
Multimed Tools Appl (2016) 75:2005–2029
DOI 10.1007/s11042-014-2389-0

Distributing game instances in a hybrid client-server/P2P
system to support MMORPG playability

Ignasi Barri ·Concepció Roig ·Francesc Giné

Received: 23 October 2013 / Revised: 21 October 2014 / Accepted: 14 November 2014 /
Published online: 28 December 2014
© The Author(s) 2014. This article is published with open access at Springerlink.com

Abstract MMORPG (Massively Multiplayer Online Role Playing Games) is the most
popular genre among network gamers, and now attract millions of users, who play simul-
taneously in an evolving virtual world. This huge number of concurrent players requires
the availability of high performance computation servers. Additionally, gaming aware dis-
tribution mechanisms are needed to distribute game instances among servers to avoid load
imbalances that affect performance negatively. In this work, we tackle the problem of game
distribution and scalability by means of a hybrid Client-Server/P2P architecture that can
scale dynamically according to the demand. To manage peak loads that occur during the
game, we distribute game computation across the system according to the behavior of
MMORPGs. We distinguish between the computation associated with the Main Game, that
affects all players, and the computation of Auxiliary Games that affects only a few play-
ers and acts in isolation from the execution of the Main Game. Taking this distinction into
account, we propose a mechanism that is focused in the distribution of Auxiliary Games,
as an entity, across the pool of servers and peers of the underlying hybrid architecture. We
evaluate the performance of the balancing mechanism taking the criteria of latency and
reliability into account, and we compare the effectiveness of the mechanism with a classic
approach that applies load balancing to individually players in a Client-Server system. We
show that the balancing mechanism based on the latency criteria provides lower latency

I. Barri · C. Roig · F. Giné (�)
Computer Science Department, University of Lleida, Lleida, Spain
e-mail: ignasibarri@diei.udl.cat

C. Roig
e-mail: roig@diei.udl.cat

F. Giné
e-mail: sisco@diei.udl.cat

mailto:ignasibarri@diei.udl.cat
mailto:roig@diei.udl.cat
mailto:sisco@diei.udl.cat

2006 Multimed Tools Appl (2016) 75:2005–2029

than the classical proposal, while in relation to reliability, we obtain a failure probability of
under 0.9 % in the worst case, which is amply compensated by the scalability provided by
the use of the P2P area.

Keywords MMORPG · Hybrid system · P2P · Load balancing

1 Introduction

Massively Multiplayer Online Games (MMOG) are the most popular genre in online
computer games [29]. They can be divided into three categories: MMORPG (Massively
Multiplayer Online Role Playing Games), MMORTS (Massively Multiplayer Online Real
Time Strategy) and MMOFPS (Massively Multiplayer Online First Person Shooter). Their
execution requirements vary with the way of playing them [37]. While MMOFPSs consist
of many isolated game services with a handful of players each, who are continuously inter-
acting, MMORTSs and MMORPGs consist of a virtual world that never stops and is always
up for any player who wants to satisfy their desire for gaming. Nowadays, of all these gen-
res of on-line games, MMORPGs have become the most popular among network gamers
and now attract millions of users. Thus, the QoS and scalability of the computational sys-
tem to ensure MMORPG playability is a challenge. This paper focuses on these problems
in MMORPG environments taking their characteristics into account.

MMORPGs are characterized by a Main Game, which is executed without interruption,
and a number of instances, or Auxiliary Games, that happen concurrently with the Main
Game, randomly created on demand by the players. The Main Game is the virtual world,
where players can interact each other and the other components of the scenario (Non-Player
Characters and map objects) in order to evolve their characters. The Auxiliary Games1 are
executed outside the Main Game boundaries and involve different ways of playing com-
pared with the Main Game. There are several kinds of Auxiliary Games with different
timing, number of players and difficulty requirements. They are created dynamically. So,
whenever players want to play in a specific Auxiliary Game, they have to wait until there
are enough players to start it; returning to the Main Game when the Auxiliary Game is over
or whenever they tire of it.

The most common way to provide service to MMORPGs is based on a centralized man-
agement provided by Client-Server structures, usually based on cluster platforms [10]. To
overcome the scalability limits of these Client-Server systems, when the number of play-
ers increases dramatically, we propose in this paper the use of a hybrid environment that
is composed of a centralized cluster system and a distributed P2P area. In addition, we
develop a mapping mechanism to achieve load balancing and scalability of the MMORPGs
in this hybrid platform, in which the Main Game is maintained in the central cluster of
servers and Auxiliary Games are used as the indivisible entities, where the mapping is
applied. This is based on the fact that the load in the Main Game has few fluctuations
and so, it can be predicted, whereas Auxiliary Games are more dynamic, less predictable
and also cause hot spots, which imply peak loads in the overall system. Additionally,
players involved in an Auxiliary Game are continuously interacting. Thus, the movement
of all players in an Auxiliary Game, as an indivisible entity, to the same server avoids

1Dungeons, Raids, and Player vs. Player in the well known MMORPG, World of Warcraft [33, 36].

Multimed Tools Appl (2016) 75:2005–2029 2007

communications between nodes. Then the mapping mechanism acts at two levels. Firstly, it
balances Auxiliary Games among the servers in the central cluster in order to manage com-
putation imbalances. Secondly, when the whole central cluster is overloaded, the mapping
assigns Auxiliary Games to the P2P Area. Thus, for each Auxiliary Game to be distributed
to the P2P Area, a new temporary server is chosen among the players waiting for this
game.

In order to choose the temporary server, two different issues must be faced. On one
hand, we have to keep the Distributed Area up to avoid disconnections or failures. Thus,
a statistical model focused on the players’ sessions history is proposed in order to assign
each player a fault likelihood or reliability value, which is used to select those players with
lower disconnection probability. On the other hand, the latency response among players in
the same Auxiliary Game must be maintained below an acceptable threshold. According to
this, the latency among waiting players is calculated, with the player with the lowest latency
being chosen as a temporary server for the Auxiliary Game.

The effectiveness of the proposed distribution mechanism over the hybrid architecture
is evaluated by simulation. The effects of balancing Auxiliary Games, instead of players,
among servers, is evaluated by comparing our mechanism with a representative case of the
classic load balancing approach presented by Bezerra et al in [6]. Additionally, we show
that our system is able to scale properly when the number of Auxiliary Games in the system
increases due to the rise in players. This scalability is achieved by maintaining the QoS in
terms of latency and fault tolerance.

The remainder of this paper is organized as follows. Section 2 reports the main contri-
butions of the literature about distribution mechanisms of MMORPGs. Section 3 describes
the hybrid system with the balancing mechanism. Section 4 analyses the viability of the
P2P area for computing Auxiliary Games. Section 5 evaluates the performance of the global
system. Finally, Section 6 outlines the main conclusions and future work.

2 Related work

The techniques that are reported in the literature to give service to MMORPGs vary
according to the kind of system, centralized or distributed, used for executing the game.
Centralized architectures are traditionally based on cluster systems. The distribution tech-
niques for game computation in such kinds of system are mainly based on splitting the
game world map into different subspaces, or cells, and distributing these among the nodes
in the cluster [6, 23, 24, 26]. After the initial assignment, these cells will be dynami-
cally reassigned among servers during the game, to respond to changes in the load caused
by players’ movements into the game world [4, 11]. The frequency of these rebalancing
operations is heavily affected by the size of the cells. Big cells can imply significant dif-
ferences in the number of players assigned to each one, and so, in order to achieve load
balancing, the initial distribution of cells among servers is more complex. However, play-
ers change cell less often, and this avoids some dynamic reassignments during the game.
The option of small size cells (microcells) facilitates the initial load balancing distribu-
tion but causes greater number of cell movements by players during the game, which
implies more dynamic redistribution operations and thus more overhead in the run time
[12, 17].

An interesting work in the line of balancing microcells of players between servers is
the paper of Bezerra et al. in [6]. Bezerra proposes a balancing schema which consid-
ers the upload bandwidth of the server as the load to distribute, what is done between

2008 Multimed Tools Appl (2016) 75:2005–2029

servers with the aim of reducing the inter-server communication overhead by using a greedy
graph partition growing algorithm.The mechanism starts when a server in the cluster of
servers is overloaded. This server selects a number of other servers to become involved
with the distribution. First, it chooses the least loaded server among its neighbors and sends
a request for it to participate in the load balancing. The chosen server rejects the request
if it is already involved in another balancing group, otherwise it responds with the load
information of its own neighbors. If the selected neighbor server is unable to absorb all
the extra workload of the initiating server, the selection is performed again among the
neighbors not only of the overloaded server, but also the neighbors of the already selected
servers. The selection continues until the first server’s workload can be absorbed. This
work will be used through this paper as a comparison case given that it is a representative
approach of player-based load balancing mechanisms in Client-Server systems applied to
MMORPGs.

An additional aspect that is considered by some authors in the splitting process is the
Area of Interest (AOI) of players [3]. The AOI is the physical area of the world map whose
information about game state is relevant for a specific player. Thus, the assignment of play-
ers of the same AOI into the same cell will diminish the number of communications across
the network.

In the case of MMORPGs, the focus of this paper, we propose splitting the world map
based on the Auxiliary Games, instead of cells of a fixed size, for the two following reasons:
(a) An Auxiliary Game constitutes a clear AOI where players communicate with each other
and, (b) the computation associated with the game for the limited number of players that
usually constitutes an Auxiliary Game can be executed in a single current server.

The game distribution techniques, mentioned above, usually reported for centralized
systems, present a common problem of scalability when they are serving MMORPGs.
This is due to the unpredictable behavior of players, which sometimes creates peak
load situations that cannot be solved by system servers. With the goal of provid-
ing an unlimited scalability that is able to manage peak load situations dynamically,
some authors propose the use of completely decentralized systems, such as Peer-to-
Peer networks. In this kind of system, apart from the load distribution techniques, there
are additional aspects to be faced [15] that have been studied by several authors: (a)
Establishing an effective mechanism for propagating events in a high latency network.
Different alternatives have been presented that are applied in the network layer [5,
8] or the application layer [9]. (b) Ensuring data persistence in the game world map
[19]. (c) Management of the cheating problem among the peers [27, 31]. (d) Apply-
ing incentive mechanisms that promote the participation of peers and avoid freeriders
[21, 34].

The load distribution techniques developed for MMORPGs in Peer-to-Peer systems are
mainly focused on the decentralized management of the AOI of the players. Some authors
have developed techniques for distributing the game load based on AOI [7, 13, 28]. How-
ever, in an MMORPG, apart from updating their AOI, players also frequently need to update
their view of the virtual game world, causing a high communication overhead for such play-
ers. To alleviate this overhead in completely decentralized systems, some authors propose
the inclusion of some additional high capacity server to manage the global game world,
where most of the players are located [30, 32, 38].

Following this line, we propose a hybrid architecture that combines a centralized and
a Peer-to-Peer system, to give service to MMORPGs. This allows the execution of tasks
related to the global game world in the centralized server and other tasks corresponding to
the Auxiliary Games in the Distributed Area of the system to be combined. In the following

Multimed Tools Appl (2016) 75:2005–2029 2009

section, we present our proposed hybrid system and the load distribution techniques for
MMORPGs.

3 The client-server/P2P hybrid system

This section describes the proposed hybrid system, discussing its characteristics and details
of its mechanisms. The architecture of the system is explained in Section 3.1, while the
distribution policy of Auxiliary Games over the hybrid architecture and mechanisms of
establishment and maintenance of the Distributed Area are described in Section 3.2. Finally,
Section 3.3 analyzes the communication cost caused by the application of our balancing
algorithm.

3.1 The hybrid architecture

Figure 1 shows the architecture of the proposed system, which is composed of two areas: (a)
oneCentral Area performing theMain Game and the Auxiliary Games and, (b) aDistributed
Area that grows in a P2P like fashion, where those Auxiliary Games that cannot be served
by the Central Area for overload reasons are executed.

The components of the Central Area are the following:

– Cluster of Servers (CS). This is composed of a set {Si | 1 ≤ i ≤ N} of N Servers,
which are the main servers in the system and act as the bootstrap point. Thus, each
player, Pj , requesting to enter the system, will attempt to connect to it. A Server Si

is a physical computer that manages a part of the Main Game and some Auxiliary
Games, providing service to a limited number of players according to its capabilities.
The maximum capacity of a server is determined by the number of concurrent players
which is able to serve, named max S load, which is assumed to be the same for each
server Si . Likewise, we consider the CS overloaded when at least one Server Si of the
CS is overloaded.

– Main Game (MG). This is the principal game, where players interact with the elements
of the persistent virtual world. The Main Game is executed in the CS, where the map

Fig. 1 Hybrid system architecture

2010 Multimed Tools Appl (2016) 75:2005–2029

of the virtual world is distributed using a specific load balancing mechanism described
and evaluated in the following sections.

– Auxiliary Games (AGx). These are the game instances that are executed independently
from the Main Game. There are different kinds of AGx in function of the number of
players in each, which is denoted by AGx.size. Therefore, each AGx is defined as a
set {Pj | 1 < j ≤ AGx.size} of players facing a specific mission. Our proposal in
overload cases is focused on the efficient distribution of AGx over the non-overloaded
servers, considering them as indivisible entities for allocation.

The Distributed Area (or Peer-to-Peer area) is the area, where the extra-number of players
belonging to the Auxiliary Games that cannot be served in the Central Area, are mapped.
It is composed of players’ machines that are logically grouped into different kinds of AGx ,
each of a specific size and isolated from the rest of the AGx . Thus, the Distributed Area
is made up of a set of Auxiliary Games that conform an independent P2P subarea, each
scattered across the network and without any kind of communication between each P2P
subarea. To manage the execution of each AGx , the corresponding P2P subarea will have
the two following servers:

– Auxiliary Game Server (AGx.S). This is the temporary server of the AGx . It is worth
pointing out that any player of the AGx can be chosen as a temporary server. The
experimentation carried out in Section 4 shows that a normal personal computer is able
to serve, at least, up to 40 players without problems of computational power, memory or
bandwidth usage. Note that 40 players is the maximum Auxiliary Game size accepted
by the majority of MMORPGs [33]. In this way, players’ machines can be used to serve
a single Auxiliary Game with a satisfactory QoS.

– Auxiliary Game Replicated Server (AGx.RS). This is the current replicated server of
the AGx . This role is used to replace the AGx.S in case of failure. For this reason,
players in the AGx will play against the AGx.S and its AGx.RS, and the AGx.S will
send the game state to both, players and the AGx.RS. Thus, the AGx.RS has the game
state constantly updated, ready to replace the AGx.S if a critical situation requires it.

According to the system described, the next section introduces a new load balancing
mechanism for distributing Auxiliary Games, as an indivisible entity, over the Central and
Distributed Area to provide scalability to the system according to the demand.

3.2 Load balancing over the hybrid architecture

The balancing approach presented in this paper is established under three premises: (a)
servers of the CS are considered homogeneous, (b) the load of each server Si is proportional
to the number of players connected to it and, (c) the P2P Area is exploited when the CS is
unable to deal with an overload situation.

The load balancing methodology acts whenever a server from the CS reaches its maxi-
mum load capacity (max S load). In this case, the balancing mechanism is able to decide
if the necessary number of players that causes the overload situation (extra S players)
has to be: (a) balanced to another available server in the CS or, (b) distributed to the P2P
Area. The methodology of the load balancing proposal is shown in Algorithm 1. Note that
in our load balancing mechanism, this distribution is applied to an extra S players play-
ers with an extra plus of 10 % of the maximum server capacity in order to minimize the
number of distributions. Therefore, the total number of players to be balanced or distributed
is (extra S players + 10 % · max S load).

Multimed Tools Appl (2016) 75:2005–2029 2011

Algorithm 1 is executed while the CS is overloaded. This means that at least one server
in the CS is overloaded. Therefore, each server in the CS is checked for overloading. After
this statement, the load balancing is able to: (a) balance the extra-load to another available
server in the CS of the Central Area or, (b) distribute it to the P2P Area.

For the Central Area, the algorithm checks if there is any server Sj ∈ CS able to accept
players belonging to the extra S players. If so, a complete AGx of the overloaded server
Si is balanced to this new server Sj (Si.balances(Sj , AGx)). Note that our proposal always
distributes complete Auxiliary Games, so the inter-server communication is diminished sig-
nificantly. Next, if there is no other Server Sj ∈ CS able to take in more extra players,
(extra S players > 0), then these remaining players will be distributed to the P2P Area
by means of the distributes function. Note that the cost of Algorithm 1 is θ(N2), where N

is the number of servers of the Central Area. This cost can be considered negligible taking
two different aspects into account: (a) the value of N of a typical MMORPG CS is usually
limited below 103 [25] and (b) this algorithm is only launched punctually, whenever the CS
is overloaded.

2012 Multimed Tools Appl (2016) 75:2005–2029

In Algorithm 2, the distributes function looks for a Server AGx.S and a Replicated
Server, AGx.RS, among the players in the Auxiliary Game. This algorithm is able to
vary the CRITERIA used to search for the optimal AGx.S and AGx.RS depending on the
parameter of QoS to be optimized. The two following options were considered for use as
CRITERIA:

– Latency Lookup (LL): This checks the network latency of each player in relation to
the rest of players in the same AGx . Then, it selects as the as the AGx.S, the player
who has the lowest latency with respect the others. The AGx.RS will be the player
with the second lowest latency value. The additional cost of our policy is the number
of comparisons to be carried out to find the servers with the minimum latency, which
is the (AGx.size) · (AGx.size − 1)/2; in the worst case being an AGx.size = 40, it is
equal to 780 comparisons, which, taking the power of a current CPU into account, can
be considered negligible.

– Probability of Disconnection (PD): According with the estimation of players’ uptime,
the fault likelihood of each player is calculated. Then, this is checked player by player,
choosing those players with the highest predicted uptime, i.e., the most reliable players,
as the AGx.S and AGx.RS respectively. In order to do so, for each player Pj ∈ AGx ,
the minimum and maximum predicted uptime (Pj .Uptime) is calculated by applying
the mean and standard deviation based on his historical behavior, giving the following
interval:

[
Pj .Uptimemin, Pj .Uptimemax

]
(1)

With these values of players’ uptime, the PD criteria selects, for acting as the
AGx.S, the player with the highest minimum uptime, such that:

AGx.S.Uptimemin = max
{
Pj .Uptimemin|{Pj } ∈ AGx

}
(2)

The replicated server AGx.RS is selected with the same criteria, excluding the
player that acts as AGx.S from the selection set. Then:

AGx.RS.Uptimemin = max
{
Pj .Uptimemin|{Pj } ∈ AGx − {AGx.S}} (3)

Thus, we are working with a pessimistic assumption. Likewise, it is worth remarking
that this method takes the average plus its deviation into account, which is more reliable,
in statistical terms, than taking only the average into account. In order to minimize the
storage information of the historical of each player and taking previous studios [20]
into account, we need to maintain a maximum of 50 records per each player to obtain
an estimate accurate enough.

Section 5.2.1 analyzes the QoS of the players according to the chosen latency and
reliability CRITERIA.

Once the AGx.S and AGx.RS have been found, the link function of Algorithm 2 creates
the P2P subarea of AGx with an interconnection schema of players’ machines, as this of
Fig. 2, which corresponds to a bipartite graph G = {S ∪ P,E}, where:
– S is the set of two players machines acting as servers. S = {AGx.S, AGx.RS}.
– P is the set of remaining players machines in AGx . P = AGx − S.
– E is the set of all possible edges (Si, Pj) such that Si ∈ S and Pj ∈ P , plus the edge

(AGx.S, AGx.RS).

Multimed Tools Appl (2016) 75:2005–2029 2013

Fig. 2 An enlarged view of an Auxiliary Game (AGx) structure in the Distributed Area

The two servers of S will maintain the list of players, making up its Auxiliary Game AGx ,
together with the main players’ characteristics (latency and reliability). Once the Auxiliary
Game is moved to the P2P area, it continues its execution until it finishes. Then, their players
can return to the CS to continue with the game.

After the application of this distribution mechanism, the overloaded servers of the Cen-
tral Area reduce their workload. This allows the system to continue accepting new players
above its CS capacity, providing a system that is able to grow according to the demand,
exploiting the peers’ capabilities by means of distributing them to a self-organized P2P game
area.

3.2.1 Management of the distributed area

The management for the Distributed Area is based on the standard functionalities applica-
ble to any P2P system, focused on the specific case of using the defined P2P subareas for
running Auxiliary Games. So, the mechanisms of insertion of peers and resource discov-
ering are not needed in this context, because the players conforming the AGx are known
beforehand, and no new players will be added during the execution of the Auxiliary Game.
Thus, the management policies to be applied are restricted to the maintenance of each P2P
subarea and the exit of peers. These are described next.

The maintenance of each AGx subarea is performed by Algorithm 3 in each period of
time T . Control message exchanging is performed between both servers in S to the rest
of players of the Auxiliary Game AGx belonging to the set P . In this way, AGx.S and
AGx.RS check the state of the total underlying players managed by the AGx.S. Likewise,
the Auxiliary Game Server AGx.S notifies the state information of the AGx to the Cluster
of Servers (CS) of the Central Area, keeping the global state system updated. In addition,
each player Pj replies to its Servers by sending information about its state. This happens
whenever the player Pj had not sent another message to AGx.S and AGx.RS during the
same interval T previously. The cost of the algorithm is θ(AGx.size), where AGx.size is
the number of peers in the Auxiliary Game. It is worth pointing out that the exact value of
T depends of the nature of the MMORPG, although it should be lower than 1s in order to
replace the Server of the Auxiliary Game, if it was necessary, in an inadvertently way for
players [33].

2014 Multimed Tools Appl (2016) 75:2005–2029

By means of applying the previous maintenance algorithm, the Server AGx.S and the
Replicated Server AGx.RS can detect that any player Pexit has left the Auxiliary Game
AGx voluntarily or involuntarily. In such a case, the restructuring operation, described in
Algorithm 4, is applied by the Server or the Replicated Server depending if the outgoing
player was the Replicated Server or the Server, respectively. Therefore, the main aim of
this algorithm is to replace the role of the outgoing player, Server or Replicated Server,
by any other player of the Auxiliary Game. It means that if the AGx.S left the system,
the AGx.RS would become the new AGx.S and a new AGx.RS will be searched among
the rest of players of the AGx . This is done by means of applying the same algorithm
described in Algorithm 2. Thus, after applying the restructuring operation, independently of
the player who has left the system, the AGx is still alive for the rest of distributed players in
a transparent way. Likewise, it is worth pointing out that the Auxiliary Game will be alive
while any player Pj ∈ P can assume the role of Server. Note that the cost of this algorithm
is also θ(AGx.size), where AGx.size is the number of peers of the AGx .

3.3 Analyzing the communication cost

Previous works described in Section 2 show that one of the main problems caused by the
application of load balancing mechanisms in MMORPGs severs is the communication cost

Multimed Tools Appl (2016) 75:2005–2029 2015

provoked by the extra movement of players between servers. This section analyzes the
communication overhead introduced by the application of the distribution mechanism of
Algorithm 1. Due to the fact that the algorithm balances the load in a hybrid architecture,
the communication overhead is calculated according on where it is applied, in the Central
Area or in the Distributed Area.

3.3.1 Communication cost in the central area

In the case of distributing in the Central Area, we also calculate the overhead introduced
by the classic method proposed by Bezerra et al. [6], described in Section 2, to be able
to compare our proposal with a reference method of the literature based on distributing
individual players among servers in a Client-Server system.

Table 1 shows the analytical evaluation of the communication overhead introduced
by our architecture, named Hybrid, in relation to the method proposed by Bezerra et
al., named Classic. This is calculated by the number of established communications
between players and servers, excluding those caused by the game itself (for instance,
the game state updates). For each method, we distinguish the communication overhead
before applying the balancing method (Before row) and the overhead after balancing (After
row). Finally, the last row in Table 1 indicates the total communication costs of both
proposals.

Regarding to the Classic approach, before applying the balancing method, the number
of players to be moved (extra S players) is multiplied by 2, as they have to commu-
nicate with both servers, the original and the destination one. Once players have been
moved to the destination server, the Classic method introduces a communication overhead
of 2 ·extra S players ·Interaction ·F , where Interaction is the percentage of players in
the same AOI and managed by different servers, exchanging messages. The other parameter
(F) indicates the frequency of this message exchange among players.

In the case of the Hybrid approach, before applying the balancing method, there
will also be two communications for each player to be moved, which, in this case, is
extra S players plus 10% of max S load, according to our proposal in Algorithm 1.
Thus, there is extra communication compared with the Classic method. However, after
applying the balancing method, the additional communication cost is negligible, given that
the balanced players belong to the same AGx , which corresponds to their AOI and executed
in the same server.

Therefore, Classic method introduces an overheard of θ(extra S players · F ·
Interaction) in front of the θ(extra S players) cost of the Hybrid method, which is much
lower according to the typical values achieved by the Interaction and F parameters in a
MMORPG game with low inter-player communication [33]. These results will be verified
by simulation in the Section 5.1.

Table 1 Communication overhead of both load balancing proposals when distributing AGx in the Central
Area

Classic (Players from MG) Hybrid (Players from AGx)

Before 2 · extra S players 2 · (extra S players + max S load · 10 %)

After 2 · extra S players · Interaction · F 0

Total 2 · extra S players · (1 + F · Interaction) 2 · (extra S players + max S load · 10 %)

2016 Multimed Tools Appl (2016) 75:2005–2029

Table 2 Communication overhead of distributing AGx to the P2P Area

Hybrid (AGx to P2P Area)

Before 2 · (extra S players + max S load · 10 %)

After (extra S players + max S load · 10 %) · ReturnRAT E

Total (extra S players + max S load · 10 %) · (2 + ReturnRAT E)

3.3.2 Communication cost in the distributed area

In the case of balancing and managing the Auxiliary Games to the Distributed Area, the
communication overhead is shown in Table 2. The cost related to the distribution of the Aux-
iliary Games to the P2P Area is the same as in the previous scenario (2·(extra S players+
max S load · 10 %)), given that the number of players to be moved is the same. When
players are already distributed, the communication between CS and players during the
Auxiliary Game is only due to the application of the Maintenance Algorithm, which is
negligible given that the communication is only produced by the Server of each AGx .
When the Auxiliary Game is over, some of these Auxiliary Game players will return
to the CS and, as a consequence, they will again communicate with the CS, obtaining
(extra S players + max S load · 10 %) · ReturnRAT E , where ReturnRAT E is the per-
centage of players returning to the CS. Section 5.2 evaluates this communication cost in
relation to its main parameters.

4 Performance of the auxiliary game server

In this Section, given that our approach is based on using players’ personal computers as the
Server and Replicated Server for the Auxiliary Games in the Distributed Area, we analyze
the viability in terms of CPU, memory and network consumption of current commercial
desktops to fulfill server functionalities.

Fig. 3 CPU consumption in relation to the number of players

Multimed Tools Appl (2016) 75:2005–2029 2017

As our aim is to demonstrate that any current commercial desktop can be used for this
purpose, this section is focused on analyzing the performance as a Server of a low cost
desktop with the following features: Intel Core 2 Duo Processor at 2.2GHz with 2GB DDR2
SDRAM, 250GB SATA and an ADSL connection at 512Kbps.

In order to parameterize the game and to monitorize the consumption of computational
resources by the Server, we played the Urban Terror game [18] increasing the number
of players from 5 to 40 during the game. Although this game belongs to the MMOFPS
category, its computational requirements and behavior are very similar to an MMORPG
and the parameterization of the maximum number of concurrent players is easier. The open
statistics [2] of PlaneShift [1] corroborate this assumption.

Figure 3 shows the percentage of use of CPU of the desktop computer while it is serving
a game. The game was started with 5 players and every 300 seconds, 5 new players were
connected until the game reached 40 concurrent players. It can be seen that there is a linear
relationship between the CPU consumption and the number of concurrent players. This
corroborates the results in Ye and Cheng in [37]. It is worth pointing out that taking the worst
case of 40 concurrent players into account, the CPU consumption is always maintained
below 45 %.

Figure 4 shows the memory consumption under the same conditions described above.
Amplified in the center of the Figure, we can see how the server reserves a significant
amount of memory at the beginning to initialize the game, but once it has begun, the mem-
ory utilization remains constant. Thus, our results reveal that the memory consumption is
independent of the number of players. Likewise, we can see that the memory consumption
is always below 100MB. Thus, we can conclude that memory is not a critical parameter for
choosing a peer from the Distributed Area to act as a server.

The network requirements were also analyzed. Figures 5 and 6 depict the number of input
and output packets to be transferred by the server when the number of concurrent players
is increased from 5 up to 40 players over time. We can see the same trend as with the CPU
case, where the number of input/output packets is roughly proportional to the number of
players.

Finally, we analyzed the performance of a conventional ADSL connection of 512 kbps
to serve a game party of 40 players. According to our empirical results, we can assume that:

Fig. 4 Servers memory consumption in relation to the number of players

2018 Multimed Tools Appl (2016) 75:2005–2029

Fig. 5 Input packets in the server during the game

– Each output packet has an average size of 141 Bytes. Note that this value also fits with
the empirical results shown in [16].

– The server sends two packets per second to each player in the game; this means 2,256
bps.

– Taking the size of the Auxiliary Game of 40 players into account, the average output
bandwidth would be: 40 players · 2, 256 bps/player = 90, 240 bps.

Therefore, the output rate represents 17.2 % of the total capacity of the ADSL connec-
tion. This way, we can conclude that a current ADSL connection is enough to serve the
connection of an Auxiliary Game.

The results shown throughout this section reveal that a commercial desktop can be used
to serve a typical Auxiliary Game that usually has a size between 5 and 40 players, without
any problem from the computational capacity point of view. Our experimentation has shown

Fig. 6 Output packets in the server during the game

Multimed Tools Appl (2016) 75:2005–2029 2019

Table 3 Percentages of AGx.size modeled into the simulation

AGx.size 5 players 10 players 20 players 25 players 40 players

Percentages (%) 66 14 2 3 15

that the most sensitive resource is the CPU, although it does not arrive in any case above
45 % of its performance.

5 Performance evaluation

In this Section, we evaluate the effectiveness of applying the load balancing mechanism to
players in Auxiliary Games, considering them as an indivisible entity, and the scalability
and viability of using the P2P area during the peak loads, that cannot be served by the cluster
of servers. In addition, the QoS given to the Auxiliary Games players located in the P2P
area is also analyzed in terms of latency and reliability.

The simulation was performed using SimPy [22]. SimPy is a discrete-event simulation
language based on standard Python. SimPy tools were used to implement nodes of the plat-
form, which can fulfill four distinct roles: player, AGx.S, AGx.RS and CS. The SimPy
procedures allow the random behavior of a player during the simulation to be represented.
We carried out a set of 1,000 simulations, each of which consisted of a world game map
whose dimensions were 1,000x1,000 (1 million player positions). This map was managed
by a CS of 10 servers with a homogeneous maximum workload of 5,500 players per server.
Taking into account the information about the existing game instances implemented in
World of Warcraft [36], we modeled the Auxiliary Games with five different numbers of
players: AGx.size = 5, 10, 20, 25 and 40. Table 3 shows the percentage of each kind of
AGx in relation to the total number of AGx . We considered that all the AGx were scattered
across the map using a random distribution that could eventually cause hot-spots. Figure 7
shows a snapshot of the game load map, where single players and different hot-spots caused

Fig. 7 Game load map snapshot

2020 Multimed Tools Appl (2016) 75:2005–2029

by the concentration of many AGx of different sizes are plotted in different colors. Each
rectangular region was managed by a single server in the central CS.

Another important issue is the calculation of the players’ latency against the CS. This
was determined by a triangulated heuristic, delimiting the 2-Dimensional Euclidean Space
to (x = [−1, 000,+1, 000], y = [−1, 000,+1, 000]). This methodology is based on the
relative coordinates, explained in [14].

In order to find the best reliable player to act as a server, the understanding of the behavior
of MMORPG players and their subsequent modeling is a key issue of our work. The mod-
eling of players’ uptime is based on their behavior history. Thus, we are able to predict how
reliable a player will be in order to select the adequate ones to act as AGx.S and AGx.RS

in terms of fault tolerance. From [35], we obtained mean and standard deviation values of
players’ uptime of 2.8 and 1.8 hours respectively. These values were taken from the World
of Warcraft statistics as a representative player behavior for an MMORPG. These values
can be modeled by a gamma distribution (see Fig. 8) with shape (K) equal to 1.157143 and
a scale (Θ) equal to 2.419754, given that it has been successfully evaluated with the Chi-
square test, indicating the goodness of our model in statistical terms. Then, with this model,
we can assign a fault likelihood to any player taking as a reference the player’ uptime that
allows the server (AGx.S) and its replicated (AGx.RS) to be selected adequately for each
Auxiliary Game (AGx). It is a fault tolerance based model, which implies that despite the
existence of extreme player behavior, in terms of sudden disconnections or large uptime,
we prioritize the selection of those players with more stable connection settings. Thus, good
reliability in the Distributed Area is ensured.

In order to test the proposed system and the load balancing mechanism, we have
simulated the two following scenarios:

A In order to decrease the load average of servers progressively, the disconnection rate
of players in the CS is 10 % higher than the connection rate. At the beginning
of the simulation, the CS is loaded with its allowed maximum capacity of players:
max S load · N , where N = 10 is the number of servers of the CS. Moreover, the
internal movements of players between servers are simulated; these movements are
caused when players move across the game map. In this way, hot-spots arise dynam-
ically in some servers while other servers are underutilized. Among all the players,
10 % are uniformly distributed across the Main Game map and the rest are located
in the Auxiliary Games. This scenario is performed to show the differences between
applying a load balancing mechanism to individual players, as has been usual in the

Fig. 8 Players uptime following a Gamma Distribution Histogram

Multimed Tools Appl (2016) 75:2005–2029 2021

literature, or taking the players’ AOI into account that is to say, balancing players from
the same Auxiliary Game as we propose in this work.

B In order to test the scalability performance of the system, the players’ connection rate
is 20 % higher than the disconnection rate. This means that the average load increases
over the allowed maximum with time. In this scenario, the AGxs not served by the
CS due to overloading are sent to the P2P area. In addition, we simulate the number
of players returning to the MG from the AGx (ReturnRAT E), i.e., the percentage of
players returning from the P2P to the Central Area, when the corresponding AGxs
are over. In this scenario, we want to prove that, thanks to the P2P area, it is possible
to overcome the maximum load capacity of the Central Area, performed by a Client-
Server architecture.

5.1 Testing load balancing methods

To analyze the effectiveness of the load balancing mechanism, explained in Section 3.2, we
compared it with the load balancing approach proposed by Bezerra et al. in [6] and described
in Section 2.

We applied both load balancing methods in scenario A, and the results are labeled Classic
for the Bezerra method andHybrid for our method. Figure 9 shows, for a CS with 10 servers
(S1, ..., S10), the initial and final load of each server after applying both balancing methods.
We can see that there were five overloaded servers at the beginning (S4, S7 , S8 , S9 , S10);
whereas the final distribution of players is balanced in both cases, thus avoiding overloaded
servers. However, the Classic method lets more servers near the stress situation (Si.load

� 5, 500) due to the fact that movements are applied taking individual players as an entity,
instead of taking Auxiliary Games as in our Hybrid method.

It is worth pointing out that the Hybrid method moves a significantly greater num-
ber of players, specifically 1,337 players in the Classic method versus the 4,100 players
in the Hybrid method. This can be explained by two reasons. On one hand, movements
affect all the players in each Auxiliary Game and, on the other hand, load balancing is
applied to the extra-players (extra S players) plus 10 % of the maximum load of a server
(max S load), with the aim of the load balancing mechanism being applied less frequently.

Fig. 9 Load balancing server comparison between Classic and Hybrid proposals for Scenario A

2022 Multimed Tools Appl (2016) 75:2005–2029

It is also worth remarking that this extra movement of players in the Hybrid method does
not yield an increase in communication cost compared with the Classic method, because
players in the same Auxiliary Game, who communicate intensively, are maintained in the
same server after being balanced.

Figure 10 shows the communication cost described in Table 1 of Section 3.3, vary-
ing between 100 and 1,000 the value of extra S players. For the Classic proposal, the
Interaction parameter was set at 10 % and two different values of F , 20 and 25 mes-
sages per second, were evaluated. Note that according to the values shown in [33], the
chosen Interaction and F values correspond to an MMORPG game with low inter-player
communication. Thus, the Classic method is favored over the Hybrid one. In spite of
these unfavorable conditions, the Hybrid method exchanges many fewer messages than the
Classic one, which corresponds with the analytical results obtained in the Section 3.3.

5.2 Scalability of the system

Scenario B was used to test the ability of the proposed Hybrid system together with the
balancing method to scale on demand. Note that in this scenario, the load of each server of
the CS exceeds the maximum allowed load; according to Algorithm 1, this ismax S load−
10 % · max S load, where max S load = 5, 500 players. Under this scenario, for each
server, Fig. 11 distinguishes the players located in such server and the players distributed
from the server to the P2P area. From this Figure, we can see that the Hybrid proposal is
able to exploit the P2P area distributing players and avoiding the overload situation. Thus,
it is able to overcome the maximum number of players managed by a server, which is 4,950
players.

It is worth remarking that in our system the players’ load of the Central Server would
only increase in the hypothetical case that the players’ connection rate was higher than the
percentage of Auxiliary Games creation. According to the the nature and behavior of the
players of the MMORPGs [33], more than 50 % of players of the game are playing in an
Auxiliary Game and as a consequence, the system would achieve the saturation point in the
hypothetical case that the players’ connection rate was 50 % higher than the disconnection
rate, which is a complete unusual situation.

Fig. 10 Communication costs comparison for Scenario A

Multimed Tools Appl (2016) 75:2005–2029 2023

Fig. 11 Hybrid Distributed Area (Scenario B)

As we discussed in Section 3.3, a key aspect is the additional communication cost pro-
voked by the balancing of players to the P2P area. Figure 12 depicts the evolution of the
communication overhead showed in Table 2 for different values of the ReturnRAT E . In
general, we can observe that whenever the ReturnRAT E parameter increases, the volume
of communications increases too, because more players have to communicate with the
CS. However, it is remarkable that even in the worst case (ReturnRAT E = 100 % and
extra S players = 1, 000), the total amount of communications, assuming a message size
equal to 141 Bytes [16], supposes an extra bandwidth of 719 KB for the CS, which is only
slightly higher than a conventional ADSL connection.

Our evaluation demonstrates the viability of the Hybrid proposal for scaling the system
on demand with a minimum additional communication cost for the cluster of servers. In
order to guarantee the playability of the players in the Auxiliary Games distributed to the
P2P Area, Quality of Service (QoS) mechanisms should be proposed. Accordingly, a QoS
evaluation in the Distributed Area is analyzed in the next section.

Fig. 12 Communication costs comparison for Scenario B

2024 Multimed Tools Appl (2016) 75:2005–2029

Table 4 Distributes function mechanisms performance under LL CRITERIA

CRITERIA Latency Hybrid (ms) Latency Client-Server (ms)

LL AGx.size = 5 AGx.size = 10 AGx.size = 5 AGx.size = 10

AVG 828.38 805.25 952.6 861.6

SD 3.132 5.620 3.5 6.1

5.2.1 QoS evaluation in the distributed area

The QoS of the proposed system indicates its ability to maintain latency values of the whole
system under an acceptable threshold, while a huge number of players are managed on
demand in the Distributed Area. The fault tolerance or reliability is also considered to be a
parameter for measuring the QoS of the system. Thus, the system has to be able to minimize
the sudden disconnections of players served in the Distributed Area.

It is worth pointing out that our system prioritizes latency or reliability depending on the
chosen value as CRITERIA of the distributes function presented in Algorithm 2. Remember
that the distributes function is used to find the optimal Server (AGx.S) and Replicated
Server (AGx.RS) of each Auxiliary Game executed in the Distributed Area.

Table 4 shows the average (AVG) and standard deviation (SD) of the players’ latency,
when the latency (LL) CRITERIA is applied to distribute AGxs over the Hybrid architec-
ture in relation to the traditional Client-Server architecture, which means that players play
directly against the CS instead of playing against theAGx.S, as we propose. Note thatAGxs

of size 5 and 10 players have been chosen as representative cases for Auxiliary Games.
Regarding the Hybrid architecture, the latency values are maintained for both AGxs

below 1 second, which is considered an acceptable threshold for MMORPGs [33]. In the
case of the Client-Server architecture, we obtained an average latency time of 952.6 ms for
AGx.size = 5 and 861.6 ms for AGx.size = 10, which represent increases in latency
of 15 % and 7 % respectively compared with the P2P area. Note that the better latency
time obtained in the P2P area is logical due that our method selects the players with the

Fig. 13 AGx.S AGx.RS selection process for AGx.size = 5, 10 players

Multimed Tools Appl (2016) 75:2005–2029 2025

Table 5 PD performance for AGx.size = 5, 10

CRITERIA AGx.size = 5 AGx.size = 10

PD AGx.S AGx.RS AGx AGx.S AGx.RS AGx

Prob. of disconnection (%) 12 32 0.86 28 24 0.03

lowest latency in relation to the remaining players in the same AGx , and this allows a local
minimum to be obtained. Thus, the distribution based on AGx in the P2P area is a key issue
for providing scalability without latency penalization.

Regarding the appropriateness of the PD criteria for looking for AGx.S and AGx.RS

servers of the AGx , we studied its reliability. Figure 13 shows the predicted average uptime
and the deviation of each player belonging to the AGx.size = 5 and AGx.size = 10,
respectively. As a reference, the uptime of the chosen Server is depicted on the dotted line.
From this reference line, we can see as always AGx.S.Uptimemin ≥ Pj .Uptimemin|Pj

∈ AGx − {AGx.S}.
In order to calculate the probability of disconnection (PD) of a player Pj , denoted as

PD, we search the interval [Uptimex, Uptimey] of the Gamma histogram, such as the
given in Fig. 8, where Pj .Uptimemin belongs to. Once the interval has been located, the
PD value is calculated as the probability that Pj .Uptimemin > Uptimey . For instance,
given a Pj .Uptimemin = 1.5 h, this will be located in the second interval [1 h, 2 h] of
the histogram of Fig. 8 and it will have a PD(Uptimemin > 2h) = 60, 9 %. According to
this, Table 5 shows the fault likelihood of the chosen AGx.S and AGx.RS. In addition, it
shows the fault likelihood of the wholeAGx by applying Algorithm 4 Given that theAGx is
alive while two players of the AGx were playing, the failure probability is calculated as the
product of the likelihood of AGx.S, AGx.RS and the rest of players Pj ∈ AGx , excluding
the player with the worst reliability. As can be seen, in both cases, the fault likelihood of
the AGx is under 0.9 %. This enhances the fault tolerance of the mapping mechanisms. It
is worth remarking that these percentages show the highest fault likelihood. Thus, it shows
the worst performance case, which reveals the goodness of the PD mechanism combined
with the role of the AGx.RS.

6 Conclusion and future work

This paper confronts the problem of supplying computation service to the increasing
demand by users to play in MMORPG games. An MMORPG is characterized by a Main
Game, which is executed without interruption, and a number of Auxiliary Games, which
are randomly created on the players’ wishes. In line with this, this paper proposes a hybrid
architecture for playing MMORPGs. It is composed of a Central Area with a cluster of
servers and a distributed P2P area that adds servers dynamically to the system according to
the demand.

To distribute computation over this architecture, we defined a mapping mechanism that
is based on moving Auxiliary Games, as an entity, among servers in the central cluster and
the P2P area. This avoids a significant amount of communications in comparison of moving
individual players, because players of the same Auxiliary Game have high interactivity dur-
ing the game. By means of simulation, it has been demonstrated that the proposed mapping
mechanism is able to provide well balanced loads in the cluster system while the distributed

2026 Multimed Tools Appl (2016) 75:2005–2029

platform scales on demand. Moreover, to maximize the performance in terms of latency and
reliability, we proposed latency or reliability options to be used as CRITERIA for finding a
new Server and Replicated Server for the Auxiliary Games in the Distributed Area. Like-
wise, we have shown that our proposal is able to achieve lower average latencies compared
with the traditional Client-Server architecture. Concerning reliability, it has been demon-
strated that the reliability mechanisms in our method is able to achieve a failure probability
of less than 0.9 % in the worst cases.

Future work is oriented to face up the cheating problem related to MMORPG games in
order to ensure a good player experience in the overall game. In order to exploit the peer’s
resources better, another route for improvement will be to manage the inherent heterogeneity
of players. Finally, other interesting issue will be to merge our current mapping mechanisms
with market criteria to reward the AGx.S and AGx.RS, given that they are sharing their
resources altruistically.

Acknowledgments This work was supported by the MEyC-Spain under contract TIN2011-28689-C02-02
and the CUR of DIUE of GENCAT and the European Social Fund.

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the
source are credited.

References

1. Atomic Blue Corporation. Homepage of PlaneShift, the open source MMORPG. (http://www.planeshift.
it/)

2. Atomic Blue Corporation. Link to PlaneShift server statistics, (http://v2.fragnetics.com/?page=gaming-
serverlist)

3. Ahmed DT, Shirmohammadi S (2008) A Dynamic Area of Interest Management and Collaboration
Model for P2P MMOGs. In: DS-RT ’08: Proceedings of the 2008 12th IEEE/ACM International
Symposium on Distributed Simulation and Real-Time Applications. IEEE Computer Society

4. Assiotis M, Tzanov V (2006) A Distributed Architecture for MMORPG. In: Proceedings of 5th ACM
SIGCOMM Workshop on Network and System Support for Games, NetGames ’06

5. Bauer D, Rooney S, Scotton P (2002) Network Infrastructure for Massively Distributed Games. In:
NetGames

6. Bezerra C, Resin C (2009) A load balancing scheme for massively multiplayer online games. Multimed
Tools Appl:45

7. Boulanger J-S, Kienzle J, Verbrugge C (2006) Comparing Interest Management Algorithms for Mas-
sively Multiplayer Games. In: Proceedings of 5th ACM SIGCOMM Workshop on Network and System
Support for Games, NetGames

8. Buyukkaya E, Abdallah Maha (2008) Data Management in Voronoi based P2P Gaming. In: Data
Management in Voronoi based P2P Gaming, pp. 1050–1053

9. Castro M, Druschel P, Kermarrec A-M, Rowstron A (2002) SCRIBE: A large-scale and decentralized
application-level multicast infrastructure. IEEE J Sel Areas Commun (JSAC) 20:1489–1499

10. chang FengW, Chang F., chi FengW,Walpole J (2002) Provisioning On-line Games: A Traffic Analysis
of a Busy Counter-Strike Server. In: Internet Measurement Workshop

11. Chen J, Baohua W, Delap M, Knutsson B, Honghui L, Amza C (2005) Locality Aware Dynamic
Load Management for Massively Multiplayer Games. In: Proceedings of the Tenth ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, PPoPP ’05

12. De Vleeschauwer B, Van Den Bossche B, Verdickt T, De Turck F, Dhoedt B, Demeester P (2005)
Dynamic Microcell Assignment for Massively Multiplayer Online Gaming. In: Proceedings of 4th ACM
SIGCOMM workshop on Network and System Support for Games, NetGames

13. Douglas S, Tanin E, Harwood A, Karunasekera S (2005) Enabling Massively Multi-Player Online
Gaming Applications on a P2P Architecture. In: Proceedings of the IEEE International Conference on
Information and Automation

http://www.planeshift.it/
http://www.planeshift.it/
http://v2.fragnetics.com/?page=gaming-
serverlist

Multimed Tools Appl (2016) 75:2005–2029 2027

14. Eugene TS, Zhang H (2001) Predicting Internet Network Distance with Coordinates-Based Approaches.
In: INFOCOM

15. Fan L, Trinder P, Taylor H Design Issues for Peer-to-Peer Massively Multiplayer Online Games.
International Journal of Advanced Media and Communications, 4, 2010

16. Feng W-c, Chang F, Feng W-c, Walpole J (2002) Provisioning On-line Games: A Traffic Analysis
of a Busy Counter-Strike Server. In: Proceedings of the 2nd ACM SIGCOMM Workshop on Internet
Measurment, IMW ’02, pages 151–156

17. Fengyun L, Parkin S, Morgan G (2006) Load Balancing for Massively Multiplayer Online Games. In:
Proceedings of 5th ACM SIGCOMM workshop on Network and System Support for Games, NetGames

18. Frozesand. Homepage of Urban Terror, the open source MMOFPS
19. Hampel T, Bopp T, Hinn R (2006) A Peer-to-Peer Architecture for Massive Multiplayer Online Games.

In: Proceedings of 5th ACM SIGCOMM Workshop on Network and System Support for Games,
NetGames

20. Hanzich M, Hernandez P, Gine F, Solsona F, Lerida JL (2011) On/off-line prediction applied to job
scheduling on non-dedicated NOWs. J Comp Sci Technol 26(1):99–116

21. Huang G-Y, Shun-Yun H, Jiang J-R (2008) Scalable reputation management with trustworthy user
selection for P2P MMOGs. Int J Adv Media Commun 2:380–401

22. IBM Developers Works. Charming Python: SimPy Simplifies Complex Models (Simulate Discrete
Simultaneous Events for Fun and Profit). 2002

23. Keller J, Solipsis GS (2003) A Massively Multi-Participant Virtual World. In: PDPTA
24. Knutsson B, Honghui L, Wei X, Hopkins B (2004) Peer-to-Peer Support for Massively Multiplayer

Games. In: INFOCOM
25. Lee YT, Chen KT (2010) Is Server Consolidation Beneficial to MMORPG? A Case Study of World of

Warcraft. In: Proceedings of IEEE International Conference on Cloud Computing
26. Liu H, Lo Y (2008) DaCAP - A Distributed Anti-Cheating P2P Architecture for Massive Multiplayer

On-line Role Playing Game. In: CCGRID
27. Liu H-I, Lo Y-T (2008) Dacap - A Distributed Anti-Cheating Peer to Peer Architecture for Massive Mul-

tiplayer On-line Role Playing Game. In: Proceedings of the 2008 Eighth IEEE International Symposium
on Cluster Computing and the Grid

28. Matsumoto N, Kawahara Y, Morikawa H, Aoyama T (2004) A Scalable and Low Delay Communication
Scheme for Networked Virtual Environments . In: Global Telecommunications Conference Workshops,
2004. GlobeCom Workshops 2004. IEEE, pages 529–535

29. Research in China. China Online Games Market Report, 2008. http://www.researchinchina.com/Htmls/
Report/2008/1944.html

30. Rhalibi AE, Merabti M (2006) Interest Management and Scalability Issues in P2PMMOG. In: Consumer
Communications and Networking Conference, (CCNC) 3rd IEEE, vol 2, pp. 1188–1192

31. Siu Fung Y (2006) Hack-Proof Synchronization Protocol for Multi-Player Online Games. In: Proceed-
ings of 5th ACM SIGCOMMWorkshop on Network and System Support for Games, NetGames

32. Storey K, Fengyun L, Morgan G (2004) Determining Collisions betweenMoving Spheres for Distributed
Virtual Environments. In: IEEE Proceedings of the Computer Graphics International, pages 140–147

33. Suznjevic M, Dobrijevic O, Matijasevic M (2009) MMORPG player actions: Network performance,
session patterns and latency requirements analysis. Multimed Tools Appl:45

34. Swamynathan G, Zhao BY, Almeroth KC (2008) Exploring the Feasibility of Proactive Reputations:
Research Articles. Concurrency Computation: Practice Experience 20:155–166

35. Tarng P, Chen K, Huang P (2008) An Analysis of WoW Players Game Hours. In: NetGames
36. WoWWiki. Your Guide to the World of Warcraft, 2011. http://www.wowwiki.com/Instances by level
37. Ye M, Cheng L (2006) System-Performance Modeling for Massively Multiplayer Online Role-Playing

Games. IBM Syst J 45:45–58
38. Yu AP, Son TV (2005) MOPAR: A Mobile Peer-to-Peer Overlay Architecture for Interest Management

of Massively Multiplayer Online Games Online Games, NOSSDAV?05, ACM. ACM Press

http://www.researchinchina.com/Htmls/Report/2008/1944.html
http://www.researchinchina.com/Htmls/Report/2008/1944.html
http://www.wowwiki.com/Instances_by_level

2028 Multimed Tools Appl (2016) 75:2005–2029

Ignasi Barri received the B.S. in computer science engineering from the Universitat of Lleida (UdL), Spain,
in 2009 and Ph.D degree in computer science from the UdL, Spain, in 2012. Actually, He is combining his
current job position as an International Research Project Manager in the multinational Indra with teaching
engineering to the University of Lleida. His research interest includes peer-to-peer computing and MMOG
games.

Concepció Roig received the MS and PhD degrees in Computer Engineering from the Universitat Autnoma
de Barcelona, Spain, in 1996 and 2002 respectively. She has been an associate professor in the Department
of Computer Science at the University of Lleida, Spain, since 1992. Her current research interests include
parallel and distributed systems, modelling of parallel applications, task graph models, static mapping and
optimization of parallel applications.

Multimed Tools Appl (2016) 75:2005–2029 2029

Francesc Giné received the B.S.in telecommunication engineering from the Universitat Politecnica de
Catalunya (UPC), Spain, in 1993 and the M.S. and Ph.D degrees in computer science from the Universitat
Autnoma de Barcelona (UAB), Spain, in 1999 and 2004, respectively. He is currently an Associate Professor
of Computer Arquitecture at University of Lleida (UdL), Spain. His research interest includes multicluster
and peer-to-peer computing and scheduling-mapping for parallel processing.

	Distributing game instances in a hybrid client-server/P2P system to support MMORPG playability
	Abstract
	Introduction
	Related work
	The client-server/P2P hybrid system
	The hybrid architecture
	Load balancing over the hybrid architecture
	Management of the distributed area

	Analyzing the communication cost
	Communication cost in the central area
	Communication cost in the distributed area

	Performance of the auxiliary game server
	Performance evaluation
	Testing load balancing methods
	Scalability of the system
	QoS evaluation in the distributed area

	Conclusion and future work
	Acknowledgments
	Open Access
	References

