Since TCP is designed
to deliver data at the highest available transmission rate, it may sometimes be reasonable
for a sender to provide additional flow control if it is not strictly necessary for application
data to reach a receiver as fast as TCP would otherwise allow. Therefore, the application
may limit the rate at which data is passed to a network stack for transmission, and, if the
video bit rate is lower than the end-to-end available bandwidth, the traffic characteristic will
differ from a standard TCP flow. In order to limit data rate, modern video players produce
ON-OFF cycles, where during the ON time a block of data is transferred at the end-to-end
available bandwidth that can be used by TCP, and during the OFF time, the TCP connec-
tion remains idle. Furthermore, the players implement stream-switching (or multi-bit-rate):
the content, which is stored at a web server, is encoded at different bit-rate levels, then an
adaptation algorithm selects the video level, which is to be streamed, based on a state of
a video player, for example on the length of the player buffer, or on the state of network
environment, for example on the amount of available bandwidth [3].

An HTTP server usually transmits multiple streams simultaneously. Such a situation
takes place when, for instance, there are several concurrent sessions initiated by clients
located within an Internet Service Provider (ISP) network, as presented in Fig. 1. In such a
scenario, the overlapped ON-OFF cycles, TCP reliability and retransmission mechanisms in
combination with application level flow control lead to a new network traffic characteristic,
which may be significantly different from classical models of aggregated traffic where traf-
fic is depicted as a stochastic process with a positive and slowly decaying autocorrelation
function [4]. Taking into account that the traffic from adaptive video services embedded in
web pages already takes an important part of all traffic, the above scenario is quite possible.

Therefore, in this work we investigate the characteristic of aggregate network traffic pro-
duced by 120 server-client pairs. We tried to estimate the statistical properties of the traffic,
examining for this purpose its distribution, autocorrelation, and possible self-similarity what
is the first contribution of our work.

Statistical analysis of Internet traffic is important for, e.g.: network planning, resource
allocation or detection of network anomalies. Therefore, the obtained results may be useful
to video content providers or ISPs, which have an access to traffic management withing
their networks. They may apply the knowledge about the traffic characteristic, for instance,

Fig. 1 HTTP streaming scenario. Video traffic is multiplexed on the ISP access link
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for predicting the quality of service degradation caused by congestions or for adjusting the
control rate algorithms. Thus, ISPs may, to a certain extent, prevent play-out stalls caused
by buffer under-runs of a video player, reduction of a video bit-rate or frequent switching
between different bit-rates. Also developers of video players may consider enhancing their
play-out algorithms with predictions of network traffic [5–7].

To demonstrate a practical application of our statistical analysis, we approximated the
traffic trace with ARIMA/FARIMA processes and with artificial neural networks (ANNs).
We applied the obtained models to enhance the performance of an adaptive streaming
algorithm. We show that the streaming algorithm obtains better performance using the esti-
mations provided by the models than relaying only on the past network measurements blue
what is the second contribution of our work.

We conduct the study using an emulation model which allows us to methodologically
explore the behaviour of the examined system over a wide range of parameter settings,
which would be a challenging task to conduct such experiments only on a real-network.
Simultaneously, as the emulation is performed in a laboratory environment, we are able to
preserve much of the network realism because we conduct experiments, using real hardware
and software, which permits us to maintain a decent level of accuracy for the obtained
results.

2 Theoretical background

2.1 Application level flow control

One of the popular video transmission methods is the progressive download, which is sim-
ply a transfer of a video file from an HTTP server to a client where the client may begin
playback of the file before the download is completed. However, as the HTTP server pro-
gressively sends (streams) the whole video content to the client and usually does not take
into account how much of the data has been already sent in advance, an abundance of data
can overwhelm the video player and lead to a large amount of unused bytes if a user inter-
rupts the video play-out [8]. To avoid such an undesirable situation, the video file is divided
into chunks of fixed length and the server pushes them sequentially to the client at a rate
little higher than the video-bit rate of the transmitted content. As a result, the transmitted
traffic creates an ON-OFF pattern, where ON and OFF periods have a constant length.

The extension of this idea is an adaptive streaming, which offers more flexibility when
a network environment is less stable, e.g. in wireless mobile networks. With this approach,
it is possible to switch the media bit rate (and hence the quality) after each chunk is down-
loaded and adapt it to the current network conditions [9]. This technique has commenced
the development of a new generation of HTTP-based streaming applications which imple-
ment client-side play-out algorithms, trying to deliver a continuous stream of video data to
an end user by mitigating unfavourable network conditions. In this approach, a video stream
is also divided into segments, but this time, they are encoded in multiple quality levels,
called representations. Based on an estimation of the available throughput, the client may
request subsequent segments at different quality levels which depend on network conditions
between the client and server, as drafted in Fig. 2. The algorithm deciding which segment
should be requested in order to optimize the viewing experience is the main component and
a major challenge in adaptive streaming systems because the client has to properly estimate,
and sometimes even predict, network conditions or the dynamics of the available through-
put. Furthermore, the client has also to control a filling level of its local buffer in order to
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Fig. 2 Architecture of a video adaptive system based on HTTP

avoid underflows resulting in playback interruptions. Simultaneously, users expect usually
the best possible quality of the stream, while avoiding unnecessary quality fluctuations, and
minimisation of the delay between their requests and the start of a playback. The transmitted
traffic also creates an ON-OFF pattern, but this time, the duration of the ON and OFF peri-
ods is not constant anymore, but is a discrete random variable, which values are dependent
on the logic of the play-out algorithm.

The stream-switching technique is employed today less or more in some proprietary
video players, among others in the Apple HTTP-based streaming [10], Microsoft IIS
Smooth Streaming [11] or Adobe Dynamic Streaming [12]. Moreover, the technique is
also adopted by the Dynamic Adaptive Streaming over HTTP (DASH), which is a MPEG
standard pursuing the interoperability between devices and servers of various vendors [3].

As the above adaptive video systems do not share many details about the employed
algorithms, in our further experiments we implemented several adaptive algorithms found
in the literature.

The first implementation uses the Microsoft Smooth Streaming (MSS) algorithm, which
is based on the open source version of the algorithm of the MSS video player and is
extensively described in [13].

The second heuristic relies on the PANDA (Probe AND Adapt) algorithm proposed in
[14]. The algorithm takes TCP download throughput as an input to the adaptive algorithm
only if the measurement is an accurate indicator of the fair-share bandwidth. The video qual-
ity is not directly related to network bandwidth but to its average, which in turn determines
the selected video bit-rate and the request time between video chunks.

The third implementation is based on the heuristic proposed in [7], which is a hybrid
receiver-driven adaptation algorithm taking into account a buffer filling level and throughput
estimations.

The last approach, referred in the literature as Festive, is based on the implementation
described in [15]. Festive uses randomized scheduling and bit-rate selection based on the
state of the video player.

The above algorithms were implemented in the open-source software described in [16].

2.2 Multiplexed traffic and its characteristic

The packets of the different video flows are usually placed on a single physical link – for
example, a packet is transmitted for one connection, then a packet for a second, another for
the first, then two packets in a row for a third, and so forth. This intermingling is referred
to as “statistical multiplexing” in the packet network literature or as “superposition” in the
mathematical literature of stochastic processes.
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As it was shown in many research works, statistical properties of the stochastic process
which forms the network traffic have significant influence on the network functionality
and efficiency. Network performance, as captured by throughput, packet delay and loss
rate, degrades gradually with increased long range dependence (LRD) or self-similarity of
aggregated traffic [17]. Simultaneously, network routers and other middle-boxes servicing
such traffic experience larger queueing delay and response time [18]. Therefore, from the
traffic engineering point of view, an estimation of the degree of LRD for the examined
video traffic may be useful, e.g. for an assessment of video quality received by users or
for determining how well congestion control is able to shape the traffic into an on-average
constant output stream while conserving information.

The amount of multiplexed traffic sent within a certain time period is represented in
our work as a counting process. From a mathematical point of view, let Nt be a stochastic
process which values represent a cumulative number of bytes sent until time t . Assuming
that Nt > 0 and Nt ∈ I, we are interested in the difference

Cn = Nt+�t − Nt, (1)

which is to be interpreted as a number of bytes sent in the interval [t, t + �t].
For the above described stochastic process, we computed the distribution function,

autocorrelation and the degree of LRD.

2.3 Long-memory processes

There are several way of characterising long-memory processes. A widespread definition is
in terms of the autocorrelation function γ (k). We define a process as long-memory if for
k → ∞

γ (k) ∼ k−αL(k), (2)

where 0 < α < 1 and L(k) is a slowly varying function at infinity. The degree of long-
memory is given by the exponent α; the smaller α, the longer the memory. By contrast,
one speaks of short range dependent process if the autocorrelation function decreases at a
geometric rate and α > 1.

Long-memory is also discussed in terms of the Hurst exponentH , which is simply related
to α from (2). For a stochastic process, H = 1 − α/2 or α = 2 − 2H . When H ∈ (.5, 1],
the process is positively correlated which implies that it is persistent and is characterised
by long-memory effects on all time scales, i.e. the realisation of the process has been up
or down in the last period then the chances are that it will continue to be up or down,
respectively, in the next period. On the other hand, when H ∈ [0, 0.5), we have long-term
anti-persistence which means that whenever the realisation of the process has been up in the
last period, it is more likely that it will be down in the next period. When H = 1/2, and the
autocorrelation function decays faster than k−1, then the process has no memory.

While the Hurst parameter is perfectly well-defined mathematically, it may be a difficult
property to measure in real life. Tests for the LRD usually require a considerable amount
of data because the measurement should be done at tails of a distribution, where not so
much data are available. Furthermore, different methods of the Hurst parameter estimation
often give inconclusive or even contradictory results. The assessment results may be biased
by trends, periodicity and corruptions in the data. Therefore, some authors suggested to
apply a “portfolio” of estimators instead of relying on a single estimator, which could give
a misleading assessment caused by properties of the process under investigation [19]. Thus,
in this paper, we employ three widespread, well-known techniques, which have been used
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for some time, to estimate the Hurst exponent: R/S, Aggregated Variance (AV) and Differ-
enced Aggregated Variance (DAV). All the chosen techniques have freely available code
and are implemented, among others, in Rmetrics software [20], which is a part of the Cran
R environment [21].

The empirical investigation of LRD processes must take into account the presence of
high-frequency autocorrelations. When doing a statistical analysis, it is therefore important
to try to eliminate or, at least minimize, such linear dependencies, since it can bias the Hurst
parameter and classify a process as having a long-term “memory” when it is, in reality, a
short-term “memory” effect. In order to eliminate, or at least reduce, the linear dependen-
cies, the autocorrelation and the estimation of the Hurst parameter were obtained for the
de-trended counting process Cn (1) computed as

Rn = ln(Cn+1/Cn), (3)

where �t in (1) was set to 0.1 s.

3 Traffic prediction

In the common approach to the problem of network bandwidth prediction (and
other time series in general), we have the measurements of previous bandwidth
{xt , xt−1, . . . , xt−(n−1)} and we wish to predict the value of xt+m, m > 0. For this pur-
pose, we apply the predictor x̂t+m which is based on the observations of the past bandwidth
measurements and may be written as

x̂t+m = φ(xt , xt−1, . . . , xt−(n−1)). (4)

The problem is to choose φ so that x̂t+m is, in some sense, ”closest” to xt+m.
Conventionally, the video adaptive algorithm uses prediction of network bandwidth

for the nearest future xi+1. The prediction is usually an average of past bandwidth
measurements:

x̂t+1 = 1

n

n−1∑

k=0

xt+k. (5)

This estimator (5) is applied in the base version of adaptive play-out algorithms [9, 14].
In our work, we try to improve the prediction employing (F)ARIMA and ANNs models.

We adopt the usual measure of closeness, namely root-mean-square error (RMSE) which
is a statistical indicator for assessing goodness of different parameters of the model. The
RMSE represents a sample standard deviation of the differences between the predictor x̂t+m

and the observed values xt+m. Mathematically, it can be described as

RMSE =
√√√√

N∑

t=1

(xt+m − x̂t+m)2/N, (6)

where N denotes the number of predictions. The lower is the RMSE value, the better the
model describes empirical data.

3.1 ARIMA and FARIMA models

ARIMA processes are considered as a classical and universal modelling tools. They can
capture the linear and short-range dependencies occurring in time series, but when used
for general Internet traffic which exhibits LRD, the ARIMA processes have rather poor
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performance. Nevertheless, due to their versatility and relative easiness of use, they are
extensively applied for modelling and forecasting of network traffic, e.g. [22, 23]. In order
to capture LRD of network traffic and obtain better accuracy of a model, some research use
FARIMA processes [24, 25]. However, the FARIMA processes are computationally more
complex and require more elaborate algorithms for estimation of their parameters.

A time series {xt } is an autoregressive (AR) process of order p, if

xt = α1xt−1 + α2xt−2 + . . . + αpxt−p + wt (7)

where {wt } is white noise and the αi are the model parameters.
Applying the backward shift operator

Bnxt = xt−n,

Equation (7) can be expressed as a polynomial of order p

θp(B)xt = (1 − α1B − α2B2 − . . . − αpBp)xt = wt (8)

A moving average (MA) process of order q is a linear combination of the current white
noise term and the q most recent past white noise terms, which is defined by

xt = (1 + β1B + β2B2 + . . . + βqBq)wt = φq(B)wt (9)

When AR (8) and MA (9) terms are added together in a single expression, we obtain a
time series {xt } which follows an autoregressive moving average (ARMA) process of order
(p, q), denoted as ARMA(p,q)

θp(B)xt = φq(B)wt , (10)

where θp and φq are polynomials of orders p and q, respectively.
A series {xt } is integrated of order d, if the dth difference of {xt } is white noise {wt }, i.e.

(1 − B)dxt = wt .

A time series {xt } follows an ARIMA(p,d,q) process if the dth differences of the {xt }
series are an ARMA(p,q) process (10). If we introduce yt = (1 − B)dxt , then θp(B)yt =
φq(B)wt .

We can now substitute for yt to obtain the more succinct form for an ARIMA(p,d,q)
process as

θp(B)(1 − B)dxt = φq(B)wt . (11)

A fractionally differenced ARIMA process {xt }, FARIMA(p,d,q), has the form of (11)
for some − 1

2 < d < 1
2 .

3.2 Artificial neural networks

ANNs have been successfully applied in many disciplines, including time series prediction.
Similarly to ARIMA and FARIMA processes, an ANN for prediction of time series uses
a sliding window containing n most recent measurements, see (4). However, unlike linear
ARIMA and FARIMA, ANNs can handle also non-linear phenomena in time series [26, 27].
Thus, ANNs have been also widely applied for network traffic modelling and prediction
[28, 29].

There have been a number of different architectures for ANNs, however for our purposes,
we employ only multilayer perceptrons (MLP) network and radial basis function (RBF) net-
work with a single hidden layer. As we will show, even these basic architectures allow to
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achieve a quite decent approximation of network traffic and a fair improvement of an adap-
tive video play-out. In both mentioned architectures, each of the layers is fully connected to
the next one. In the case of the MLP network, we apply commonly used logistic function

σ(x) = 1

1 + e−x
.

The output of the MLP network is given as

xt =
h∑

i=1

w2
i σ

⎛

⎝
n∑

j=1

w1
i,j xt−j + b1i,j

⎞

⎠ + b2,

where n is the number of inputs and h is the number of neurons in the hidden layer. The
variables {w1

i,j , w
2
i } denote the weights of the connections between the input and the hidden

layer, and the hidden layer and the output layer respectively. The variables {b1i,j , b2} denote
the bias terms added to the hidden and output layers respectively (Fig. 3a).

RBF networks as an activation function use radial basis functions. For our purpose, we
employed popular Gaussian function

σ(‖x − ci‖) = exp
[
−β ‖x − ci‖2

]
,

where ‖x‖ denotes a norm of vector x. The output of the RBF network is a linear com-
bination of radial basis functions of the inputs and the weights of connections between
neurons

xt =
h∑

i=1

wiσ(||x − ci ||) + b

where wi are the weights between hidden and output layers, h is the number of neurons in
the hidden layer and b is a bias term (Fig. 3b).

Similarly to (F)ARIMA models, the neural network should minimize the RMSE defined
in (6). For this purpose, the neural network is said to be trained in order to iteratively
decrease the RMSE. For this purpose, from the variety of available approaches, we chose
the popular back-propagation algorithm [30].

(a)
(b)

Fig. 3 ANNs used in the experiments. Each network consists of three layers: input, hidden and output. Every
subsequent layers are fully connected
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4 Previous works

Modeling of video traffic has been extensively studied in the literature. Many measurement
experiments have demonstrated that the real-world traffic in modern communication net-
works exhibits LRD and self-similarity [4]. In particular, these phenomena were observed
also for traffic generated by video [31] and other multimedia applications, e.g. internet
telephony or video-conferencing [32].

Due to the popularity of video sharing services, e.g. YouTube, most of the studies ded-
icated directly to HTTP streaming were reported in the last few years. At the beginning,
the majority of the works was measurement-based, focusing on the characterisation of var-
ious aspects of HTTP video and its usage patterns. On the one hand, there are publications
based on crawling web video sites for an extended period of time [33–35]. These works,
which examined video popularity and users’ behaviour, showed that statistics such as length,
access patterns, growth trend, and active life span were quite different in comparison to
traditional video streaming applications. On the other hand, we have works based on user
traffic trace analysis including deep packet inspection, e.g. [8, 36–38]. Some works tried to
investigate details of traffic characteristics, e.g. in [39] the authors examined the periodic
behaviour of traffic generated by Microsoft Smooth Streaming and Netflix.

In [36], the authors provided formulas for average intensity and variability of net-
work traffic. However, the proposed analytical model takes into account only non-adaptive
streaming. To our best knowledge, none of the work has been focused on an investigation
of aggregated adaptive video traffic.

Traditional aggregated traffic model assumed that the LRD and self-similar traffic can be
generated using two state Markov ON-OFF source models with sojourn times drawn from
two individually parametrised Pareto distributions. In the ON state, a source emits packets
on a peak rate while in the OFF state no packets are emitted [4]. Taking into account the
theoretical results presented in [40], which suggest that aggregating a large number of ON-
OFF sources with the same heavy-tailed distribution in the two states results in a self-similar
process, Willinger made the conjecture that heavy-tailed ON-OFF behavior provides the
physical basis for the self-similarity observed in packet data traffic.

Nonetheless, contrary to these above assumptions, as it was mentioned in the Section 2.1,
the HTTP video traffic has a more complex structure. In [36], the authors identified different
streaming strategies employed by an HTTP server and showed that the strategies vary with
the type of the application, i.e. they are dependent on the type of a web browser or a mobile
application, and the type of a container used for video streaming. These findings are in
agreement with the results presented in [8], where the authors found that the character of
ON-OFF cycles depends on the available bandwidth of a network. The cycles are observed
when the end-to-end available bandwidth exceeds the transmitted video bit rate by a certain
percent.

Furthermore, though the transfer rate control implemented at the application level in
video adaptive systems may appear analogous to the TCP congestion control, there are
some key differences between these two logics, which may have an impact on a traffic
characteristic: the two control algorithms operate at different levels in the protocol stack;
TCP is a connection-oriented protocol while video adaptation is a connectionless protocol
and TCP operates at the packet level whose size is about 1 KB, while video system operates
at the level of segments, whose size is usually hundreds of kilobytes.

The described differences in the control logic between adaptive video and TCP are
apparent when several video clips are multiplexed and streamed through a single network
link. In such a scenario, the video players compete among themselves for the available
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bandwidth needed to transfer video chunks of variable size [41, 42]. The competition intro-
duces additional video bit-rate oscillations, which translate into a higher probability of a
buffer under-run of a video player and, consequently, video re-buffering. This may influence
the characteristic of the measured traffic.

Taking into account the above factors, the abundant literature with propositions of models
for TCP and Internet traffic may not directly be applicable to HTTP adaptive video, as
traffic generated by these systems will probably be significantly different from the patterns
produced by multiplexed exponentially or Pareto distributed ON-OFF sources.

Therefore, in our work, we try to estimate characteristic of the aggregated traffic pro-
duced by systems transmitting adaptive HTTP video generated by several popular play-out
algorithms. We compute traffic intensity distribution, its autocorrelation and test it against
LRD. Then, we try to fit to the examined traffic traces ARIMA/FARIMA processes and
ANNs, which are universal time series models. Finally, we show that the obtained traffic
models are able to enhance the performance of a simple adaptive algorithm used for video
play-out.

ARIMA processes are considered as a classical and universal modelling tools. They can
capture the linear and short-range dependencies occurring in time series. However, when
used for general Internet traffic which exhibits LRD, the ARIMA processes have rather a
poor performance. Nevertheless, due to their versatility and relative easiness of use, they are
extensively applied for modelling and forecasting of network traffic, e.g. in [43] for Ethernet
traffic, in [44] for traffic from websites, or in [22, 23] for general Internet traffic. However,
as it was mentioned, network traffic has LRD, therefore, in order to capture its properties
and overcome ARIMA limitations, researches sometimes use FARIMA processes [24, 25].
Nevertheless, one must note that FARIMA processes are computationally more complex
and require more elaborate algorithms for estimation of their parameters.

ANNs have been widely applied to forecasting of time series including also different
types of network traffic. Internet traffic prediction based on MLP network can be found,
among others, in [45, 46] while RBF network is applied, among others, in [47, 48].

Generally, there are no conclusive guidelines regarding the process of network traffic pre-
diction. Some authors state that the performance of traffic prediction model can be improved
by multiplying the number of layers instead of increasing the number of neurons [48]. Nev-
ertheless, other research reveals that more complex algorithms are not necessarily better, and
there exists a specific range of operating parameters where predictions are generally more
accurate [49]. Some researchers find that MLP networks give a little better results compared
to RBF networks [23, 48], while in other works the performance of both networks are simi-
lar and depends on a traffic trace used for modelling [50]. The comparison presented in [23]
shows that of FARIMA processes and ANNs have similar approximation errors. However,
the best results are achieved for hybrid solutions which employ both FARIMA and ANNs
simultaneously [23, 51, 52].

5 Experiments

5.1 Laboratory set-up

In order to capture the aggregated traffic, which was generated by an adaptive video system,
we prepared a test environment emulating simplified content distribution system (CDN).
The environment consists of: a network environment emulator (NEE), which in a real world
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Fig. 4 Experiment set-up which includes: network environment emulators, web servers, video players, a
measurement point located in an edge router. The above elements constitute a CDN of a video provider and
an end users’ network

is applied to deliver video to multiple users; web servers; video players and a measurement
point located in an edge router, as shown in Fig. 4.

As an NEE, we used a network emulation node based on the built-in Linux Kernel mod-
ule netem [53]. The module is capable of altering the network QoS parameters such as
network bandwidth or network delays; thus, it allows to test data transmission in different
network environments.

The role of the web server plays Apache [54], which stores the video clips as a set of
chunks which length is a parameter of the experiments. Each of the three servers used in the
experiment for emulating the CDN has assigned a NEE which mimics a different network
environment so that there are different packet delays and network bandwidth between the
servers and the edge router. The delays and the bandwidth are uniformly distributed random
variables which take their values between 0.01 s and 0.2 s for the delay, and 4 MB/s to
12 MB/s for the bandwidth. Taking into account that according to [2] about 65 %-80 % of
current network traffic is generated by video services, we allocated a quota of 25 % of the
bandwidth for background traffic which was generated by a tool presented in [55].

As a video player, we chose VLC media player with a DASH plug-in [16]. Both the
player and the plug-in have an open-source code, thus, it is possible to manipulate or
completely change the adaptation logic without affecting the other components. As a con-
sequence, the plug-in enables the integration of a variety of adaptation logics making it
attractive for performance comparison of different adaptive streaming algorithms and their
parameters. As it was mentioned in Section 2.1, we replaced the default logic implemented
in the plug-in with the implementation of four algorithms described in the literature. The
players were divided into three groups. Each group has assigned an NEE which imposes on
the group different network properties so that the NEE of the first group emulates properties
of a wired network, the NEE of the second group emulates a wireless network and the NEE
of the third group mimics a wireless mobile network. Table 1 summarizes basic parameters
of the experiment.
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Table 1 Simulation parameters
Parameter Value(s)

Number of web servers 3

Number of NEE 6

Number of video players 120

Bw. at the edge router 23 MB/s

Bw. at the ISP’s side (per a server) 4 - 12 MB/s

Packet delays at the ISP’s side 0.01 - 0.2 s

Bw. at the client side (per a player) 0.16 - 1 MB/s

Packet delays at the client side 0.01 - 0.6 s

We transmitted several video files, acquired from [56] and presented in Table 2, through
the simulation environment with variable network bandwidth and packet delays. Using the
edge router with installed capturing software, based on Tcpdump and Libcap [57], we
obtained five aggregated traffic traces. The length of each trace was trimmed to 10 min-
utes. Then, they were converted to time series represented by a point process Cn, which
was defined in (1). As we want to apply the results of the analysis to enhance an adaptive
play-out algorithm, we are interested in properties of relatively short time traces which last
up to 10 minutes. Hence, we do not introduce users’ churn or take into account switching
of the players between different CDN servers. For the same reason, we also do not take
into account video length distribution, its popularity or the patterns of users’ access, which
could possibly lead to a more complex model of aggregated video traffic on a longer term
scale. All further described experiments were performed for each of five traces separately.
Their results are presented as box plots which are able to depict groups of data through their
quartiles, what allows investigating the variation of the data. In the case of autocorrelation
and density, we show only averaged values. The figures with traffic intensities are based on
a single, randomly selected network trace.

6 Results and discussion

6.1 Traffic characteristics

A visual assessment indicates that the pattern of the aggregated traffic presented in Fig. 5
has rather an irregular structure regardless of the aggregation scale. At the macro-scale, the
traffic remains within a narrow range; nevertheless, from time to time there are periods of
increased variability when the oscillation amplitude of the traffic increases, e.g. in the first

Table 2 Video clips used during
the experiments Name Genre Bitrate levels

Big Buck Bunny anim.
100 kbit/s – 320x240,

Elephants Dream anim.
300 kbit/s – 480x360,

Red Bull Playstreets sport
700 kbit/s – 854x480,

The Swiss Account sport
1.2 Mbit/s – 1280x720,

Valkaama movie
2.5 Mbit/s – 1920x1080

Of Forest and Men movie
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Fig. 5 Video traffic intensity in a a) 10 s b) 1 s c) 0.1 s time scale. Total number of players = 120, bandwidth
limit = 23 MB/s

120 s of the trace as shown in Fig. 5a. Then, this period is succeeded by 80 s of relatively
lower volatility. When we examine Fig. 5b, we can observe similar patterns. Fragment of the
trace with increased variability between 200 s and 240 s is followed by a fragment of lower
variability lasting about a dozen of seconds. The pattern repeats itself also on micro-scale
depicted in Fig. 5c.

The correlation coefficients alternate between negative and positive values, see Fig. 6a
(the first element of the autocorrelation, which is always equal to one, was removed). A high
amount of a negative correlation indicates the anti-persistent nature of the examined traffic
traces, what has a consequence that an increasing trend in the past is likely to be followed
by a decreasing trend.

The distribution of the traffic intensity is negatively-skewed – the right tail of the dis-
tribution, presented in Fig. 6b, drops abruptly, what is the result of the bandwidth caps
imposed in the experiment, while the left tail decays hyperbolically, breaking its slide for
the parameters slightly above zero.

As presented in Fig. 6c, the Hurst parameter oscillates between 0.35 and 0.44, what
confirms the anti-persistent nature of the traffic revealed by the autocorrelation analysis.

6.2 Traffic prediction with ARIMA and FARIMA models

To find the best fit of the ARIMA and FARIMA models to the obtained traffic traces, we
employed the Box-Jenkins procedure. The procedure is described in details in literature,
for instance in [58] in Section 2.3. The procedure includes several steps: an estimation of
the model order, an estimation of the model coefficients, a diagnostic check of the obtained
model and its prediction accuracy. We divided the examined trace into five, ten minutes
length, sub-traces. Than, the prediction were repeated five times for each sub-trace. The
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models were trained on the first half of each sub-trace and tested against the RMSE (6) on
the second half of the sub-trace.

To determine the order of the models, we use Akaike’s Information Criterion (AIC),
presented, among others, in [59] in section 8.6, and defined as

AIC = −2 log(L) + 2(p + q + k + 1), (12)

where L is the maximum value of the likelihood function for the model and k is the number
of estimated parameters in the model. As the algorithm uses a stepwise search to traverse
the model space, the values of p and q are selected by minimizing (12), rather than checking
all their possible combinations. However, in order to avoid degeneracy of the model, we
imposed a limit on the parameters number so that p, q ≤ 3. From the set of candidate
models, we chose one ARIMA (A2) and two FARIMA (F1 and F2) models, as presented

Table 3 Exemplary parameters of the examined models for a randomly selected experiment.

Model Short Parameters

α d β

ARIMA(4,0,0) A1 αi = 0.25 0 0

ARIMA(2,1,1) A2 α1 = 0.15 1 −0.42

α2 = 0.29

FARIMA(1,1,1) F1 0.31 0.90 −0.13

FARIMA(2,1,1) F2 α1 = 0.43 0.90 −0.21

α2 = −0.26

Except of the A1 model, the parameters of other models vary in different experiments
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in Table 3. The ARIMA(A1), plays a role of a reference model being an implementation of
the simple bandwidth predictor specified in (5).

For the estimation of ARIMA parameters, we used the routines implemented in the
arima library, which is a part of the standard CRAN R distribution [21]. While estimat-
ing the FARIMA parameters, we had to apply additional calculation, as the arima routines
operate only on integer values of the differencing parameter d. Firstly, using the relation-
ship between the differencing parameter d and the long-memory parameter α from (2), we
estimated the value of d, which according to [60] section 8.2, is

d = 1 − α

2
→ d = H − 1

2
.

From the analysis presented in Fig. 6, the median of Hurst parameter is about 0.40 what
implies that the differencing parameter d = −0.1. After the estimation of the above param-
eter, the time series was fractionally differenced. The calculation was based on the binomial
expansion of (1 − B)d which is given by

(1 − B)d = 1 − dB + d(d − 1)

2! B2 − d(d − 1)(d − 2)

3! B3 + . . . ,

and curtailed at some suitably large lag L, which we set to 40 following [60] section 8.2.
Thus, for d = −0.10 we get

yt = xt + 0.1 xt−1 + 0.055 xt−2 + . . . + 0.001334 xt−40.

To the fractionally differenced time series {yt }, we applied the arima library in order to
get estimates of the model order and the values of the p and q parameters. The estimated
exemplary parameters for the models are presented in Table 3 and the basic steps of the
model preparation are given in Fig. 7a.

6.3 Traffic prediction with neural networks

The key elements of an ANN are the input variables, the number of hidden layers and num-
ber of nodes for each layer. As we have already defined in Section 3.2 the basic architecture
of the ANNs which consist of three layers (including one hidden layer), thus, we focus here
on the number of input and hidden nodes.

In order to estimate the number of input neurons, it is assumed that the analysed data
is produced by an unknown M-dimensional dynamic system. Thus, using the embedding
theorem [61], the purpose is to identify a simpler N, N < M dimensional system which

(a) (F)ARIMA (b) ANN

Fig. 7 Workflow for the models preparation
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Table 4 Basic parameters of the ANNs applied in the experiments

Model Short Parameters

layers neurons τ

Multi-Layer Perceptron network MLP 3 (7,9,1) 1

Radial Basis Function network RBF 3 (6,6,1) 1

could be equivalent to the original system. Furthermore, the data are obtained from the past
values {yt } with a sampling rate τ, τ ∈ N. Thus, taking into account (4), we have

x̂t+m = φ(xt , xt−1, . . . , xt−(n−1)) ≡ θ(yt , yt−τ , . . . , yt−(N−1)τ ), (13)

where n indicates the number of input nodes for the network.
For the selection of the equivalent system dimension N , we chose a classical method

called False Nearest Neighbors (FNN) [62]. The main idea is to examine how the num-
ber of neighbours of a point along a signal trajectory changes with increasing embedding
dimension. If the embedding dimension is too low, many of the neighbors will be false.
However, if the embedding dimension is appropriate, the neighbours become real. There-
fore, by examining how the number of neighbours change as a function of dimension, the
algorithms determine the correct embedding dimension.

For the selection of τ we applied Mutual Information (MI) method [63]. This procedure,
which can be an equivalent of the correlation function but in a non-linear setting, uses the
MI function. The first local minimum of the MI function is considered to be the sampling
rate τ .

Adjustment of traffic models

Traffic model
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E

A1 A2 F1 F2 MLP RBF
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Fig. 8 RMSE of the analysed traffic models
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Table 4 presents the summary of basic networks attributes and the basic steps of the
model preparation are given in Fig. 7b. We performed the computations in CRAN R
environment employing nnet package [64].

6.4 Models performance

The RMSE for the obtained models is presented in Fig. 8. From the auto-regressive mod-
els, the best fit model was obtained for FARIMA(F2) with the RMSE at about 4.5. The
ARIMA(A2) and FARIMA(F1) gained RMSEmore than 6, while the highest RMSE, nearly
8, had the ARIMA(A1) model. The results should not be surprising: the best scores acquired
the most elaborate auto-regressive model, the poorest score belongs to the simplest one.

The models based on ANNs achieve similar performance to fractional auto-regressive
models with their scores positioned between the results achieved by FARIMA(F1) and
FARIMA(F2). The results of model based on MLP network is slightly better compared to
the one based on RBF network.

Summarising, our experiments show that aggregated traffic exhibits usually long-
memory and anti-persistence. The aggregated traffic traces have a fairly irregular structure
with many sudden drops and jumps, which can be observed in time plots at a one-second
scale. As a result, the traffic distribution is negatively-skewed, thus differing significantly
from the classical Gaussian or Pareto distributions which are often employed in the engi-
neering of network traffic, e.g. [65]. Nevertheless, the traffic trace can modelled by ARIMA
and FARIMA models better than by a simple approximation defined in (5) and realised by
the ARIMA(A1) model. The approximation errors achieved by the models based on ANNs
are comparable with FARIMA models.

7 Models application

We applied our traffic models presented in Table 3 to enhance the functionality of a simple
algorithm which adapts its play-out quality to measured throughput of a network [9]. Its
major points are presented as Algorithm 1.

The algorithm in the Line 1 calls a function which estimates average network through-
put nb. The bandwidth estimation may be acquired directly from measurement of network
traffic, e.g. measuring the time needed to download a chunk of video, or from a model
of network traffic. In this case, the estimator returns the output of the models detailed in
Table 3, taking into account that the output of ARIMA(A1) is just an averaged measurement
of network traffic intensity in several previous periods (5).

When the video bit-rate v, which is needed for a smooth video play-out, is lower than
the measured or estimated network throughput nb reduced by �L, Line 2, the algorithm
reports that the video quality level q should be increased, i.e. the chunk download module
asks the server for bigger chunks, encoded in higher quality. When the throughput is not
sufficient for the given level of video quality, Line 5, the opposite situation takes place:
the quality level q is decreased and the download module is instructed to obtain chunks of
poorer quality what simultaneously demands less network throughput. The parameter �L

marks a region of network throughput for which there is no need to switch the quality to a
higher level. As a result, the parameter plays a stabilising role and prevents switching the
quality levels too frequently, which could have a negative impact on the overall video quality
perceived by users. The constants Qmax and Qmin define a range of available levels of the
quality.
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For a performance evaluation of Algorithm 1, which implements six different approaches
of network bandwidth estimation, we employed two measures, applied also in [14].

This first measure describes how effectively the algorithm utilises available network
bandwidth by computing the value of the following formula

efficiency =
∑N

i (qi/ ˜qi)

N
. (14)

Equation (14) computes the relation between the quality level qi of the chunk to the
theoretical quality level q̃i which is possible to achieve for the i-th chunk in given network
conditions. The minimum value of the formula isQmin/Qmax if the play-out quality of every
chunk is Qmin, although the network conditions allow for Qmax quality. The value of the
formula can reach one if, and only if, for every chunk qi = q̃i .

The play-out algorithm may try to maximise the value of (14) by adjusting the play-out
quality to given network conditions as frequently as it is possible. Such behaviour will result
in rapid oscillations of video quality, what will be negatively perceived by users [66, 67].
For this reason, we introduce the second measure which sums the quality switches:

switches =
N−1∑

i

|qi+1 − qi |. (15)

As Fig. 9 A shows, the traffic models are able to improve the efficiency of network
bandwidth utilisation (14). The algorithm relying on an estimation of network bandwidth
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provided by any of the examined models achieves a better score than the algorithm relying
solely on direct network measurements, what is denoted here as ARIMA(A1). The FARIMA
models achieve the best scores, nonetheless their results are subjected to higher variabil-
ity compared to the ARIMA outcomes. Therefore, as Fig. 9a presents, there are sporadic
situations, where the estimation delivered by the models are inaccurate and worsens the
play-out quality. Probably during the play-out, models accuracy gradually deteriorates and
their parameters need more frequent recalibration, e.g. every several minutes. As it could be
expected from the comparison of models approximation errors, the efficiency of algorithms
based on the ANN models is on an average a little worse compared to FARIMA models,
however, is better compared to ARIMA models.

The frequency of quality switches remain at the similar level, regardless of the imple-
mented estimator, see Fig. 9b. However, it is the good news: the improvement in throughput
utilisation is a result of employment of the traffic models and does not come at the cost of a
decrease of play-out stability.

8 Conclusions

In this paper, we examined statistical properties of aggregated traffic generated by 120
client-server pairs in a video adaptive system. The obtained results are at odds with the
measurements of general Internet traffic, which showed that the Internet traffic exhibits
persistence with Hurst parameter greater than 0.5. Our investigation of the autocorrelation
function shows that the aggregated traffic has negative and positive correlations which exist
for at least several seconds. The correlations are confirmed by estimations of the Hurst
parameter, which in the most cases has values below 0.5, indicating the anti-persistence in
the examined traffic traces and a negatively-skewed distribution function of the traffic inten-
sity. Consequently, compared to the previous measurements, the contemporary video traffic
and Internet traffic, which to large extend is composed of the video traffic, may exhibit more
irregularities, has abrupt changes accompanied by sudden drops and jumps, what may some-
times pose a challenge to algorithms responsible for congestion management in computer
networks.

The obtained traffic characteristic may be described by (F)ARIMA models and ANNs.
The ARIMA model is computationally simpler, nevertheless, the FARIMA model fits
better the long-range dependent data. As we showed, not only FARIMA, but also uni-
versal ARIMA model can improve the performance of a simple adaptive play-out algo-
rithm. The models based on the ANNs achieve results comparable with the FARIMA
models.

There may be doubts, how will the models behave when, e.g. the architecture of net-
work traffic, or the number of video players, or their proportions change. Of course, there
will be need to recompute parameters of the models and update them at certain time inter-
vals. Our examination, repeated five times, show that in the most cases the models are able
to improve the performance of the play-out algorithm. Due to their universality, the mod-
els with great probability should handle also traffic generated by systems with different
configuration.

There is also a further field of improvement for the traffic models. Some authors
report that the best results are usually obtained by hybrid techniques, e.g. combination
of (F)ARIMA and different types of neutral networks [22, 23]. Thus, these more elabo-
rate approaches may give a better adjustment to network data and provide better input for
adaptive algorithms.
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The obtained results may be useful for video content or Internet service providers or
any other network operators which have access to traffic management and may impose
additional traffic engineering procedures to assure an adequate level of quality for users.
Secondly, as developers of the video players are free to employ their own adaptation strate-
gies, potentially they may take into account prediction of network traffic in order to enhance
video play-out.
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national License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
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